Finite-Time Error Bounds for Biased Stochastic Approximation Algorithms with Application to Q-Learning

Gang Wang Georgios B. Giannakis Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455 E-mail: {gangwang, georgios}@umn.edu

Abstract

Inspired by the widespread use of Q-learning algorithms in reinforcement learning (RL), this paper studies a class of biased stochastic approximation (SA) procedures under an "ergodic-like" assumption on the stochastic noise sequence. Leveraging a multistep Luapunov function that looks ahead to several future updates to accommodate the gradient bias, we prove a general result on the convergence of the iterates, and use it to derive finite-time bounds on the mean-square error in the case of constant stepsizes. This novel viewpoint renders the finite-time analysis of biased SA algorithms under a broad family of stochastic perturbations possible. For direct comparison with past works, we also demonstrate these bounds by applying them to Qlearning with linear function approximation, under the realistic Markov chain observation model. The resultant finite-time error bound for Q-learning is the first of its kind, in the sense that it holds: i) for the unmodified version (i.e., without making any modifications to the updates), and ii), for Markov chains starting from any initial distribution, at least one of which has to be violated for existing results to be applicable.

1 INTRODUCTION

Stochastic approximation (SA) algorithms are widely used in a number of areas, including statistical signal processing, control, optimization, machine learning, and RL. Ever since the seminal contribution [Robbins and Monro, 1951], there have been a multitude of efforts on SA schemes, applications, and theoretical developments [Kushner and Yin, 2003], [Nemirovski et al., 2009]. On the theory side, conventional SA convergence analysis and error bounds are mostly asymptotic—that hold only in the limit as the number of iterations increases to infinity. Yet, recent efforts have focused on developing non-asymptotic performance guarantees—that hold even for finite iterations—for SA algorithms in different settings [Nemirovski et al., 2009], [Bach and Moulines, 2011], [Wainwright, 2019] mainly motivated by the emerging need for dealing with massive data examples in modern large-scale optimization and statistical learning tasks.

Many stochastic control tasks can be naturally formulated as Markov decision processes (MDPs), which provide a flexible framework for modeling decision making in scenarios where outcomes are partly random and partly under the control of a decision maker. Reinforcement learning is a collection of tools for solving MDPs, especially when the underlying transition mechanism is unknown [Watkins, 1989]. Originally introduced by [Watkins, 1989], Q-learning has become one of the most widely used RL algorithms nowadays, based on which much of the contemporary artificial intelligence is built [Mnih et al., 2015]. The goal of Q-learning is to obtain a policy that informs an agent what action to taken under what circumstances. It is model-free, namely it does not require a model of the environment, and iteratively estimates the optimal state-action value function (a.k.a. *Q*-function) based on a sequence of samples generated by operating a fixed policy in the unknown environment. For any MDP with finite state and action spaces, *Q*-learning finds a policy that is optimal in the sense that it maximizes the expected value of the total reward from each state. Despite its popularity, convergence analysis of Q-learning (with function approximation) has proved challenging; see, e.g., [Tsitsiklis, 1994], [Szepesvári, 1998], [Melo et al., 2008], [Eryilmaz and Srikant, 2012], [Beck and Srikant, 2012]. Connections between Q-

Proceedings of the 23rdInternational Conference on Artificial Intelligence and Statistics (AISTATS) 2020, Palermo, Italy. PMLR: Volume 108. Copyright 2020 by the author(s).

learning and SA were drawn in [Tsitsiklis, 1994], and [Bertsekas and Tsitsiklis, 1996]. Nonasymptotic guarantees of RL algorithms appeared only recently, and they remain limited [Srikant and Ying, 2019], [Zou et al., 2019], [Wainwright, 2019], [Chen et al., 2019].

Finite-time analysis of temporal-difference (TD) learning with linear function approximation was studied by [Dalal et al., 2018], but their results require i.i.d. samples, which are difficult to acquire in practice. Dealing with the more realistic yet challenging Markov chain observation model, finite-time analysis of TD learning was studied in [Bhandari et al., 2019], [Srikant and Ying, 2019], and that of Q-learning appeared lately in [Zou et al., 2019], [Chen et al., 2019]. However, the bound in [Zou et al., 2019] was developed for projected Q-learning, while the bound in [Chen et al., 2019] becomes applicable only after a certain (large) mixing-time number of iterations, that is, after the Markov chain gets sufficiently "close" to its stationary distribution.

Targeting a deeper understanding for the statistical efficiency of Q-learning algorithms, the objective of this present paper is to derive finite-time guarantees for a certain class of biased SA procedures. In particular, we first characterize a set of easy-to-check conditions on the nonlinear operators used in SA updates, and introduce a mild assumption on the stochastic noise sequence satisfied by a broad family of discrete-time stochastic processes. We prove a general convergence result leveraging a novel multistep Lyapunov function, which relies on a number of future SA updates to gain control over the gradient bias arising from instantaneous stochastic perturbations. We further develop finite-time bounds on the mean-square error of the iterates. Finally, for direct comparison to past works, we specialize the results established for general SA algorithms to Q-learning with linear function approximation, from data samples gathered along a single trajectory of a Markov chain. We thereby obtain finite-time error bounds for *Q*-learning using (non-)linear function approximators in the case of constant stepsizes, under the most general assumptions to date. The merits of our bounds are that they directly apply to i) the unmodified Q-learning algorithm (in contrast, e.g., a projection step is required by [Zou et al., 2019] to control the size of the iterates, which is impractical); and, iii) Markov chains starting from any initial distribution, as well, as from the first iteration (meaning there is no need to wait until the Markov chain gets "close" to its unique stationary distribution as required by e.g., [Chen et al., 2019])).

2 PROBLEM SETUP

Consider the following nonlinear recursion with a constant stepsize $\epsilon > 0$, starting from $\Theta_0 \in \mathbb{R}^d$

$$\Theta_{k+1} = \Theta_k + \epsilon f(\Theta_k, X_k), \quad k = 0, 1, 2 \dots$$
 (1)

where $\Theta_k \in \mathbb{R}^d$ denotes the k-th iterate, $\{X_k \in \mathbb{R}^m\}_k$ is a stochastic noise sequence defined on a complete probability space, and $f : \mathbb{R}^d \times \mathbb{R}^m \to \mathbb{R}^d$ is a continuous function of (θ, x) . In the simplest setting, for example, $\{X_k\}$ is an i.i.d. random sequence of vectors, while $f(\Theta_k, X_k)$ is a conditionally unbiased estimate of the gradient $\bar{f}(\Theta_k) := \mathbb{E}[f(\Theta_k, X_k) | \mathcal{F}_k]$. Here, $(\mathcal{F}_k)_{k>0}$ is an increasing family of σ -fields, with Θ_0 being \mathcal{F}_0 -measurable, and $f(\theta, X_k)$ being \mathcal{F}_k -measurable. Depending on whether \mathcal{F}_0 is a trivial σ -field, the initial guess Θ_0 can be random or deterministic. For simplicity, the rest of this paper assumes a deterministic Θ_0 , yet the obtained bounds hold true for a random Θ_0 after replacing $\|\Theta_0\|^2$ with $\mathbb{E}[\|\Theta_0\|^2]$. In a more complicated setting pertaining to MDPs, $\{X_k\}_k$ is a Markov chain assumed to have a unique stationary distribution, and $f(\Theta_k, X_k)$ can be viewed as a biased estimate of some gradient $f(\Theta_k) = \lim_{k \to \infty} \mathbb{E}_{X_k}[f(\Theta_k, X_k)]$. In both cases, we are prompted to assume that the following limit exists for each $\theta \in \mathbb{R}^d$

$$\bar{f}(\theta) = \lim_{k \to \infty} \mathbb{E}[f(\theta, X_k)].$$
(2)

Taking a dynamical systems viewpoint [Borkar, 2008], the corresponding ODE for (1) is given by

$$\dot{\theta}(t) = \bar{f}(\theta(t)).$$
 (3)

Assume that this ODE admits an equilibrium point θ^* at the origin, i.e., $\bar{f}(0) = 0$. This assumption is made without loss of generality, as one can always shift a nonzero equilibrium point to zero by appropriate centering $\theta \leftarrow \theta - \theta^*$. Following the terminology in [Borkar, 2008], [Lakshminarayanan and Szepesvari, 2018], the recursion (1) is termed nonlinear SA. Our goal here is to provide a non-asymptotic convergence analysis of the iterate sequence $\{\Theta_k\}_{k\in\mathbb{N}^+}$ generated by a recursion of the form (1) to the equilibrium point θ^* of its corresponding ODE (3).

The motivating impetus for considering recursion (1) was to gain a deeper insight into the classical *Q*-learning algorithm [Watkins, 1989] from discounted MDPs and RL [Sutton and Barto, 2018], [Bertsekas and Tsitsiklis, 1996]. It is a biased SA procedure for solving a fixed point equation defined by the so-called Bellman's operator [Bertsekas and Tsitsiklis, 1996]. As a matter of fact, a large family of basic RL algorithms [Sutton and Barto, 2018], including TD(0), $TD(\lambda)$, and GTD, as well as stochastic gradient descent for nonlinear least-squares estimation can also be described in this form (see e.g., [Lakshminarayanan and Szepesvari, 2018] for a detailed discussion).

Certainly, convergence guarantees of SA procedures as in (1) would not be possible without imposing assumptions on the operators $f(\theta, x)$ and $\bar{f}(\theta)$. In this work, motivated by the analysis of TD-learning and related algorithms in RL, we consider a class of SA procedures that satisfy the following properties.

Assumption 1. The function $f(\theta, x)$ satisfies the globally Lipschitz condition in θ , uniformly in x, i.e., there exists a constant $L_1 > 0$ such that for all $\theta, \theta' \in \mathbb{R}^d$ and each $x \in \mathcal{X}$, it holds that

$$\|f(\theta, x) - f(\theta', x)\| \le L_1 \|\theta - \theta'\|.$$
(4)

Moreover, there exists a constant $L_2 > 0$ such that, for each $x \in \mathcal{X}$, it holds for all θ

$$||f(\theta, x)|| \le L_2(||\theta|| + 1)$$
 (5)

where $\mathcal{X} \subseteq \mathbb{R}^m$ denotes the living space of the stochastic process $\{X_k\}$.

It is worth pointing out that (5) is equivalent to assuming that f(0, x) satisfying (4) is uniformly bounded for all $x \in \mathcal{X}$. To see this, suppose that $||f(0, x)|| \leq \hat{f}$ holds for all $x \in \mathcal{X}$. Using (4), it follows readily that $||f(\theta, x)|| \leq L_1 ||\theta - \theta'|| + ||f(\theta', x)||$, in which taking $\theta' = 0$ confirms that $||f(\theta, x)|| \leq L_1 ||\theta|| + ||f(0, x)|| \leq L_1 ||\theta|| + \hat{f} \leq \max(L_1, \hat{f})(||\theta|| + 1)$. By defining $L := \max\{L_1, L_2\}$, we will assume for simplicity that (4) and (5) hold with the same constant L.

Assumption 2. Consider the ODE $\dot{\theta}(t) = \bar{f}(\theta(t))$ in (3). There exists a twice differentiable function $W(\theta)$ (a.k.a., Lyapunov function) that satisfies globally and uniformly the following conditions for all $\theta, \theta' \in \mathbb{R}^d$

$$c_1 \|\theta\|^2 \le W(\theta) \le c_2 \|\theta\|^2 \tag{6a}$$

$$\left(\frac{\partial W}{\partial \theta}\Big|_{\theta}\right)^{\top} \bar{f}(\theta) \le -c_3 L \|\theta\|^2 \tag{6b}$$

$$\left\| \frac{\partial W}{\partial \theta} \right|_{\theta} - \frac{\partial W}{\partial \theta} \Big|_{\theta'} \right\| \le c_4 \|\theta - \theta'\| \tag{6c}$$

for some constants $c_1, c_2, c_3, c_4 > 0$.

For an introduction to Lyapunov theory, see e.g., standard source [Khalil, 2002, Ch. 4]. Regarding these assumptions, two remarks come in order.

