
Finite-Time Error Bounds for Biased Stochastic Approximation
Algorithms with Application to Q-Learning

Gang Wang Georgios B. Giannakis
Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455

E-mail: {gangwang, georgios}@umn.edu

Abstract

Inspired by the widespread use of Q-learning
algorithms in reinforcement learning (RL),
this paper studies a class of biased stochas-
tic approximation (SA) procedures under an
“ergodic-like” assumption on the stochastic
noise sequence. Leveraging a multistep Lya-
punov function that looks ahead to several
future updates to accommodate the gradient
bias, we prove a general result on the con-
vergence of the iterates, and use it to derive
finite-time bounds on the mean-square error
in the case of constant stepsizes. This novel
viewpoint renders the finite-time analysis of
biased SA algorithms under a broad family of
stochastic perturbations possible. For direct
comparison with past works, we also demon-
strate these bounds by applying them to Q-
learning with linear function approximation,
under the realistic Markov chain observation
model. The resultant finite-time error bound
for Q-learning is the first of its kind, in the
sense that it holds: i) for the unmodified ver-
sion (i.e., without making any modifications
to the updates), and ii), for Markov chains
starting from any initial distribution, at least
one of which has to be violated for existing
results to be applicable.

1 INTRODUCTION

Stochastic approximation (SA) algorithms are widely
used in a number of areas, including statistical sig-
nal processing, control, optimization, machine learn-
ing, and RL. Ever since the seminal contribution
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[Robbins and Monro, 1951], there have been a mul-
titude of efforts on SA schemes, applications, and
theoretical developments [Kushner and Yin, 2003],
[Nemirovski et al., 2009]. On the theory side, con-
ventional SA convergence analysis and error bounds
are mostly asymptotic—that hold only in the limit as
the number of iterations increases to infinity. Yet, re-
cent efforts have focused on developing non-asymptotic
performance guarantees—that hold even for finite
iterations—for SA algorithms in different settings
[Nemirovski et al., 2009], [Bach and Moulines, 2011],
[Wainwright, 2019] mainly motivated by the emerging
need for dealing with massive data examples in modern
large-scale optimization and statistical learning tasks.

Many stochastic control tasks can be naturally for-
mulated as Markov decision processes (MDPs), which
provide a flexible framework for modeling decision
making in scenarios where outcomes are partly
random and partly under the control of a decision
maker. Reinforcement learning is a collection of tools
for solving MDPs, especially when the underlying
transition mechanism is unknown [Watkins, 1989].
Originally introduced by [Watkins, 1989], Q-learning
has become one of the most widely used RL algorithms
nowadays, based on which much of the contemporary
artificial intelligence is built [Mnih et al., 2015].
The goal of Q-learning is to obtain a policy that
informs an agent what action to taken under what
circumstances. It is model-free, namely it does not
require a model of the environment, and iteratively
estimates the optimal state-action value function
(a.k.a. Q-function) based on a sequence of samples
generated by operating a fixed policy in the unknown
environment. For any MDP with finite state and
action spaces, Q-learning finds a policy that is
optimal in the sense that it maximizes the expected
value of the total reward from each state. Despite
its popularity, convergence analysis of Q-learning
(with function approximation) has proved challeng-
ing; see, e.g., [Tsitsiklis, 1994], [Szepesvári, 1998],
[Melo et al., 2008], [Eryilmaz and Srikant, 2012],
[Beck and Srikant, 2012]. Connections between Q-
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learning and SA were drawn in [Tsitsiklis, 1994],
and [Bertsekas and Tsitsiklis, 1996]. Non-
asymptotic guarantees of RL algorithms ap-
peared only recently, and they remain lim-
ited [Srikant and Ying, 2019], [Zou et al., 2019],
[Wainwright, 2019], [Chen et al., 2019].

Finite-time analysis of temporal-difference (TD) learn-
ing with linear function approximation was stud-
ied by [Dalal et al., 2018], but their results require
i.i.d. samples, which are difficult to acquire in prac-
tice. Dealing with the more realistic yet challenging
Markov chain observation model, finite-time analysis
of TD learning was studied in [Bhandari et al., 2019],
[Srikant and Ying, 2019], and that of Q-learning ap-
peared lately in [Zou et al., 2019], [Chen et al., 2019].
However, the bound in [Zou et al., 2019] was devel-
oped for projected Q-learning, while the bound in
[Chen et al., 2019] becomes applicable only after a cer-
tain (large) mixing-time number of iterations, that is,
after the Markov chain gets sufficiently “close” to its
stationary distribution.