Remark 1. Assumption 1 is standard and widely adopted in the convergence analysis of SA algorithms; see, for example, [Borkar, 2008, Ch. 3], [Bach and Moulines, 2011], [Jaakkola et al., 1994], [Tsitsiklis, 1994] and [Srikant and Ying, 2019] in the case of linear SA (i.e., $f(\theta, x)$ is linear in θ). **Remark 2.** By evaluating inequality (6a) at $\theta = 0$, one confirms that $W(\theta) > W(0) = 0$ for all $\theta \neq 0$. Since $W(\theta)$ is twice differentiable, it implies that $\frac{\partial W}{\partial \theta}|_{\theta=0} = 0$. From (6b), it holds that both $\bar{f}(\theta) \neq 0$ and $\frac{\partial W}{\partial \theta}|_{\theta} \neq 0$ at any point $\theta \neq 0$. In words, Assumption 2 states that the equilibrium point $\theta = 0$ is unique, and globally, asymptotically stable for the ODE (3). This also appeared in e.g., [Borkar, 2008, A5] and [Bach and Moulines, 2011] (strongly convex case). This is in the same spirit of requiring a Hurwitz matrix \bar{A} (i.e., every eigenvalue has strictly negative real part) for the ODE $\dot{\theta} = \bar{A}\theta$ in linear SA by [Tsitsiklis and Van Roy, 1997, Theorem 2], [Dalal et al., 2018], [Srikant and Ying, 2019].

In addition to As. 1 and 2, to leverage the corresponding ODE to study convergence of SA procedures, we make an assumption on the stochastic perturbation sequence $\{X_k\}_{k\in\mathbb{N}}$.

Assumption 3. For each $\theta \in \mathbb{R}^d$, the random vector $f(\theta, X_k)$ is \mathcal{F}_k -measurable, and there exists a function $\sigma(T; T_0) : \mathbb{N}^+ \times \mathbb{N}^+ \to \mathbb{R}^+$ monotonically decreasing to zero as either $T \to \infty$ or $T_0 \to \infty$; i.e., $\lim_{T\to\infty} \sigma(T; T_0) = 0$ for any fixed $T_0 \in \mathbb{N}^+$, and $\lim_{T_0\to\infty} \sigma(T; T_0) = 0$ for any fixed $T \in \mathbb{N}^+$, such that

$$\left\| \frac{1}{T} \sum_{k=T_0}^{T_0+T-1} \mathbb{E} \left[f(\theta, X_k) \big| \mathcal{F}_{T_0} \right] - \bar{f}(\theta) \right\| \le \sigma(T; T_0) L(\|\theta\| + 1)$$
(7)

where the expectation \mathbb{E} is taken over $\{X_k\}_{k=T_0}^{T_0+T-1}$ conditioned on \mathcal{F}_{T_0} .

In fact, As. 3 requires that the bias of the 'ergodic' average of any T consecutive gradient estimates ${f(\theta, X_k)}_{k=T_0}^{T_0+T-1}$ from their limit $\bar{f}(\theta)$ vanishes (at least) sublinearly in T. Indeed, this is fairly mild and more general than those studied individually by e.g., [Bach and Moulines, 2011], [Bhandari et al., 2019], [Srikant and Ying, 2019], each of which imposes requirements on each gradient estimate $f(\theta, X_k)$. For example, [Bach and Moulines, 2011] entails unbiased gradient estimate per iteration, an [Dalal et al., 2018, Bhandari et al., 2019] has to incorporate a projection step for control of the instantaneous gradient bias, and [Srikant and Ying, 2019] requires the initial distribution of the Markov chain to be sufficiently close to the stationary distribution for the bound to be applicable.

In sharp contrast, our condition (7) can allow for large instantaneous biased gradient estimates $f(\Theta_k, X_k)$ of $\overline{f}(\Theta_k)$. Furthermore, As. 3 is satisfied by a broad family of discrete-time stochastic processes, including e.g., i.i.d. random vector sequences [Bach and Moulines, 2011], finite-state irreducible and aperiodic Markov chains, and Ornstein-Uhlenbeck processes; whereas, existing works [Bach and Moulines, 2011], [Lakshminarayanan and Szepesvari, 2018],

[Bhandari et al., 2019], [Srikant and Ying, 2019] deals only with one such type of those stochastic processes.

3 FINITE-TIME BOUNDS ON THE MEAN-SQUARE ERROR

In this paper, we seek to develop novel tools for proving non-asymptotic bounds on the mean-square error of the iterates $\{\Theta_k\}_{k\geq 1}$ generated by a recursion of the form (1) (to the equilibrium point $\theta^* = 0$). Before presenting the main results, we start off by introducing an instrumental result which is the key to our novel approach to controlling possible bias present in the gradient estimate of SA procedures. Its proof is provided in Appendix A of the supplementary material.

Proposition 1. Under As. 1 and 3, there exists a function $g'(k, T, \Theta_k)$ such that the next relation holds for all $T \in \mathbb{N}^+$

$$\Theta_{k+T} = \Theta_k + \epsilon T \bar{f}(\Theta_k) + g'(k, T, \Theta_k) \tag{8}$$

satisfying

$$\left\| \mathbb{E} \left[g'(k, T, \Theta_k) \middle| \mathcal{F}_k \right] \right\| \le \epsilon L T \beta(T, \epsilon) (\left\| \Theta_k \right\| + 1) \quad (9)$$

$$\beta(T,\epsilon) := \epsilon L T (1+\epsilon L)^{T-2} + \sigma(T;k) \tag{10}$$

where the expectation is taken over $\{X_j\}_{j=k}^{k+T-1}$ conditioned on \mathcal{F}_k .

Evidently, Prop. 1 offers a bound on the average gradient bias over a number T > 0 of iterations, which is indeed motivated by our As. 3. Based on the results in Prop. 1, we present the following theorem, which establishes a general convergence result that applies to any stochastic sequence $\{X_k\}_{k\in\mathbb{N}}$ satisfying As. 3.

Theorem 1. Under Assumptions 1-3 and for any $\delta > 0$, there exist a function $W'(k, \Theta_k)$, and constants $(T^* \in \mathbb{N}^+, \epsilon_{\delta})$ such that $\sigma(T^*; k) \leq \delta$ and the following inequalities are globally and uniformly satisfied for all $\epsilon \in (0, \epsilon_{\delta})$ and all $k \in \mathbb{N}$

$$c_{1}' \|\Theta_{k}\|^{2} \leq W'(k,\Theta_{k}) \leq c_{2}' \|\Theta_{k}\|^{2} + c_{2}''(\epsilon L)^{2} \quad (11)$$
$$\mathbb{E} \Big[W'(k+1,\Theta_{k+1}) - W'(k,\Theta_{k}) \big| \mathcal{F}_{k} \Big] \leq -\epsilon c_{3}' \|\Theta_{k}\|^{2} + c_{4}' \epsilon^{2} + c_{5}' \sigma(T^{*};k) \epsilon \quad (12)$$

where $c'_1, c'_2, c'_3, c''_2, c'_4, c'_5 > 0$ are constants dependent on $c_1 \sim c_4$ of (6) but independent of $\epsilon > 0$.

Proof of Theorem 1 is relegated to Appendix B of the supplementary material due to space limitations. Our proof builds critically on the construction of function $W'(k, \Theta_k)$ from the Lyapunov function $W(\theta)$ of the ODE (3). To use the concentration bound in (7), we are motivated to introduce a function candidate that necessarily looks ahead to a number of T future iterates, with parameter $T \ge 1$ to be designed such that the gradient bias can be made affordable, given by

$$W'(k,\Theta_k) = \sum_{j=k}^{k+T-1} W(\Theta_j(k,\Theta_k))$$
(13)

where, to make the dependence of $\Theta_{i>k}$ as a function of Θ_k explicit, we intentionally write $\Theta_i = \Theta_i(k, \Theta_k)$, understood as the iterate of the recursion (1) at time instant $j \geq k$, with an initial condition Θ_k at time k. It is just this parameter $T \ge 1$ that allows us to exploit the monotonically decreasing function $\sigma(T;k) \rightarrow 0$ in (9) to gain control over This further renders instantaneous gradient bias. the *general* convergence bounds (11)–(12) possible, in the sense that they hold for any nonlinear SA procedure with underlying random sequence obeying As. 1–3. For instance, when the underlying noise sequence $\{X_k\}_k$ is i.i.d. [Bach and Moulines, 2011], [Lakshminarayanan and Szepesvari, 2018], or а Markov chain that has approximately arrived at its steady state (i.e., after a certain mixing time of recursions) [Srikant and Ying, 2019], they have shown that it suffices to choose T = 1, that is $W'(\Theta_k) = W(\Theta_k)$ to validate (11)–(12). For general Markov chains starting from any initial distribution however, functions like $W'(\Theta_k) = W(\Theta_k)$ may fail to yield finite-time error bounds that hold for the entire sequence $\{\Theta_k\}_{k\geq 1}$. In a nutshell, our novel way of constructing this multistep Lyapunov function is indeed motivated by and well-suited for taking care of this kind of 'mixing' behavior. It goes beyond the Markov chain to be useful for finite-time analysis of general SA algorithms driven by a broad family of (discrete-time) stochastic processes.

We are now ready to study the drift of $W'(k, \Theta_k)$, which follows from Theorem 1, and whose proof is provided in Appendix C of the supplementary material. In a nutshell, our novel way of constructing the Lyapunov function offers an effective tool for finite-time analysis of general SA algorithms driven by a broad family of (discrete-time) stochastic processes.

We are now ready to study the drift of $W'(k, \Theta_k)$, which follows from Theorem 1, and whose proof is provided in Appendix C of the supplementary material.

Lemma 1. Under Assumptions 1-3, the following holds true for all $\epsilon \in (0, \epsilon_{\delta})$ and all $k \in \mathbb{N}$

$$\mathbb{E}\left[W'(k+1,\Theta_{k+1})\right] \le \left(1 - \frac{c'_3\epsilon}{c'_2}\right) \mathbb{E}\left[W'(k,\Theta_k)\right] + c''_4\epsilon^2 + c'_5\sigma(T^*;k)\epsilon$$
(14)

where $c''_4 > 0$ is an appropriate constant independent of ϵ , and $T^* \in \mathbb{N}^*$ is fixed in Theorem 1.

Theorem 2. Let $k_{\epsilon} := \min\{k \in \mathbb{N}^+ | \sigma(T^*; k) \leq \epsilon\}$. Under As. 1–3, and choosing stepsize $\epsilon \in (0, \epsilon_{\delta})$, the following finite-time error bounds hold for all $k \in \mathbb{N}$

$$\mathbb{E}\left[\|\Theta_{k}\|^{2}\right] \leq \frac{c_{2}'}{c_{1}'} \left(1 - \frac{c_{3}'\epsilon}{c_{2}'}\right)^{k} \|\Theta_{0}\|^{2} + \frac{c_{2}''L^{2}}{c_{1}'}\epsilon^{2} + \frac{c_{6}}{c_{1}'}\epsilon + \frac{c_{6}}{c_{1}'}\epsilon + \frac{c_{6}}{c_{1}'}\left(1 - \frac{c_{3}'\epsilon}{c_{2}'}\right)^{\max\{k - k_{\epsilon}, 0\}}\delta$$
(15)

where $c_6 > 0$ is some constant; and $\delta > 0$ is given in Theorem 1.

When a random initial estimate Θ_0 is considered, one just needs to replace the term $\|\Theta_0\|^2$ with its expectation $\mathbb{E}[\|\Theta_0\|^2]$ in (15), and the resulting bound holds. Proof of Theorem 2 is postponed to Appendix D of the supplemental document. At this point, some observations are worth making.

Remark 3. Existing *non-asymptotic* results have focused on linear SA algorithms including [Lakshminarayanan and Szepesvari, 2018], e.q., [Srikant and Ying, 2019], [Bhandari et al., 2019], or nonlinear SA under i.i.d. noisee.a.. [Nemirovski et al., 2009], [Bach and Moulines, 2011]. In contrast, the finite-time bound in Theorem 2 is applicable to a class of nonlinear SA procedures under a broad family of stochastic perturbation processes.