Targeting a deeper understanding for the statistical ef-
ficiency of Q-learning algorithms, the objective of this
present paper is to derive finite-time guarantees for a
certain class of biased SA procedures. In particular,
we first characterize a set of easy-to-check conditions
on the nonlinear operators used in SA updates, and
introduce a mild assumption on the stochastic noise
sequence satisfied by a broad family of discrete-time
stochastic processes. We prove a general convergence
result leveraging a novel multistep Lyapunov function,
which relies on a number of future SA updates to gain
control over the gradient bias arising from instanta-
neous stochastic perturbations. We further develop
finite-time bounds on the mean-square error of the it-
erates. Finally, for direct comparison to past works, we
specialize the results established for general SA algo-
rithms to Q-learning with linear function approxima-
tion, from data samples gathered along a single trajec-
tory of a Markov chain. We thereby obtain finite-time
error bounds forQ-learning using (non-)linear function
approximators in the case of constant stepsizes, under
the most general assumptions to date. The merits of
our bounds are that they directly apply to i) the un-
modified Q-learning algorithm (in contrast, e.g., a pro-
jection step is required by [Zou et al., 2019] to control
the size of the iterates, which is impractical); and, iii)
Markov chains starting from any initial distribution,
as well, as from the first iteration (meaning there is
no need to wait until the Markov chain gets “close” to
its unique stationary distribution as required by e.g.,
[Chen et al., 2019])).

2 PROBLEM SETUP

Consider the following nonlinear recursion with a con-
stant stepsize ε > 0, starting from Θ0 ∈ Rd

Θk+1 = Θk + εf(Θk, Xk), k = 0, 1, 2 . . . (1)

where Θk ∈ Rd denotes the k-th iterate, {Xk ∈ Rm}k
is a stochastic noise sequence defined on a complete
probability space, and f : Rd × Rm → Rd is a con-
tinuous function of (θ, x). In the simplest setting, for
example, {Xk} is an i.i.d. random sequence of vec-
tors, while f(Θk, Xk) is a conditionally unbiased esti-
mate of the gradient f̄(Θk) := E[f(Θk, Xk)|Fk]. Here,
(Fk)k≥0 is an increasing family of σ-fields, with Θ0 be-
ing F0-measurable, and f(θ,Xk) being Fk-measurable.
Depending on whether F0 is a trivial σ-field, the initial
guess Θ0 can be random or deterministic. For simplic-
ity, the rest of this paper assumes a deterministic Θ0,
yet the obtained bounds hold true for a random Θ0 af-
ter replacing ‖Θ0‖2 with E[‖Θ0‖2]. In a more compli-
cated setting pertaining to MDPs, {Xk}k is a Markov
chain assumed to have a unique stationary distribu-
tion, and f(Θk, Xk) can be viewed as a biased estimate
of some gradient f̄(Θk) = limk→∞ EXk [f(Θk, Xk)]. In
both cases, we are prompted to assume that the fol-
lowing limit exists for each θ ∈ Rd

f̄(θ) = lim
k→∞

E[f(θ,Xk)]. (2)

Taking a dynamical systems viewpoint [Borkar, 2008],
the corresponding ODE for (1) is given by

θ̇(t) = f̄(θ(t)). (3)

Assume that this ODE admits an equilibrium point
θ∗ at the origin, i.e., f̄(0) = 0. This as-
sumption is made without loss of generality, as
one can always shift a nonzero equilibrium point
to zero by appropriate centering θ ← θ −
θ∗. Following the terminology in [Borkar, 2008],
[Lakshminarayanan and Szepesvari, 2018], the recur-
sion (1) is termed nonlinear SA. Our goal here is to
provide a non-asymptotic convergence analysis of the
iterate sequence {Θk}k∈N+ generated by a recursion of
the form (1) to the equilibrium point θ∗ of its corre-
sponding ODE (3).

The motivating impetus for considering recursion
(1) was to gain a deeper insight into the classi-
cal Q-learning algorithm [Watkins, 1989] from dis-
counted MDPs and RL [Sutton and Barto, 2018],
[Bertsekas and Tsitsiklis, 1996]. It is a biased
SA procedure for solving a fixed point equa-
tion defined by the so-called Bellman’s opera-
tor [Bertsekas and Tsitsiklis, 1996]. As a mat-
ter of fact, a large family of basic RL algo-
rithms [Sutton and Barto, 2018], including TD(0),
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TD(λ), and GTD, as well as stochastic gradi-
ent descent for nonlinear least-squares estimation
can also be described in this form (see e.g.,
[Lakshminarayanan and Szepesvari, 2018] for a de-
tailed discussion).