Remark 4. When the general recursion (1) is specialized to linear SA driven by Markovian noise $\{X_k\}_{k \in \mathbb{N}}$, *i.e.*, $f(\Theta_k, X_k) = A(X_k)\Theta_k + b(X_k)$, our established bound in (15) improves upon the state-of-the-art in [Srikant and Ying, 2019, Theorem 7]. In fact, the bound in [Srikant and Ying, 2019, Theorem 7] becomes applicable only after a mixing time of updates (i.e., for $k \geq \tau$ with $\tau \gg 1$ being the mixing time of the Markov chain $\{X_k\}$) till the Markov chain gets sufficiently 'close' to its stationary distribution; yet, in sharp contrast, our bound (15) is effective from the first iteration for Markov chains starting with any initial distribution. Furthermore, our stead-state value (the last term of (15)) scales only with the stepsize $\epsilon > 0$ (which has removed the independence on τ from the bound in [Srikant and Ying, 2019]), and it vanishes as $\epsilon \to 0$.

Evidently, with the bound in (15), one can easily estimate the number of data samples (e.g., the length of a Markov chain trajectory) required for the mean-square error to be of the same order as its steady-state value.

4 APPLICATIONS TO APPROXIMATE Q-LEARNING

We now turn to the consequences of our general results for the problem of Q-learning with linear func-

tion approximation. Toward this objective, we begin by providing a brief introduction to discounted MDPs and basic RL algorithms; interested readers can refer to standard sources (e.g., [Sutton and Barto, 2018], [Bertsekas and Tsitsiklis, 1996]) for more background.

4.1 Background and Problem Setup

Consider a discounted MDP, defined by the quintuple $(S, \mathcal{U}, \mathcal{P}, R, \gamma)$, where S is a finite set of possible states (a.k.a. state space), \mathcal{U} is a finite set of possible actions (a.k.a. action space), $\mathcal{P} := \{P^u \in \mathbb{R}^{|S| \times |S|} | u \in \mathcal{U}\}$ is a collection of probability transition matrices, indexed by actions $u, R(s, u) : S \times \mathcal{U} \to \mathbb{R}$ is a reward received upon executing action u while in state s, and $\gamma \in [0, 1)$ is the discount factor. The results along with theoretical analysis developed in this paper may be generalized to deal with infinite and compact state and/or action spaces, but we restrict ourselves to finite spaces here for an ease of exposition.

An agent selects actions to interact with the MDP (the environment) by operating a policy. Specifically, at each time step $k \in \mathbb{N}$, the agent first observes the state $S_k = s \in S$ of the environment, and takes an action $U_k = u \in \mathcal{U}$ by following a deterministic policy $\pi : S \to \mathcal{U}$, or a stochastic one $U_k \sim \pi(\cdot|S_k)$, where $\pi(\cdot|s)$ is a probability distribution function supported on \mathcal{U} . The environment then moves to the next state $S_{k+1} = s' \in S$ with probability $P_{ss'}^u =$ $\Pr(S_{k+1} = s'|S_k = s, U_k = u)$, associated with which an instantaneous reward $R_k := R(S_k, U_k)$ is revealed to the agent. Repeating this procedure generates a single trajectory of states, actions, and rewards, namely, $S_0, U_0, R_0, S_1, \ldots, S_T, U_T, R_T, S_{T+1}, \ldots$ over $S \times \mathcal{U} \times \mathbb{R}$.

We can define for control purpose the so-called actionvalue function (a.k.a., Q-function), which measures the quality of a given policy by the expected sum of discounted instantaneous rewards, conditioned on starting in a given state-action pair, and following the policy π to take subsequent actions; i.e.,

$$Q(s,u) = \mathbb{E}\Big[\sum_{k=0}^{\infty} \gamma^k R(S_k, U_k) \big| S_0 = s, U_0 = u\Big],$$

where $U_k \sim \pi(\cdot | S_k)$ for all $k \in \mathbb{N}^+$. (16)

Naturally, one would like to choose the policy π such that the values of the Q-function are optimized. In fact, it has been established that the Q-function associated with the optimal policy π^* , yielding the optimal Q-function denoted by Q^* , satisfies the following Bellman equation [Bertsekas and Tsitsiklis, 1996, Tsitsiklis, 1994, Watkins and Dayan, 1992]

$$Q^*(s,u) = \mathbb{E}[R(s,u)] + \gamma \mathbb{E}\Big[\max_{u' \in \mathcal{U}} Q^*(s',u') \big| s,u\Big]$$
(17)

for all state-action pairs $(s, u) \in \mathcal{S} \times \mathcal{U}$. After assuming a canonical ordering on the elements of $\mathcal{S} \times \mathcal{U}$, the table Q can be treated as a matrix in $\mathbb{R}^{|\mathcal{S}| \times |\mathcal{U}|}$. Once $\{Q^*(s, u)\}_{s,u}$ becomes available, an optimal policy π^* can be recovered by setting $\pi^*(s) \in$ arg $\max_{u \in \mathcal{U}} Q^*(s, u)$ for all $s \in \mathcal{S}$, without any knowledge about the transition probabilities.

In the learning context of interest, the transition probabilities $\{P_{ss'}^u\}_{s,u,s'}$ are typically unknown and the dimensions $|\mathcal{S}|$ and/or $|\mathcal{U}|$ can be huge or even infinity in practice, so it is almost impossible to exactly evaluate the Bellman equation (17). As one of the most popular solutions for finding the optimal policy, Qlearning [Watkins, 1989] iteratively updates the estimate Q_k of Q^* using a single trajectory of samples $\{(S_k, U_k, S_{k+1})\}$ generated by following the policy π , according to the recursion

$$Q_{k+1}(S_k, U_k) = Q_k(S_k, U_k) + \epsilon_k \Big[R(S_k, U_k) + \gamma \max_{u' \in \mathcal{U}} Q_k(S_{k+1}, u') - Q_k(S_k, U_k) \Big]$$
(18)

where $\{0 < \epsilon_k < 1\}$ is a sequence of stepsizes to be chosen by the user. Under standard conditions on the stepsizes, the sequence $\{Q_k\}$ converges to Q^* almost surely as long as every state-action pair $(s, u) \in S \times U$ is visited infinitely often; see, for instance, [Watkins and Dayan, 1992, Tsitsiklis, 1994, Bertsekas and Tsitsiklis, 1996].

However, it is well known that for many important problems of practical interest, the computational requirements of exact function estimation are overwhelming, mainly because of a large number of states and actions (i.e., Bellman's "curse of dimensionality") [Bertsekas and Tsitsiklis, 1996]. Instead, a popular approach has been to leverage lowdimensional parametric approximations of the value function, or the Q-function. Although contemporary nonlinear approximators such as deep neural networks [Mnih et al., 2015] could lead to more powerful approximations, the simplicity of RL with linear function approximation [Sutton and Barto, 2018] allows us to analyze them in detail.

4.2 *Q*-Learning With Linear Function Approximation

In this section, we provide a non-asymptotic analysis for the original Q-learning with linear function approximation. Specifically, we assume that the Q-function is parameterized by a linear function as follows

$$Q(s,u) \approx Q^{\theta}(s,u) = \psi^{\top}(s,a)\theta \tag{19}$$

where $\theta \in \mathbb{R}^d$ is a parameter vector to be learned, typically of size $d \ll |\mathcal{S}| \times |\mathcal{U}|$, the number of stateaction pairs; and the feature vector $\psi(s, a) \in \mathbb{R}^d$ stacks up *d* features produced by pre-selected basis functions $\{\psi_{\ell}(s, u) : S \times \mathcal{U} \to \mathbb{R}\}_{\ell=1}^d$. For future reference, we introduce the so-called feature matrix, given by

$$\Psi := \begin{bmatrix} \psi^{\top}(s_1, u_1) \\ \psi^{\top}(s_1, u_2) \\ \vdots \\ \psi^{\top}(s_{|\mathcal{S}|}, u_{|\mathcal{U}|}) \end{bmatrix} \in \mathbb{R}^{|\mathcal{S}||\mathcal{U}| \times d}$$

which is assumed to have full column rank (that is, linearly independent columns) and satisfy $\|\psi(s, u)\| \leq 1$ for all state-action pairs $(s, u) \in S \times U$.

The well-known Q-learning algorithm upparameter dates the vector Θ, according to (e.g., [Bertsekas and Tsitsiklis, 1996, Sutton and Barto, 2018])

$$\Theta_{k+1} = \Theta_k + \epsilon \psi(S_k, U_k) \Big[R(S_k, U_k) \\ + \gamma \max_{u \in \mathcal{U}} \psi^\top(S_{k+1}, u) \Theta_k - \psi^\top(S_k, U_k) \Theta_k \Big]$$
(20)

for some constant stepsize $\epsilon \in (0, 1)$. The goal here is to obtain finite-time error bounds for (20), when the observed data samples $\{(S_k, U_k, R(S_k, U_k), S_{k+1}, U_{k+1})\}_{k \in \mathbb{N}}$ are collected along a single path of the Markov chain $\{S_k\}_{k \in \mathbb{N}}$ by following a deterministic policy π . With $X_k := (S_k, U_k, S_{k+1})$, considering

$$F(\theta, X_k) = \psi(S_k, U_k) \Big[R(S_k, U_k) + \gamma \max_{u \in \mathcal{U}} \psi^\top(S_{k+1}, u) \theta - \psi^\top(S_k, U_k) \theta \Big]$$
(21)

it becomes obvious that (20) has the form of the SA update (1). For our non-asymptotic error guarantees established for nonlinear SA procedures in Theorem 2 to be applicable to Q-learning with linear function approximation, it suffices to show that As. 1–3 are satisfied by the Q-learning updates (20).

In general, Q-learning with even linear function approximation can diverge [Gordon, 1995]. This is mainly because Q-learning implements off-policy ¹ sampling to collect the data, which renders the expected Q-learning update possibly an expansive mapping [Gordon, 1995]. Under appropriate regularity conditions on the sampling policy, asymptotic convergence of Q-learning with linear function approximation was established in [Melo et al., 2008], and finite-time analysis was recently given in [Zou et al., 2019]. In the

¹On-policy methods estimate the value of a policy while using it for control (namely, take actions); while in offpolicy methods, the policy used to generate behavior, called the behavior/sampling policy, may be independent of the policy that is evaluated and improved, called the target/estimation policy [Sutton and Barto, 2018].

following, we also impose a similar regularity condition on the sampling policy π [Chen et al., 2019].

Assumption 4. Suppose that the Markov chain $\{S_k\}_{k\in\mathbb{N}}$ induced by policy π is irreducible and aperiodic, whose unique stationary distribution is denoted by μ . Assume that the equation $\overline{F}(\theta) := \mathbb{E}_{\mu}[F(\theta, X)] = 0$ has a unique solution θ^* , and the next inequality holds for all $\theta \in \mathbb{R}^d$

$$\gamma^{2} \mathbb{E}_{\mu} \Big[\max_{u' \in \mathcal{U}} \left(\psi^{\top}(s', u') \theta \right)^{2} \Big] - \mathbb{E}_{\mu} \Big[\left(\psi^{\top}(s, u) \theta \right)^{2} \Big] \leq -c \|\theta\|^{2}$$

where $u \sim \pi(\cdot|s)$, for some constant 0 < c < 1.

Now, let us turn to verify As. 1–3. Toward this end, we start by introducing $\tilde{\theta} := \theta - \theta^*$ and X := (S, U, S'). It then follows that

$$f(\tilde{\theta}) := F(\tilde{\theta} + \theta^*, X)$$

= $\psi(S, U) \Big[R(S, U) + \gamma \max_{u \in \mathcal{U}} \psi^{\top}(S', u) \theta - \psi^{\top}(S, U) \theta \Big].$
(22)

It is evident that $\bar{f}(\tilde{\theta}) := \mathbb{E}_{\mu}[F(\tilde{\theta} + \theta^*, X)] = 0$ has a unique solution $\tilde{\theta}^* = 0$. Now, we can rewrite (20) as

$$\tilde{\Theta}_{k+1} = \tilde{\Theta}_k + \epsilon f(\tilde{\Theta}_k, X_k).$$
(23)

Verifying As. 1. For any $\tilde{\theta}_1$, $\tilde{\theta}_2$, and x = (s, u, s'), we have that

$$\begin{split} \|f(\tilde{\theta}_{1},x) - \bar{f}(\tilde{\theta}_{2},x)\| \\ &= \left\|\psi(s,u) \left[R(s,u) + \gamma \max_{u_{1} \in \mathcal{U}} \psi^{\top}(s',u_{1}) \left(\tilde{\theta}_{1} + \theta^{*}\right)\right] \\ &- \psi^{\top}(s,u) \left(\tilde{\theta}_{1} + \theta^{*}\right) \right] - \psi(s,u) \left[R(s,u) \\ &+ \gamma \max_{u_{2} \in \mathcal{U}} \psi^{\top}(s',u_{2}) \left(\tilde{\theta}_{2} + \theta^{*}\right) - \psi^{\top}(s,u) \left(\tilde{\theta}_{2} + \theta^{*}\right) \right] \right\| \\ &= \left\|\gamma \psi(s,u) \left[\max_{u_{1} \in \mathcal{U}} \psi^{\top}(s',u_{1}) \left(\tilde{\theta}_{1} + \theta^{*}\right) \\ &- \max_{u_{2} \in \mathcal{U}} \psi^{\top}(s',u_{2}) \left(\tilde{\theta}_{2} + \theta^{*}\right) \right] + \psi(s,u) \psi^{\top}(s,u) \left(\tilde{\theta}_{1} - \tilde{\theta}_{2}\right) \right\| \\ &\leq \gamma \left|\max_{u_{1} \in \mathcal{U}} \psi^{\top}(s',u_{1}) \left(\tilde{\theta}_{1} + \theta^{*}\right) - \max_{u_{2} \in \mathcal{U}} \psi^{\top}(s',u_{2}) \left(\tilde{\theta}_{2} + \theta^{*}\right) \right| \\ &+ \left\|\tilde{\theta}_{1} - \tilde{\theta}_{2}\right\| \end{split}$$
(24)

where the last inequality follows from $\|\psi(s, u)\| \leq 1$ for all $(s, u) \in S \times U$.

Suppose that $u_1^* \in \max_{u_1 \in \mathcal{U}} \psi^\top(s', u_1) (\tilde{\theta}_1 + \theta^*)$, then

$$\begin{aligned} \max_{u_1 \in \mathcal{U}} \psi^{\mathsf{T}}(s', u_1) \big(\tilde{\theta}_1 + \theta^* \big) &- \max_{u_2 \in \mathcal{U}} \psi^{\mathsf{T}}(s', u_2) \big(\tilde{\theta}_2 + \theta^* \big) \\ &= \psi^{\mathsf{T}}(s', u_1^*) \big(\tilde{\theta}_1 + \theta^* \big) - \max_{u_2 \in \mathcal{U}} \psi^{\mathsf{T}}(s', u_2) \big(\tilde{\theta}_2 + \theta^* \big) \\ &\leq \psi^{\mathsf{T}}(s', u_1^*) \big(\tilde{\theta}_1 + \theta^* \big) - \psi^{\mathsf{T}}(s', u_1^*) \big(\tilde{\theta}_2 + \theta^* \big) \\ &= \psi^{\mathsf{T}}(s', u_1^*) \big(\tilde{\theta}_1 - \tilde{\theta}_2 \big) \end{aligned}$$

$$\leq \left\| \tilde{\theta}_1 - \tilde{\theta}_2 \right\| \tag{25}$$

due again to $\|\psi(s', u_1^*)\| \leq 1$. On the other hand, if we let $u_2^* \in \max_{u_2 \in \mathcal{U}} \psi^{\top}(s', u_2)(\tilde{\theta}_2 + \theta^*)$, it follows similarly that

$$\max_{u_{1}\in\mathcal{U}}\psi^{\mathsf{T}}(s',u_{1})(\tilde{\theta}_{1}+\theta^{*}) - \max_{u_{2}\in\mathcal{U}}\psi^{\mathsf{T}}(s',u_{2})(\tilde{\theta}_{2}+\theta^{*}) \\
= \max_{u_{1}\in\mathcal{U}}\psi^{\mathsf{T}}(s',u_{1})(\tilde{\theta}_{1}+\theta^{*}) - \psi^{\mathsf{T}}(s',u_{2}^{*})(\tilde{\theta}_{2}+\theta^{*}) \\
\geq \psi^{\mathsf{T}}(s',u_{2}^{*})(\tilde{\theta}_{1}+\theta^{*}) - \psi^{\mathsf{T}}(s',u_{2}^{*})(\tilde{\theta}_{2}+\theta^{*}) \\
= \psi^{\mathsf{T}}(s',u_{2}^{*})(\tilde{\theta}_{1}-\tilde{\theta}_{2}) \\
\geq - \|\tilde{\theta}_{1}-\tilde{\theta}_{2}\|.$$
(26)

Combining (25) and (26) yields

$$\left| \max_{u_1 \in \mathcal{U}} \psi^{\top}(s', u_1) \big(\tilde{\theta}_1 + \theta^* \big) - \max_{u_2 \in \mathcal{U}} \psi^{\top}(s', u_2) \big(\tilde{\theta}_2 + \theta^* \big) \right| \\ \leq \left\| \tilde{\theta}_1 - \tilde{\theta}_2 \right\|$$
(27)

which, in conjunction with (24), proves that

$$\|f(\tilde{\theta}_1, x) - f(\tilde{\theta}_2, x)\| \le (\gamma + 1) \|\tilde{\theta}_1 - \tilde{\theta}_2\|.$$
(28)

In the meanwhile, it is easy to see that

$$\|f(\tilde{\theta}, x)\| = \left\| \psi(s, u) \left[R(s, u) + \gamma \max_{u_1 \in \mathcal{U}} \psi^\top(s', u_1) \left(\tilde{\theta} + \theta^* \right) \right] \right\|$$

$$- \psi^\top(s, u) \left(\tilde{\theta} + \theta^* \right) \right] \left\|$$

$$\leq |R(s, u)| + \gamma \|\psi(s', u_1^*)\| \left\| \tilde{\theta} + \theta^* \right\|$$

$$+ \|\psi(s, u)\| \left\| \tilde{\theta} + \theta^* \right\|$$

$$\leq \bar{r} + (\gamma + 1) \left(\| \tilde{\theta} \| + \| \theta^* \| \right)$$

$$= (\gamma + 1) \| \tilde{\theta} \| + \left[\bar{r} + (\gamma + 1) \| \theta^* \| \right]$$
(29)

where we have used the fact that $|R(s, u)| \leq \bar{r}$ for all $(s, u) \in S \times U$. With (28) and (29), we have proved that As. 1 is met with $L := \max\{\gamma+1, \bar{r}+(\gamma+1)\|\theta^*\|\}$.

Verifying As. 2. The ODE associated with the (centered) *Q*-learning update (23) is

$$\dot{\tilde{\theta}} = \bar{f}(\tilde{\theta}) = \mathbb{E}_{\mu} \Big\{ \psi(s, u) \big[R(s, u) + \gamma \max_{u' \in \mathcal{U}} \psi^{\mathsf{T}}(s', u') (\tilde{\theta} + \theta^*) \\ - \psi^{\mathsf{T}}(s, u) (\tilde{\theta} + \theta^*) \big] \Big\}$$
(30)

for which we consider the Lyapunov candidate function $W(\tilde{\theta}) = \|\tilde{\theta}\|^2/2$. Evidently, it follows that $W(\tilde{\theta}) \geq 0$ for all $\tilde{\theta} \neq 0$, so (6a) holds with $c_1 = c_2 = 1/2$. Secondly, using $\bar{f}(\tilde{\theta}^*) = 0$, we have that

$$\begin{split} & \left(\frac{\partial W(\tilde{\theta})}{\partial \tilde{\theta}}\right)^{\top} \bar{f}(\tilde{\theta}) \\ &= \left(\frac{\partial W(\tilde{\theta})}{\partial \tilde{\theta}}\right)^{\top} \left[\bar{f}(\tilde{\theta}) - \bar{f}(\tilde{\theta}^{*})\right] \\ &= \tilde{\theta}^{\top} \mathbb{E}_{\mu} \left\{ \psi(s, u) \left[R(s, u) + \gamma \max_{u_{1} \in \mathcal{U}} \psi^{\top}(s', u_{1})(\tilde{\theta} + \theta^{*}) \right] \right\} \end{split}$$

$$-\psi^{\mathsf{T}}(s,u)(\tilde{\theta}+\theta^{*})] - \psi(s,u)[R(s,u) + \gamma \max_{u_{2}\in\mathcal{U}}\psi^{\mathsf{T}}(s',u_{2})\theta^{*} - \psi^{\mathsf{T}}(s,u)\theta^{*}] \}$$

$$= \gamma \mathbb{E}_{\mu} \Big\{ \tilde{\theta}^{\mathsf{T}}\psi(s,u) \big[\max_{u_{1}\in\mathcal{U}}\psi^{\mathsf{T}}(s',u_{1})(\tilde{\theta}+\theta^{*}) - \max_{u_{2}\in\mathcal{U}}\psi^{\mathsf{T}}(s',u_{2})\theta^{*} \big] \Big\} - \mathbb{E}_{\mu} \big[\psi^{\mathsf{T}}(s,u)\tilde{\theta}\big]^{2}$$

$$\leq -\mathbb{E}_{\mu} \big[\psi^{\mathsf{T}}(s,u)\tilde{\theta}\big]^{2} + \gamma \sqrt{\mathbb{E}_{\mu} \big[\psi^{\mathsf{T}}(s,u)\tilde{\theta}\big]^{2}} \times \sqrt{\mathbb{E}_{\mu} \big[\max_{u_{1}\in\mathcal{U}}\psi^{\mathsf{T}}(s',u_{1})(\tilde{\theta}+\theta^{*}) - \max_{u_{2}\in\mathcal{U}}\psi^{\mathsf{T}}(s',u_{2})\theta^{*} \big]^{2}}$$

$$(31)$$

$$\leq \sqrt{\mathbb{E}_{\mu}[\psi^{\top}(s,u)\tilde{\theta}]^{2}} \left\{ \gamma \sqrt{\mathbb{E}_{\mu} \max_{u' \in \mathcal{U}} [\psi^{\top}(s',u')\tilde{\theta}]^{2}} - \sqrt{\mathbb{E}_{\mu} [\psi^{\top}(s,u)\tilde{\theta}]^{2}} \right\}$$
(32)

$$= \sqrt{\mathbb{E}_{\mu} \left[\psi^{\top}(s, u) \tilde{\theta} \right]^{2}} \times \frac{\gamma^{2} \mathbb{E}_{\mu} \left[\max_{u' \in \mathcal{U}} \left(\psi^{\top}(s', u') \tilde{\theta} \right)^{2} \right] - \mathbb{E}_{\mu} \left[\psi^{\top}(s, u) \tilde{\theta} \right]^{2}}{\gamma \sqrt{\mathbb{E}_{\mu} \max_{u' \in \mathcal{U}} \left[\psi^{\top}(s', u') \tilde{\theta} \right]^{2}} + \sqrt{\mathbb{E}_{\mu} \left[\psi^{\top}(s, u) \tilde{\theta} \right]^{2}}}$$
(33)

$$\leq \frac{-c \left\|\tilde{\theta}\right\|^{2}}{\sqrt{\gamma^{2} \mathbb{E}_{\mu} \left[\max_{u' \in \mathcal{U}} \left(\psi^{\top}(s', u')\tilde{\theta}\right)^{2}\right] / \mathbb{E}_{\mu} \left[\psi^{\top}(s, u)\tilde{\theta}\right]^{2} + 1}}{\leq \frac{-c \left\|\tilde{\theta}\right\|^{2}}{2-c}} \tag{34}$$

which suggests that (6b) holds with $c_3 := c/[(2-c)L]$. On the other hand, it follows for any $\tilde{\theta}$, $\tilde{\theta}'$ that

$$\left\| \frac{\partial W}{\partial \tilde{\theta}} \right|_{\tilde{\theta}} - \frac{\partial W}{\partial \tilde{\theta}} \right|_{\tilde{\theta}'} = \left\| \tilde{\theta} - \tilde{\theta}' \right\|$$

validating (6c) with $c_4 = 1$.