Certainly, convergence guarantees of SA procedures as
in (1) would not be possible without imposing assump-
tions on the operators f(θ, x) and f̄(θ). In this work,
motivated by the analysis of TD-learning and related
algorithms in RL, we consider a class of SA procedures
that satisfy the following properties.

Assumption 1. The function f(θ, x) satisfies the
globally Lipschitz condition in θ, uniformly in x, i.e.,
there exists a constant L1 > 0 such that for all θ, θ′ ∈
Rd and each x ∈ X , it holds that

‖f(θ, x)− f(θ′, x)‖ ≤ L1‖θ − θ′‖. (4)

Moreover, there exists a constant L2 > 0 such that, for
each x ∈ X , it holds for all θ

‖f(θ, x)‖ ≤ L2(‖θ‖+ 1) (5)

where X ⊆ Rm denotes the living space of the stochas-
tic process {Xk}.

It is worth pointing out that (5) is equivalent to as-
suming that f(0, x) satisfying (4) is uniformly bounded

for all x ∈ X . To see this, suppose that ‖f(0, x)‖ ≤ f̂
holds for all x ∈ X . Using (4), it follows readily that
‖f(θ, x)‖ ≤ L1‖θ − θ′‖ + ‖f(θ′, x)‖, in which taking
θ′ = 0 confirms that ‖f(θ, x)‖ ≤ L1‖θ‖ + ‖f(0, x)‖ ≤
L1‖θ‖ + f̂ ≤ max(L1, f̂)(‖θ‖ + 1). By defining L :=
max{L1, L2}, we will assume for simplicity that (4)
and (5) hold with the same constant L.

Assumption 2. Consider the ODE θ̇(t) = f̄(θ(t)) in
(3). There exists a twice differentiable function W (θ)
(a.k.a., Lyapunov function) that satisfies globally and
uniformly the following conditions for all θ, θ′ ∈ Rd

c1‖θ‖2 ≤W (θ) ≤ c2‖θ‖2 (6a)(
∂W
∂θ

∣∣
θ

)>
f̄(θ) ≤ −c3L‖θ‖2 (6b)∥∥ ∂W

∂θ

∣∣
θ
− ∂W

∂θ

∣∣
θ′

∥∥ ≤ c4‖θ − θ′‖ (6c)

for some constants c1, c2, c3, c4 > 0.

For an introduction to Lyapunov theory, see e.g., stan-
dard source [Khalil, 2002, Ch. 4]. Regarding these
assumptions, two remarks come in order.

Remark 1. Assumption 1 is standard and widely
adopted in the convergence analysis of SA algo-
rithms; see, for example, [Borkar, 2008, Ch. 3],
[Bach and Moulines, 2011], [Jaakkola et al., 1994],
[Tsitsiklis, 1994] and [Srikant and Ying, 2019] in the
case of linear SA (i.e., f(θ, x) is linear in θ).

Remark 2. By evaluating inequality (6a) at θ = 0,
one confirms that W (θ) > W (0) = 0 for all θ 6=
0. Since W (θ) is twice differentiable, it implies that
∂W
∂θ |θ=0 = 0. From (6b), it holds that both f̄(θ) 6= 0

and ∂W
∂θ |θ 6= 0 at any point θ 6= 0. In words, As-

sumption 2 states that the equilibrium point θ = 0
is unique, and globally, asymptotically stable for the
ODE (3). This also appeared in e.g., [Borkar, 2008,
A5] and [Bach and Moulines, 2011] (strongly convex
case). This is in the same spirit of requiring a
Hurwitz matrix Ā (i.e., every eigenvalue has strictly
negative real part) for the ODE θ̇ = Āθ in lin-
ear SA by [Tsitsiklis and Van Roy, 1997, Theorem 2],
[Dalal et al., 2018], [Srikant and Ying, 2019].

In addition to As. 1 and 2, to leverage the correspond-
ing ODE to study convergence of SA procedures, we
make an assumption on the stochastic perturbation
sequence {Xk}k∈N.

Assumption 3. For each θ ∈ Rd, the random vector
f(θ,Xk) is Fk-measurable, and there exists a func-
tion σ(T ;T0) : N+ × N+ → R+ monotonically de-
creasing to zero as either T → ∞ or T0 → ∞; i.e.,
limT→∞ σ(T ;T0) = 0 for any fixed T0 ∈ N+, and
limT0→∞ σ(T ;T0) = 0 for any fixed T ∈ N+, such that∥∥∥∥∥ 1
T

T0+T−1∑
k=T0

E
[
f(θ,Xk)

∣∣FT0

]
− f̄(θ)

∥∥∥∥∥≤ σ(T ;T0)L(‖θ‖+1)

(7)
where the expectation E is taken over {Xk}T0+T−1

k=T0
con-

ditioned on FT0
.