Verifying As. 3. Let $P_{ss'}^u$ be the transition probability of the Markov chain $\{S_k\}_{k\in\mathbb{N}}$ from states s to s' after taking action u; and let $p_{ss'}^{(n)}$ be the *n*-step transition probability from states s to s' following policy π . Define $X_k := (S_k, U_k, S_{k+1})$. It can be verified that $\{X_k\}_{k\in\mathbb{N}}$ is a Markov chain with state space $\mathcal{X} := \{x = (s, u, s') : s \in \mathcal{S}, \pi(u|s) > 0, P_{ss'}^u > 0\} \subseteq \mathcal{S} \times \mathcal{U} \times \mathcal{S}$. Next, we show that $\{X_k\}$ is aperiodic and irreducible.

Consider two arbitrary states $x_i = (s_i, u_i, s'_i), x_j = (s_j, u_j, s'_j) \in \mathcal{X}$. Since $\{S_k\}_k$ is irreducible, there exists an integer n > 0 such that $p_{s'_i, s_j}^{(n)} > 0$. Using the definition of $\{X_k\}_k$, it follows that

$$p_{x_i,x_j}^{(n+1)} = p_{s_i's_j}^{(n)} \pi(u_j|s_j) P_{s_js_j'}^{u_j} > 0$$
(36)

which corroborates that the Markov chain $\{X_k\}_k$ is irreducible; see e.g., [Levin and Peres, 2017, Ch. 1.3].

To prove that $\{X_k\}_k$ is aperiodic, we assume, for the sake of contradiction, that $\{X_k\}_k$ is periodic with period $d \geq 2$. As $\{X_k\}_k$ has been shown irreducible, it

follows readily that every state in \mathcal{X} has the same period of d. Hence, for each state $x = (s, u, s') \in \mathcal{X}$, it holds that $p_{x,x}^{(n+1)} = 0$ for all integers n + 1 > 0 not divisible by d. Further, we deduce for any positive integer (n + 1) not divisible by d that

$$p_{s's'}^{(n+1)} = \sum_{s \in \mathcal{S}} p_{s's}^{(n)} p_{ss'}^{(1)} = \sum_{s \in \mathcal{S}} p_{s's}^{(n)} \sum_{u \in \mathcal{U}} \pi(u|s) P_{ss'}^{u}$$
$$= \sum_{s \in \mathcal{S}} \sum_{u \in \mathcal{U}} p_{xx}^{(n+1)} = 0 \qquad (37)$$

where the last two equalities arise from (36) and the periodicity assumption of $\{X_k\}_k$, respectively. It becomes evident from (37) that $\{S_k\}_k$ is periodic too, and its period is at least d. This clearly contradicts with the assumption that $\{S_k\}_k$ is aperiodic. Therefore, we conclude that the Markov chain $\{X_k\}_k$ is irreducible and aperiodic provided that $\{S_k\}_k$ is irreducible and aperiodic.

Consider now two arbitrary states $x_{T_0} = (s_{T_0}, u_{T_0}, s'_{T_0})$ and $x = (s, u, s') \in \mathcal{X}$. It follows that

$$\begin{aligned} \left\| \frac{1}{T} \sum_{k=T_{0}+1}^{T_{0}+T} \mathbb{E} \left[f(\tilde{\theta}, X_{k}) \middle| X_{T_{0}} = x_{T_{0}} \right] - \bar{f}(\tilde{\theta}) \right\| \\ &= \left\| \frac{1}{T} \sum_{k=T_{0}+1}^{T_{0}+T} \sum_{x \in \mathcal{X}} \left[p_{x_{T_{0}}x}^{(k)} - \mu(x) \right] f(\tilde{\theta}, x) \right\| \end{aligned} \tag{38} \\ &= \left\| \frac{1}{T} \sum_{k=T_{0}+1}^{T} \sum_{s,s' \in \mathcal{S}} \sum_{u \in \mathcal{U}} \left[p_{s_{T_{0}}s}^{(k-1)} \pi(u|s) P_{ss'}^{u} - \mu(x) \right] \right\| \\ &\times \psi(s, u) \left[R(s, u) + \gamma \max_{u' \in \mathcal{U}} \psi^{\mathsf{T}}(s', u')(\tilde{\theta} + \theta^{*}) \right] \\ &- \psi^{\mathsf{T}}(s, u)(\tilde{\theta} + \theta^{*}) \right] \right\| \end{aligned} \tag{39} \\ &\leq \max_{(s, u, s') \in \mathcal{X}} \left\| \psi(s, u) \left[R(s, u) + \gamma \max_{u' \in \mathcal{U}} \psi^{\mathsf{T}}(s', u')(\tilde{\theta} + \theta^{*}) \right] \\ &- \psi^{\mathsf{T}}(s, u)(\tilde{\theta} + \theta^{*}) \right] \right\| \\ &\times \frac{1}{T} \sum_{k=T_{0}+1}^{T} \sum_{x \in \mathcal{X}} \left| p_{s_{T_{0}}s}^{(k-1)} \pi(u|s) P_{ss'}^{u} - \mu(x) \right| \\ &\leq (\|\tilde{\theta}\| + 1) \times \frac{1}{T} \sum_{k=T_{1}+1}^{T} 2c\eta^{k-T_{0}-1} \end{aligned} \tag{40}$$

$$\leq \frac{2c/(1-\eta)}{T} (\|\tilde{\theta}\| + 1)$$

where (38) is due to $\bar{f}(\tilde{\theta}) = \mathbb{E}_{X \sim \mu}[f(\tilde{\theta}, X)] = \sum_{x \in \mathcal{X}} \mu(x) f(\tilde{\theta}, x)$; equality (39) uses (22) and (36); and, (40) arises from the geometric mixing property of irreducible, aperiodic Markov chain $\{X_k\}_k$ [Levin and Peres, 2017, Theorem 4.9] as well as (29).

We have proved that As. 1-3 are satisfied by Qlearning with linear function approximation, provided that certain conditions on the sampling policy and function approximators hold. Hence, the established finite-time error bound in Theorem 2 holds for Q-learning with linear function approximation.

5 CONCLUSIONS

In this paper, we provided a non-asymptotic analysis for a class of biased SA algorithms driven by a broad family of stochastic perturbations, which include as special cases e.g., i.i.d. random sequences of vectors and ergodic Markov chains. Taking a dynamical systems viewpoint, our approach has been to design a novel multistep Lyapunov function that involves future iterates to control the gradient bias. We proved a general convergence result based on this multistep Lyapunov function, and developed non-asymptotic bounds on the mean-square error of the iterate generated by the SA procedure to the equilibrium point of the associated ODE. Subsequently, we illustrated this general result by applying it to obtain a finite-time error bound for Q-learning with linear function approximation from data gathered along a single trajectory of a Markov chain. Our bound holds for Markov chains with general mixing rates and from any initial distribution. Although the focus here has been on biased SA procedures with constant stepsizes, our nonasymptotic results can be extended to accommodate time-varying stepsizes as well. Our future work will also aim at generalizing this novel analysis to decentralized and deep RL algorithms.

References

- [Bach and Moulines, 2011] Bach, F. and Moulines, E. (2011). Non-asymptotic analysis of stochastic approximation algorithms for machine learning. In Advances in Neural Information Processing Systems, pages 451–459.
- [Beck and Srikant, 2012] Beck, C. L. and Srikant, R. (2012). Error bounds for constant step-size Qlearning. Systems & Control Letters, 61(12):1203– 1208.
- [Bertsekas and Tsitsiklis, 1996] Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming, volume 5. Athena Scientific Belmont, MA.
- [Bhandari et al., 2019] Bhandari, J., Russo, D., and Singal, R. (2019). A finite time analysis of temporal difference learning with linear function approximation. In *Conference on Learning Theory*, pages 1691–1692.
- [Borkar, 2008] Borkar, V. S. (2008). Stochastic Approximation: A Dynamical Systems Viewpoint, volume 48. Cambridge, New York, NY.

- [Chen et al., 2019] Chen, Z., Zhang, S., Doan, T. T., Maguluri, S. T., and Clarke, J.-P. (2019). Finitesample analysis for Q-Learning with linear function approximation. arXiv:1905.11425.
- [Dalal et al., 2018] Dalal, G., Szörényi, B., Thoppe, G., and Mannor, S. (2018). Finite sample analyses for TD(0) with function approximation. In AAAI Conference on Artificial Intelligence, pages 6144– 6152.
- [Eryilmaz and Srikant, 2012] Eryilmaz, A. and Srikant, R. (2012). Asymptotically tight steadystate queue length bounds implied by drift conditions. *Queueing Systems*, 72(3-4):311–359.
- [Gordon, 1995] Gordon, G. J. (1995). Stable function approximation in dynamic programming. In *Machine Learning Proceedings*, pages 261–268. Elsevier.
- [Hu and Syed, 2019] Hu, B. and Syed, U. A. (2019). Characterizing the exact behaviors of temporal difference learning algorithms using Markov jump linear system theory. Advances in Neural Information Processing Systems.
- [Jaakkola et al., 1994] Jaakkola, T., Jordan, M. I., and Singh, S. P. (1994). Convergence of stochastic iterative dynamic programming algorithms. In Advances in Neural Information Processing Systems, pages 703–710.
- [Khalil, 2002] Khalil, H. K. (2002). Nonlinear Systems; 3rd ed.
- [Kushner and Yin, 2003] Kushner, H. and Yin, G. G. (2003). Stochastic Approximation and Recursive Algorithms and Applications, volume 35. Springer Science & Business Media.
- [Lakshminarayanan and Szepesvari, 2018] Lakshminarayanan, C. and Szepesvari, C. (2018). Linear stochastic approximation: How far does constant step-size and iterate averaging go? In International Conference on Artificial Intelligence and Statistics, pages 1347–1355.
- [Levin and Peres, 2017] Levin, D. A. and Peres, Y. (2017). Markov Chains and Mixing Times, volume 107. American Mathematical Society.
- [Melo et al., 2008] Melo, F. S., Meyn, S. P., and Ribeiro, M. I. (2008). An analysis of reinforcement learning with function approximation. In *International Conference on Machine Learning*, pages 664– 671. ACM.

- [Mnih et al., 2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control through deep reinforcement learning. *Nature*, 518(7540):529.
- [Nemirovski et al., 2009] Nemirovski, A., Juditsky, A., Lan, G., and Shapiro, A. (2009). Robust stochastic approximation approach to stochastic programming. SIAM Journal on Optimization, 19(4):1574–1609.
- [Robbins and Monro, 1951] Robbins, H. and Monro, S. (1951). A stochastic approximation method. *The Annals of Mathematical Statistics*, 22(3):400–407.
- [Srikant and Ying, 2019] Srikant, R. and Ying, L. (2019). Finite-time error bounds for linear stochastic approximation and TD learning. In *Conference* on Learning Theory, pages 1–11.
- [Sutton and Barto, 2018] Sutton, R. S. and Barto, A. G. (2018). *Reinforcement Learning: An Intro*duction. MIT press.
- [Szepesvári, 1998] Szepesvári, C. (1998). The asymptotic convergence-rate of Q-learning. In Advances in Neural Information Processing Systems, pages 1064–1070.
- [Tsitsiklis, 1994] Tsitsiklis, J. N. (1994). Asynchronous stochastic approximation and Q-learning. *Machine Learning*, 16(3):185–202.
- [Tsitsiklis and Van Roy, 1997] Tsitsiklis, J. N. and Van Roy, B. (1997). An analysis of temporaldifference learning with function approximation. *IEEE Transactions on Automatic Control*, 42(5).
- [Wainwright, 2019] Wainwright, M. J. (2019). Stochastic approximation with cone-contractive operators: Sharp ℓ_{∞} -bounds for Q-learning. arXiv:1905.06265.
- [Watkins and Dayan, 1992] Watkins, C. J. and Dayan, P. (1992). Q-learning. *Machine Learning*, 8(3-4):279–292.
- [Watkins, 1989] Watkins, C. J. C. H. (1989). Learning from delayed rewards. PhD thesis, King's College, Cambridge.
- [Zou et al., 2019] Zou, S., Xu, T., and Liang, Y. (2019). Finite-sample analysis for SARSA and Q-Learning with linear function approximation.

Supplementary Materials for "Finite-Time Error Bounds for Biased Stochastic Approximation Algorithms with Applications to Q-learning"

Remark. The equations (1)–(40) and Assumptions 1–4 are referenced with respect to the indexing used in the paper.

A Proof of Prop. 1

We start off the proof by introducing the following auxiliary function

$$g(k,T,\Theta_k) := \Theta_{k+T} - \Theta_k - \epsilon \sum_{j=k}^{k+T-1} f(\Theta_k, X_j), \quad \forall T \ge 1$$
(41)

which is evidently well defined under our working Assumptions 1 and 3. Regarding the function $g(k, T, \Theta_k)$ above, we present the following useful bound, whose proof details are, however, postponed to Appendix E for readability.

Lemma 2. For any $\Theta_k \in \mathbb{R}^d$, the function $g(k, T, \Theta_k)$ satisfies for all $k \ge 0$

$$||g(k,T,\Theta_k)|| \le \epsilon^2 L^2 T^2 (1+\epsilon L)^{T-2}, \quad \forall T \ge 1.$$
 (42)

On the other hand, note from (8) that

$$g'(k,T,\Theta_k) = \Theta_{k+T} - \Theta_k - \epsilon T \bar{f}(\Theta_k)$$
(43)

which, in conjunction with (41), suggests that we can write

$$g'(k,T,\Theta_k) = g(k,T,\Theta_k) + \epsilon \sum_{\substack{j=k\\j=k}}^{k+T-1} f(\Theta_k, X_j) - \epsilon T \bar{f}(\Theta_k)$$
$$= g(k,T,\Theta_k) + \epsilon \sum_{\substack{j=k\\j=k}}^{k+T-1} \left(f(\Theta_k, X_j) - \bar{f}(\Theta_k) \right).$$
(44)

By taking expectation of both sides of (44) conditioned on the σ -field \mathcal{F}_k , along with the fact that Θ_k is \mathcal{F}_k -measurable, we obtain

$$\mathbb{E}\left[g'(k,T,\Theta_{k})\big|\mathcal{F}_{k}\right] = \mathbb{E}\left[g(k,T,\Theta_{k})\big|\mathcal{F}_{k}\right] + \epsilon \mathbb{E}\left[\sum_{j=k}^{k+T-1} \left(f(\Theta_{k},X_{j}) - \bar{f}(\Theta_{k})\right)\big|\mathcal{F}_{k}\right]\right]$$
$$= \mathbb{E}\left[g(k,T,\Theta_{k})\big|\mathcal{F}_{k}\right] + \epsilon T \left(\frac{1}{T}\sum_{j=k}^{k+T-1} \mathbb{E}\left[f(\Theta_{k},X_{j})\big|\mathcal{F}_{k}\right] - \bar{f}(\Theta_{k})\right)$$
$$\leq \epsilon LT\left[\epsilon LT(1+\epsilon L)^{T-2} + \sigma(T)\right]\left(\|\Theta_{k}\| + 1\right)$$
(45)

where the last inequality follows from Lemma 2 as well as the property of the averaged operator \bar{f} in (7) under our working Assumption 3. This concludes the proof.

B Proof of Theorem 1

We prove this theorem by carefully constructing function for $W'(k, \Theta_k)$ from $W(\Theta_k)$ (recall under our working assumption 2 that $W(\Theta_k)$ exists and satisfies properties (53)—(6c)). Toward this objective, let us start with the following candidate

$$W'(k,\Theta_k) = \sum_{j=k}^{k+T-1} W(\Theta_j(k,\Theta_k))$$
(46)

where, to make the dependence of $\Theta_{j\geq k}$ on Θ_k explicit, we maintain the notation $\Theta_j = \Theta_j(k, \Theta_k)$, which is understood as the state of the recursion (1) at time instant $j \geq k$, with an initial condition Θ_k at time instant k.

In the following, we will show that there exists and also determine a value for the parameter $T \in \mathbb{N}^+$ such that the inequalities (11) and (12) are satisfied.

For ease of exposition, we start by proving the second inequality (12). To this end, observe from the definition of $W'(k, \Theta_k)$ in (46) that

$$W'(k+1,\Theta_k + \epsilon f(\Theta_k, X_k)) - W'(k,\Theta_k) = \sum_{j=k+1}^{k+T} W(\Theta_j(k,\Theta_k)) - \sum_{j=k}^{k+T-1} W(\Theta_j(k,\Theta_k))$$
$$= W(\Theta_{k+T}(k,\Theta_k)) - W(\Theta_k(k,\Theta_k))$$
$$= W(\Theta_{k+T}(k,\Theta_k)) - W(\Theta_k)$$
(47)

where the last equality is due to the fact that $\Theta_k(k, \Theta_k) = \Theta_k$.

To upper bound the term in (47), we will focus on bound the first term $W(\Theta_{k+T}(k,\Theta_k))$. Recall from (8) that

$$\Theta_{k+T}(k,\Theta_k) = \Theta_k + \epsilon T \bar{f}(\Theta_k) + g'(k,T,\Theta_k)$$

based on which we can find the second-order Taylor expansion of $W(\Theta_{k+T}(k,\Theta_k))$ (which is twice differentiable under Assumption 2) around Θ_k , as follows

$$W(\Theta_{k+T}(k,\Theta_k)) = W(\Theta_k) + \left(\frac{\partial W}{\partial \theta}\Big|_{\Theta_k}\right)^\top \left[\epsilon T \bar{f}(\Theta_k) + g'(k,T,\Theta_k)\right] \\ + \left[\epsilon T \bar{f}(\Theta_k) + g'(k,T,\Theta_k)\right]^\top \nabla^2 W(\Theta'_k) \left[\epsilon T \bar{f}(\Theta_k) + g'(k,T,\Theta_k)\right]$$
(48)

where we have employed the so-called mean-value theorem, suggesting that (48) holds with $\Theta'_k := \Theta_k + \eta \left[\epsilon T \overline{f}(\Theta_k) + g'(k, T, \Theta_k) \right]$ for some constant $\eta \in [0, 1]$.

Next, we will pursue an upper bound for each individual term on the right hand side of (48) by conditioning on the σ -field \mathcal{F}_k . Again, using the fact that Θ_k is \mathcal{F}_k -measurable and invoking (6b), we have that

$$\mathbb{E}\left[\epsilon T\left(\left.\frac{\partial W}{\partial \theta}\right|_{\Theta_{k}}\right)^{\top} \bar{f}(\Theta_{k}) \Big| \mathcal{F}_{k}\right] \leq -c_{3} \epsilon L T \|\Theta_{k}\|^{2}.$$

$$\tag{49}$$

One can further verify the following bounds

$$\mathbb{E}\left[\left(\frac{\partial W}{\partial \theta}\Big|_{\Theta_{k}}\right)^{\top}g'(k,T,\Theta_{k})\Big|\mathcal{F}_{k}\right] = \left(\frac{\partial W}{\partial \theta}\Big|_{\Theta_{k}}\right)^{\top}\mathbb{E}\left[g'(k,T,\Theta_{k})\Big|\mathcal{F}_{k}\right] \\
\leq \left\|\frac{\partial W}{\partial \theta}\Big|_{\Theta_{k}}\right\| \cdot \left\|\mathbb{E}\left[g'(k,T,\Theta_{k})\Big|\mathcal{F}_{k}\right]\right\| \tag{50}$$

$$\leq c_4 \|\Theta_k\| \cdot \epsilon LT\beta(T,\epsilon)(\|\Theta_k\| + 1)$$
(51)

$$\leq 2c_4 \epsilon LT \beta(T, \epsilon) (\|\Theta_k\|^2 + 1).$$
(52)

In particular, (50) uses the Cauchy-Schwartz inequality, (51) calls for Proposition 1, and the last one follows from the inequality $\|\theta\|(\|\theta\|+1) \le 2(\|\theta\|^2+1)$.

As far as the last term of (47) is concerned, it is clear that

$$\mathbb{E}\left\{\left[\epsilon T\bar{f}(\Theta_{k}) + g'(k, T, \Theta_{k})\right]^{\top} \nabla^{2} W(\Theta_{k}') \left[\epsilon T\bar{f}(\Theta_{k}) + g'(k, T, \Theta_{k})\right] \middle| \mathcal{F}_{k}\right\}$$

$$c_{4} \mathbb{E}\left[\left\|\epsilon T\bar{f}(\Theta_{k}) + g'(k, T, \Theta_{k})\right\|^{2} \middle| \mathcal{F}_{k}\right]$$
(53)

$$\leq c_4 \mathbb{E}\left[\left\|\epsilon T f(\Theta_k) + g(k, T, \Theta_k)\right\| \left|\mathcal{F}_k\right]$$

$$\leq 2 - 2\pi^2 \mathbb{E}\left[\left\|\epsilon O_k\right\|^2 + 2 - \pi \left[\left\|\mathcal{F}_k\right\|^2 - 2 - \pi \left\|\mathcal{F}_k\right\|^2\right]\right]$$
(53)

$$\leq 2c_4\epsilon^2 T^2 \|f(\Theta_k)\|^2 + 2c_4 \mathbb{E}\left[\|g'(k, T, \Theta_k)\|^2 |\mathcal{F}_k\right]$$

$$(54)$$

$$\leq 2c_4\epsilon^2 T^2 L^2 \|\Theta_k\|^2 + 2c_4 \mathbb{E}\Big[\left\| g'(k, T, \Theta_k) \right\|^2 \Big| \mathcal{F}_k \Big]$$
(55)

where (53) leverages the upper bound on the Hessian matrix of $W(\theta)$ arising from the property (6c), (54) follows from the inequality $||a + b||^2 \leq 2(||a||^2 + ||b||^2)$ for any real-valued vectors $a, b \in \mathbb{R}^d$, and (55) uses the Lipschitz property of function $\overline{f}(\theta)$ that can be easily verified since $f(\theta, x)$ is Lipschitz in θ .

To further upper bound the last term of (55), we establish the following helpful result whose proof is also postponed to Appendix F for readability.