In fact, As. 3 requires that the bias of the ‘ergodic’
average of any T consecutive gradient estimates
{f(θ,Xk)}T0+T−1

k=T0
from their limit f̄(θ) vanishes (at

least) sublinearly in T . Indeed, this is fairly mild and
more general than those studied individually by e.g.,
[Bach and Moulines, 2011], [Bhandari et al., 2019],
[Srikant and Ying, 2019], each of which imposes
requirements on each gradient estimate f(θ,Xk).
For example, [Bach and Moulines, 2011] entails
an unbiased gradient estimate per iteration,
[Dalal et al., 2018, Bhandari et al., 2019] has to
incorporate a projection step for control of the instan-
taneous gradient bias, and [Srikant and Ying, 2019]
requires the initial distribution of the Markov chain
to be sufficiently close to the stationary distribution
for the bound to be applicable.

In sharp contrast, our condition (7) can allow
for large instantaneous biased gradient esti-
mates f(Θk, Xk) of f̄(Θk). Furthermore, As. 3
is satisfied by a broad family of discrete-time
stochastic processes, including e.g., i.i.d. ran-
dom vector sequences [Bach and Moulines, 2011],
finite-state irreducible and aperiodic Markov



Running heading title breaks the line

chains, and Ornstein-Uhlenbeck processes;
whereas, existing works [Bach and Moulines, 2011],
[Lakshminarayanan and Szepesvari, 2018],
[Bhandari et al., 2019], [Srikant and Ying, 2019]
deals only with one such type of those stochastic
processes.

3 FINITE-TIME BOUNDS ON THE
MEAN-SQUARE ERROR

In this paper, we seek to develop novel tools for prov-
ing non-asymptotic bounds on the mean-square error
of the iterates {Θk}k≥1 generated by a recursion of the
form (1) (to the equilibrium point θ∗ = 0). Before pre-
senting the main results, we start off by introducing an
instrumental result which is the key to our novel ap-
proach to controlling possible bias present in the gra-
dient estimate of SA procedures. Its proof is provided
in Appendix A of the supplementary material.

Proposition 1. Under As. 1 and 3, there exists a
function g′(k, T,Θk) such that the next relation holds
for all T ∈ N+

Θk+T = Θk + εT f̄(Θk) + g′(k, T,Θk) (8)

satisfying∥∥E[g′(k, T,Θk)
∣∣Fk]∥∥ ≤ εLTβ(T, ε)(‖Θk‖+ 1) (9)

β(T, ε) := εLT (1 + εL)T−2 + σ(T ; k) (10)

where the expectation is taken over {Xj}k+T−1
j=k condi-

tioned on Fk.

Evidently, Prop. 1 offers a bound on the average gra-
dient bias over a number T > 0 of iterations, which is
indeed motivated by our As. 3. Based on the results
in Prop. 1, we present the following theorem, which
establishes a general convergence result that applies to
any stochastic sequence {Xk}k∈N satisfying As. 3.

Theorem 1. Under Assumptions 1—3 and for any
δ > 0, there exist a function W ′(k,Θk), and constants
(T ∗ ∈ N+, εδ) such that σ(T ∗; k) ≤ δ and the following
inequalities are globally and uniformly satisfied for all
ε ∈ (0, εδ) and all k ∈ N

c′1‖Θk‖2 ≤W ′(k,Θk) ≤ c′2‖Θk‖2 + c′′2(εL)2 (11)

E
[
W ′(k+1,Θk+1)−W ′(k,Θk)

∣∣Fk]
≤ −εc′3‖Θk‖2 + c′4ε

2 + c′5σ(T ∗; k)ε (12)

where c′1, c
′
2, c
′
3, c
′′
2 , c
′
4, c
′
5 > 0 are constants dependent

on c1∼c4 of (6) but independent of ε > 0.