Lemma 3. The following bound holds for any fixed $\theta_k \in \mathbb{R}^d$

$$\mathbb{E}\Big[\|g'(k,T,\theta_k)\|^2 |\mathcal{F}_k] \le \epsilon^2 L^2 T^2 \Big[\epsilon^2 L^2 T^2 (1+\epsilon L)^{2T-4} + 12 \Big] \|\theta_k\|^2 + 8\epsilon^2 L^2 T^2.$$
(56)

Coming back to inequality (55), as $\mathbb{E}[\Theta_k | \mathcal{F}_k] = \Theta_k$, Lemma 3 now applies. Plugging (56) into (55), we establish an upper bound on the last term of (47) as follows

$$\mathbb{E}\left\{\left[\epsilon T\bar{f}(\Theta_{k}) + g'(k,T,\Theta_{k})\right]^{\top} \nabla^{2} W(\Theta_{k}') \left[\epsilon T\bar{f}(\Theta_{k}) + g'(k,T,\Theta_{k})\right] \middle| \mathcal{F}_{k} \right\} \\
\leq 2c_{4}\epsilon^{2}T^{2}L^{2} \left[\epsilon^{2}L^{2}T^{2}(1+\epsilon L)^{2T-4} + 13\right] \|\Theta_{k}\|^{2} + 16c_{4}\epsilon^{2}L^{2}T^{2}.$$
(57)

Putting together the bounds in (49), (52), and (57), it follows from (48) that

$$\mathbb{E}\left[W(\Theta_{k+T}(k,\Theta_{k})) - W(\Theta_{k})\big|\mathcal{F}_{k}\right] \\
= \mathbb{E}\left[\epsilon T\left(\frac{\partial W}{\partial \theta}\Big|_{\Theta_{k}}\right)^{\top} \bar{f}(\Theta_{k}) + \left(\frac{\partial W}{\partial \theta}\Big|_{\Theta_{k}}\right)^{\top} g'(k,T,\Theta_{k})\Big|\mathcal{F}_{k}\right] \\
+ \mathbb{E}\left\{\left[\epsilon T \bar{f}(\Theta_{k}) + g'(k,T,\Theta_{k})\right]^{\top} \nabla^{2} W(\Theta'_{k}) \left[\epsilon T \bar{f}(\Theta_{k}) + g'(k,T,\Theta_{k})\right]\Big|\mathcal{F}_{k}\right\} \\
\leq -\epsilon L T\left\{c_{3} - 2c_{4}\beta(T,\epsilon) - 2c_{4}\epsilon L T\left[\epsilon^{2}L^{2}T^{2}(1+\epsilon L)^{2T-4} + 13\right]\right\} \|\Theta_{k}\|^{2} \\
+ 2c_{4}\epsilon L T\beta(T,\epsilon) + 16c_{4}\epsilon^{2}L^{2}T^{2} \\
= -\epsilon L T\left[c_{3} - c_{4}\rho(T,\epsilon)\right] \|\Theta_{k}\|^{2} + c_{4}\epsilon L T\kappa(T,\epsilon)$$
(58)

where in the last equality, we have defined for notational brevity the following two functions

$$\rho(T,\epsilon) := 2\beta(T,\epsilon) + 2\epsilon LT \left[\epsilon^2 L^2 T^2 (1+\epsilon L)^{2T-4} + 13\right]$$
(59)

$$\kappa(T,\epsilon) := 2\beta(T,\epsilon) + 16\epsilon LT \tag{60}$$

both of which depend on parameters $T \in \mathbb{N}^+$ and $\epsilon > 0$.

In the sequel, we will show that there exist parameters $\epsilon > 0$ and $T \ge 1$ such that the coefficient of (58) obeys $c_3 - c_4\rho(T,\epsilon) > 0$. Formally, such a result is summarized in Proposition 2 below, whose proof is relegated to Appendix G.

Proposition 2. Consider functions $\beta(T, \epsilon)$ and $\rho(T, \epsilon)$ defined in (10) and (59), respectively. Then for any $\delta > 0$, there exist constants $\epsilon_{\delta} > 0$ and $T_{\delta} \ge 1$, such that the following inequality holds for any $\epsilon \in (0, \epsilon_{\delta})$

$$\rho(T_{\delta}, \epsilon) \le \delta. \tag{61}$$

As such, by taking any $\delta < \frac{c_3}{c_4}$, feasible parameter values T_{δ} and ϵ_{δ} can be obtained according to (105) and (107), respectively. Now by choosing

$$T^* = T_\delta \tag{62}$$

$$\epsilon_c = \epsilon_\delta \tag{63}$$

it follows that

$$c'_{3} := LT^{*} \left[c_{3} - c_{4} \rho(T^{*}, \epsilon_{c}) \right] > 0.$$
(64)

Furthermore, it is straightforward to deduce from (59) and (60) that

$$\kappa(T^*, \epsilon) < \rho(T^*, \epsilon) \le \delta.$$

If we now let $c'_4 := c_4 L T^*$, then (58) confirms that

$$\mathbb{E}\left[W(\Theta_{k+T}(k,\Theta_k)) - W(\Theta_k)\big|\mathcal{F}_k\right] \le -c_3'\epsilon \|\Theta_k\|^2 + c_4'\epsilon\delta.$$
(65)

Finally, recalling (47), we deduce that

$$\mathbb{E}\left[W'(k+1,\Theta_k+\epsilon f(\Theta_k,X_k)) - W'(k,\Theta_k)\big|\mathcal{F}_k\right] \le -c'_3\epsilon \|\Theta_k\|^2 + c'_4\epsilon\delta$$
(66)

concluding the proof of (12).

Now, we turn to show the first inequality. It is evident from the properties of $W(\Theta_k)$ in Assumption 2 that

$$W'(k,\Theta_k) = \sum_{j=k}^{k+T-1} W(\Theta_j(k,\Theta_k)) \ge W(\Theta_k(k,\Theta_k))$$
$$\ge c_1 \|\Theta_k(k,\Theta_k)\|^2$$
$$= c_1 \|\Theta_k\|^2$$
(67)

where the second inequality follows from (6a), and the last equality from the fact that $\Theta_k(k, \Theta_k) = \Theta_k$. Therefore, by taking $c'_1 = c_1$, we have shown that the first part of inequality (11) holds true. For the second part, it follows that

$$\|\Theta_{j+1}\| = \|\Theta_j + \epsilon f(\Theta_j, X_j)\| \le (1 + \epsilon L) \|\Theta_j\| + \epsilon L, \quad \forall j \ge k$$
(68)

yielding by means of telescoping series

$$\begin{aligned} \|\Theta_{j}(k,\Theta_{k})\| &\leq (1+\epsilon L)^{j-k} \|\Theta_{k}\| + \sum_{j=1}^{j-k} (1+\epsilon L)^{j-1} \epsilon L \\ &\leq (1+\epsilon L)^{j-k} \|\Theta_{k}\| + (1+\epsilon L)^{j-k} - 1, \quad \forall j \geq k. \end{aligned}$$

Using further the inequality $(a+b)^2 \leq 2(a^2+b^2)$, we deduce that

$$\|\Theta_j(k,\Theta_k)\|^2 \le 2(1+\epsilon L)^{2(j-k)} \|\Theta_k\|^2 + 2\left[(1+\epsilon L)^{j-k} - 1\right]^2.$$
(69)

Taking advantage of the properties of $W(\Theta_k)$ in Assumption 2 and (69), it follows that

$$W'(k,\Theta_{k}) = \sum_{\substack{j=k\\ j=k}}^{k+T-1} W(\Theta_{j}(k,\Theta_{k}))$$

$$\leq \sum_{\substack{j=k\\ j=k}}^{k+T-1} c_{2} \|\Theta_{j}(k,\Theta_{k})\|^{2}$$

$$\leq 2c_{2} \sum_{\substack{j=k\\ j=k}}^{k+T-1} (1+\epsilon L)^{2(j-k)} \|\Theta_{k}\|^{2} + 2c_{2} \sum_{\substack{j=k\\ j=k}}^{k+T-1} \left[(1+\epsilon L)^{j-k} - 1 \right]^{2}.$$
(70)

Let us now examine the two coefficients of (70) more carefully. Note that

$$\sum_{j=k}^{k+T-1} (1+\epsilon L)^{2(j-k)} = \frac{(1+\epsilon L)^{2T}-1}{(1+\epsilon L)^{2-1}} = T \, \frac{2+(2T-1)(1+\epsilon' L)^{2T-2}\epsilon L}{2+\epsilon L}$$
(71)

$$\sum_{j=k}^{k+T-1} \left[(1+\epsilon L)^{j-k} - 1 \right]^2 = \sum_{j=k+1}^{k+T-1} \left[(j-k)\epsilon L \left(1 + \frac{1}{2}(j-k-1)\left(1 + \epsilon'_{j-k}L \right)^{j-k-2} \epsilon L \right) \right]^2$$
(72)

$$= (\epsilon L)^2 \sum_{j=1}^{T-1} j^2 \left[1 + \frac{1}{2} (j-1) \left(1 + \epsilon'_j L \right)^{j-2} \right]^2$$
(73)

where both (71) and (72) follow from the mean-value theorem $(1 + \epsilon L)^{j-k} = 1 + (j-k)\epsilon L + \frac{1}{2}(j-k-1)(1+k)\epsilon L$ $\epsilon'_{j-k}L)^{j-k-2} (\epsilon L)^2$ for any $j-k \ge 1$ and some constants $\epsilon'_j \in [0,\epsilon]$.

According to Proposition 2, or more specifically, the inequalities (62) and (63), we see that $\epsilon'_j \leq \epsilon \leq \epsilon_c$ for all $1 \le j \le T - 1.$

On the other hand, it is easy to check that both terms [(71) and (73)] are monotonically increasing functions of $\epsilon > 0$. Therefore, if we define constants

$$c_2' := 2c_2 T^* \, \frac{2 + (2T^* - 1)(1 + \epsilon_c L)^{2T^* - 2} \epsilon_c L}{2 + \epsilon_c L} \tag{74}$$

$$c_2'' := 2c_2 \sum_{j=1}^{T^*-1} j^2 \left[1 + \frac{1}{2}(j-1)(1+\epsilon_c L)^{j-2} \right]^2$$
(75)

which are independent of ϵ , then we draw from (70), (71), and (73) that

$$W'(k,\Theta_k) \le c'_2 \|\Theta_k\|^2 + c''_2 (\epsilon L)^2.$$
 (76)

concluding the proof of the second part of (11).

Proof of Lemma 1 \mathbf{C}

Taking expectation of both sides of (11) conditioned on \mathcal{F}_k gives rise to

$$\mathbb{E}\left[W'(k,\Theta_k)|\mathcal{F}_k\right] \le c_2' \|\Theta_k\|^2 + c_2''(\epsilon L)^2.$$
(77)

On the other hand, it is evident from (12) that

$$\mathbb{E}\left[W'(k+1,\Theta_{k+1})|\mathcal{F}_{k}\right] \leq \mathbb{E}\left[W'(k,\Theta_{k})|\mathcal{F}_{k}\right] - c_{3}'\epsilon\|\Theta_{k}\|^{2} + c_{4}'\epsilon\delta \\
= \mathbb{E}\left[W'(k,\Theta_{k})|\mathcal{F}_{k}\right] - \frac{c_{3}'\epsilon}{c_{2}'}\left[c_{2}'\|\Theta_{k}\|^{2} + c_{2}''(\epsilon L)^{2}\right] + c_{4}'\epsilon\delta + \frac{c_{3}'}{c_{2}'}c_{2}''\epsilon(\epsilon L)^{2} \\
\leq \mathbb{E}\left[W'(k,\Theta_{k})|\mathcal{F}_{k}\right] - \frac{c_{3}'\epsilon}{c_{2}'}\mathbb{E}\left[W'(k,\Theta_{k})|\mathcal{F}_{k}\right] + c_{4}''\epsilon^{2} + \frac{c_{3}'}{c_{2}'}c_{2}''\epsilon_{c}(\epsilon L)^{2} \\
= \left(1 - \frac{c_{3}'\epsilon}{c_{c}'}\right)\mathbb{E}\left[W'(k,\Theta_{k})|\mathcal{F}_{k}\right] + \epsilon^{2}(c_{4}'' + c_{3}''\epsilon_{c}L^{2}) \tag{79}$$

n order to obtain (78), we have employed the inequality in (77), taken
$$\delta \leq \epsilon c_4''/c_4'$$
 in (61) for any

where, it sufficiently small constant $c''_4 > 0$, and used the fact that $\epsilon < \epsilon_c$. Upon defining constant $c''_3 := c'_3 c''_2 / c'_2$, then (79) follows readily.

Finally, taking expectation of both sides of (79) with respect to the σ -field \mathcal{F}_k concludes the proof.

Proof of Theorem 2 D

Let us start with a basic Lemma, whose proof is elementary and is hence omitted here.

Lemma 4. Consider the recursion $z_{t+1} = az_t + b$, where $a \neq 1$ and b are given constants. Then the following holds

$$z_t = a^t z_0 + \frac{b(a^t - 1)}{a - 1}.$$
(80)

Letting $a := 1 - c'_3 \epsilon / c'_2 > 0$ and $b := \epsilon^2 (c''_4 + c''_3 \epsilon_c L^2)$, then using the above lemma on the recursion $\{\mathbb{E}[W'(k, \Theta_k)]\}$ in (14) yields

$$\mathbb{E}\left[W'(k,\Theta_k)\right] \leq \left(1 - \frac{c'_3\epsilon}{c'_2}\right) \mathbb{E}\left[W'(k-1,\Theta_{k-1})\right] + \epsilon^2 (c''_4 + c''_3\epsilon_c L^2)$$
$$\leq \left(1 - \frac{c'_3\epsilon}{c'_2}\right)^k \mathbb{E}\left[W'(0,\Theta_0)\right] + \left[1 - \left(1 - \frac{c'_3\epsilon}{c'_2}\right)^k\right] \frac{\epsilon c'_2}{c'_3} \left(c''_4 + c''_3\epsilon_c L^2\right)$$

$$\leq \left(1 - \frac{c_3'\epsilon}{c_2'}\right)^k \mathbb{E}\left[W'(0,\Theta_0)\right] + \epsilon \left(\frac{c_2'c_4''}{c_3'} + c_2''\epsilon_c L^2\right)$$
$$\leq c_2' \left(1 - \frac{c_3'\epsilon}{c_2'}\right)^k \|\Theta_0\|^2 + \epsilon \left(\frac{c_2'c_4''}{c_3'} + 2c_2''\epsilon_c L^2\right)$$
(81)

where the last inequality follows from the fact that

$$\mathbb{E}[\|\Theta_0\|^2 |\Theta_0] \le c_2' \|\Theta_0\|^2 + c_2' \epsilon^2 L^2 \le c_2' \|\Theta_0\|^2 + c_2'' \epsilon \epsilon_c L^2$$
(82)

where the initial guess $\Theta_0 \in \mathbb{R}^d$ is assumed given for simplicity.

On the other hand, using (11), the term $\mathbb{E}[W'(k,\Theta_k)]$ can be lowered bounded as follows

$$\mathbb{E}\left[W'(k,\Theta_k)\right] \ge c_1' \|\Theta_k\|^2 \tag{83}$$

which, combined with (81), yields the finite-time error bounds in (15).

E Proof of Lemma 2

When T = 1 and for any $\Theta_k \in \mathbb{R}^d$, one can easily check that

$$g(k, 1, \Theta_k) = \Theta_{k+1} - \Theta_k - \epsilon f(\Theta_k, X_k) = 0$$

implying $G_1 := \|g(k, 1, \Theta_k)\| = 0$. To proceed, let us start by introducing the function

$$h(k,T,\Theta_k) := \sum_{j=k}^{k+T-1} f(\Theta_k, X_j)$$

which can be bounded as follows

$$\|h(k, T, \Theta_k)\| = \left\| \sum_{j=k}^{k+T-1} f(\Theta_k, X_j) \right\| \le \sum_{j=k}^{k+T-1} \|f(\Theta_k, X_j)\| \le L \sum_{j=k}^{k+T-1} (\|\Theta_k\| + 1) = TL(\|\Theta_k\| + 1)$$
(84)

where the second inequality follows from (5) in Assumption 1. It is evident that

$$g(k, T+1, \Theta_k) = \Theta_{k+T+1} - \Theta_k - \epsilon \sum_{j=k}^{k+T} f(\Theta_k, X_j)$$
$$= \Theta_{k+T} + \epsilon f(\Theta_{k+T}, X_{k+T}) - \Theta_k - \epsilon \left[f(\Theta_k, X_{k+T_0}) + \sum_{j=k}^{k+T-1} f(\Theta_k, X_j) \right]$$
$$= g(k, T, \Theta_k) + \epsilon \left[f(\Theta_{k+T}, X_{k+T}) - f(\Theta_k, X_{k+T}) \right].$$
(85)

By means of triangle inequality, it follows that

$$G_{T+1} = \|g(k, T+1, \Theta_k)\| \le \|g(k, T, \Theta_k)\| + \epsilon \|f(\Theta_{k+T}, X_{k+T}) - f(\Theta_k, X_{k+T})\|$$

$$\le G_T + \epsilon L \|\Theta_{k+T} - \Theta_k\|$$
(86)

$$\leq G_T + \epsilon L\left[\epsilon \left\| h(k, T, \Theta_k) \right\| + \left\| g(k, T, \Theta_k) \right\| \right]$$
(87)

$$\leq (1 + \epsilon L)G_T + \epsilon^2 L^2 T(\|\Theta_k\| + 1) \tag{88}$$

$$\leq \epsilon^2 L^2 (\|\Theta_k\| + 1) \sum_{k=0}^T (1 + \epsilon L)^{T-k} k$$
(89)

where the inequality (86) follows from the Lipschitz continuity of $f(\theta, x)$ in θ , (87) from the fact that $\Theta_{k+T} = \Theta_k + \epsilon h(k, T, \Theta_k) + g(k, T, \Theta_k)$, (88) from (84) as well as the definition $G_T := ||g(k, T, \Theta_k)||$, and the last inequality is obtained by telescoping series and uses $G_1 = 0$.

Lemma 5. Given any positive constant $d \neq 1$, the following holds for all $T \geq 1$

$$S_{T+1} = \sum_{k=0}^{T} k d^k = \frac{d(1-d^T)}{(1-d)^2} - \frac{T d^{T+1}}{1-d}.$$
(90)

Taking $d = (1 + \epsilon L)^{-1}$ in (90), then (89) can be simplified as follows

$$G_T \le \epsilon^2 L^2 (1 + \epsilon L)^{T-1} (\|\Theta_k\| + 1) \sum_{k=0}^{T-1} (1 + \epsilon L)^{-k} k$$

= $[(1 + \epsilon L)^T - \epsilon LT - 1] (\|\Theta_k\| + 1).$ (91)

To further simplify this bound, the Taylor expansion along with the mean-value theorem confirms that the following holds for some $\epsilon' \in (0, 1)$

$$(1 + \epsilon L)^T = 1 + \epsilon LT + \frac{1}{2}T(T - 1)(1 + \epsilon' L)^{T-2}(\epsilon L)^2, \quad \forall T \ge 1$$
(92)

or equivalently,

$$(1 + \epsilon L)^{T} - 1 - \epsilon LT = \frac{1}{2}T(T - 1)(1 + \epsilon' L)^{T-2}(\epsilon L)^{2}$$
(93)

$$\leq \epsilon^2 L^2 T^2 (1 + \epsilon L)^{T-2}. \tag{94}$$

F Proof of Lemma 3

Recalling that $g'(k, T, \Theta_k) = g(k, T, \Theta_k) + \epsilon \sum_{j=k}^{k+T-1} [f(\Theta_k, X_j) - \bar{f}(\Theta_k)]$, we have

$$\left\|g'(k,T,\Theta_{k})\right\|^{2} = \left\|g(k,T,\Theta_{k}) + \epsilon \sum_{j=k}^{k+T-1} \left(f(\Theta_{k},X_{j}) - \bar{f}(\Theta_{k})\right)\right\|^{2}$$

$$\leq 2 \left\|g(k,T,\Theta_{k})\right\|^{2} + 2\epsilon^{2}T^{2} \left\|\frac{1}{T}\sum_{j=k}^{k+T-1} f(\Theta_{k},X_{j}) - \bar{f}(\Theta_{k})\right\|^{2}$$

$$\leq 4 \left[(1+\epsilon L)^{T} - \epsilon LT - 1\right]^{2} \left(\|\Theta_{k}\|^{2} + 1\right)$$

$$= \left\|\frac{k+T-1}{2}\right\|^{2} \left(\|\Theta_{k}\|^{2} + 1\right)$$

$$\leq 4 \left[(1+\epsilon L)^{T} - \epsilon LT - 1\right]^{2} \left(\|\Theta_{k}\|^{2} + 1\right)$$

$$= \left\|\frac{k+T-1}{2}\right\|^{2} \left(\|\Theta_{k}\|^{2} + 1\right)$$

$$+ 4\epsilon^{2}T^{2} \left\| \frac{1}{T} \sum_{j=k}^{k+T-1} f(\Theta_{k}, X_{j}) \right\|^{2} + 4\epsilon^{2}T^{2} \left\| \bar{f}(\Theta_{k}) \right\|^{2}$$
(96)

where we have used the property $||a + b||^2 \le 2(||a||^2 + ||b||^2)$ for any real-valued vectors a, b in deriving (95) and (96), as well as Proposition 1.

Squaring both sides of (93) yields

$$\left[(1+\epsilon L)^T - 1 - \epsilon TL \right]^2 = \frac{1}{4} T^2 (T-1)^2 (\epsilon L)^4 (1+\epsilon' L)^{2T-4} \le \frac{1}{4} \epsilon^4 L^4 T^4 (1+\epsilon L)^{2T-4}.$$
(97)

Thus, the first term of (96) can be upper bounded by

$$4\left[(1+\epsilon L)^{T}-\epsilon LT-1\right]^{2}(\|\Theta_{k}\|^{2}+1) \leq \epsilon^{4}L^{4}T^{4}(1+\epsilon L)^{2T-4}(\|\Theta_{k}\|^{2}+1).$$
(98)

Regarding the second term of (96), we have that

$$\left\| \frac{1}{T} \sum_{j=k}^{k+T-1} f(\Theta_k, X_j) \right\|^2 \le \frac{1}{T} \sum_{j=k}^{k+T-1} \left\| f(\Theta_k, X_j) \right\|^2$$
(99)

$$\leq \frac{1}{T} \sum_{i=k}^{k+T-1} L^2 (\|\Theta_k\| + 1)^2 \tag{100}$$

$$\leq 2L^2 \|\Theta_k\|^2 + 2L^2 \tag{101}$$

where (99) and (101) follow from the inequality $\|\sum_{i=1}^{n} z_i\|^2 \leq n \sum_{i=1}^{n} \|z_i\|^2$ for all real-valued vectors $\{z_i\}_{i=1}^{n}$, and (100) from our working assumption on function $f(\theta, x)$.

With regards to the last term of (96), it follows directly from the Lipschitz property of the average operator $\bar{f}(\theta)$ that

$$\left\|\bar{f}(\Theta_k)\right\|^2 \le L^2 \|\Theta_k\|^2.$$
(102)

Substituting the bounds in (98), (101), and (102) into (96), we arrive at

$$\|g'(k,T,\Theta_k)\|^2 \le \epsilon^2 L^2 T^2 \Big[\epsilon^2 L^2 T^2 (1+\epsilon L)^{2T-4} + 12\Big] \|\Theta_k\|^2 + 8\epsilon^2 L^2 T^2$$
(103)

concluding the proof.

G Proof of Proposition 2

We prove this claim by construction. By definition, it follows that

$$\rho(T,\epsilon) = 2\epsilon LT \left[(1+\epsilon L)^{T-2} + 13 \right] + 2(\epsilon LT)^3 (1+\epsilon L)^{2T-4} + 2\sigma(T).$$
(104)

Under the assumption that $\lim_{T\to+\infty} \sigma(T) = 0$, the function value $\sigma(T) \ge 0$ can be made arbitrarily small by taking a sufficiently large integer $T \in \mathbb{N}^+$ in constructing the function $W'(k, \Theta_k)$. Without loss of generality, let us work with T such that

$$T_{\delta} := \min\left\{T \in \mathbb{N}^+ \left| \sigma(T) \le \frac{\delta}{4} \right\}.$$
(105)

It is clear that $T_{\delta} \geq 1$. Define function

$$\nu(\epsilon) := \epsilon L T_{\delta} \left[\left(1 + \epsilon L \right)^{T_{\delta} - 2} + 13 \right] + \left(\epsilon L T_{\delta} \right)^3 \left(1 + \epsilon L \right)^{2T_{\delta} - 4}$$
(106)

which can be easily shown to be a monotonically decreasing function of $\epsilon > 0$, and which attains its minimum $\nu = 0$ at $\epsilon = 0$. Let ϵ_c be the unique solution to the equation

$$\nu(\epsilon) = \frac{\delta}{4}, \quad \epsilon > 0. \tag{107}$$

As a result, for all $\epsilon \in (0, \epsilon_c]$, it holds that

$$\nu(\epsilon) \le \frac{\delta}{4}.\tag{108}$$

Combining (105) and (108) concludes the proof of Proposition 2.