Proof of Theorem 1 is relegated to Appendix B of the
supplementary material due to space limitations. Our
proof builds critically on the construction of function

W ′(k,Θk) from the Lyapunov function W (θ) of the
ODE (3). To use the concentration bound in (7), we
are motivated to introduce a function candidate that
necessarily looks ahead to a number of T future iter-
ates, with parameter T ≥ 1 to be designed such that
the gradient bias can be made affordable, given by

W ′(k,Θk) =

k+T−1∑
j=k

W (Θj(k,Θk)) (13)

where, to make the dependence of Θj≥k as a function
of Θk explicit, we intentionally write Θj = Θj(k,Θk),
understood as the iterate of the recursion (1) at
time instant j ≥ k, with an initial condition Θk

at time k. It is just this parameter T ≥ 1 that
allows us to exploit the monotonically decreasing
function σ(T ; k) → 0 in (9) to gain control over
instantaneous gradient bias. This further renders
the general convergence bounds (11)–(12) possible,
in the sense that they hold for any nonlinear SA
procedure with underlying random sequence obeying
As. 1–3. For instance, when the underlying noise
sequence {Xk}k is i.i.d. [Bach and Moulines, 2011],
[Lakshminarayanan and Szepesvari, 2018], or a
Markov chain that has approximately arrived at
its steady state (i.e., after a certain mixing time
of recursions) [Srikant and Ying, 2019], they have
shown that it suffices to choose T = 1, that is
W ′(Θk) = W (Θk) to validate (11)–(12). For general
Markov chains starting from any initial distribution
however, functions like W ′(Θk) = W (Θk) may fail
to yield finite-time error bounds that hold for the
entire sequence {Θk}k≥1. In a nutshell, our novel way
of constructing this multistep Lyapunov function is
indeed motivated by and well-suited for taking care
of this kind of ‘mixing’ behavior. It goes beyond the
Markov chain to be useful for finite-time analysis of
general SA algorithms driven by a broad family of
(discrete-time) stochastic processes.

We are now ready to study the drift of W ′(k,Θk),
which follows from Theorem 1, and whose proof is pro-
vided in Appendix C of the supplementary material.
In a nutshell, our novel way of constructing the Lya-
punov function offers an effective tool for finite-time
analysis of general SA algorithms driven by a broad
family of (discrete-time) stochastic processes.

We are now ready to study the drift of W ′(k,Θk),
which follows from Theorem 1, and whose proof is pro-
vided in Appendix C of the supplementary material.

Lemma 1. Under Assumptions 1—3, the following
holds true for all ε ∈ (0, εδ) and all k ∈ N

E
[
W ′(k + 1,Θk+1)

]
≤
(

1− c′3ε
c′2

)
E
[
W ′(k,Θk)

]
+ c′′4ε

2

+ c′5σ(T ∗; k)ε (14)
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where c′′4 > 0 is an appropriate constant independent
of ε, and T ∗ ∈ N∗ is fixed in Theorem 1.

Theorem 2. Let kε := min{k ∈ N+|σ(T ∗; k) ≤ ε}.
Under As. 1–3, and choosing stepsize ε ∈ (0, εδ), the
following finite-time error bounds hold for all k ∈ N

E
[
‖Θk‖2

]
≤ c′2

c′1

(
1− c′3ε

c′2

)k
‖Θ0‖2 +

c′′2L
2

c′1
ε2 + c6

c′1
ε

+ c6
c′1

(
1− c′3ε

c′2

)max{k−kε,0}
δ (15)

where c6 > 0 is some constant; and δ > 0 is given in
Theorem 1.

When a random initial estimate Θ0 is considered, one
just needs to replace the term ‖Θ0‖2 with its expecta-
tion E[‖Θ0‖2] in (15), and the resulting bound holds.
Proof of Theorem 2 is postponed to Appendix D of the
supplemental document. At this point, some observa-
tions are worth making.

Remark 3. Existing non-asymptotic results
have focused on linear SA algorithms including
e.g., [Lakshminarayanan and Szepesvari, 2018],
[Srikant and Ying, 2019], [Bhandari et al., 2019],
or nonlinear SA under i.i.d. noise e.g.,
[Nemirovski et al., 2009], [Bach and Moulines, 2011].
In contrast, the finite-time bound in Theorem 2 is
applicable to a class of nonlinear SA procedures under
a broad family of stochastic perturbation processes.

Remark 4. When the general recursion (1) is special-
ized to linear SA driven by Markovian noise {Xk}k∈N,
i.e., f(Θk, Xk) = A(Xk)Θk + b(Xk), our established
bound in (15) improves upon the state-of-the-art in
[Srikant and Ying, 2019, Theorem 7]. In fact, the
bound in [Srikant and Ying, 2019, Theorem 7] be-
comes applicable only after a mixing time of updates
(i.e., for k ≥ τ with τ � 1 being the mixing time
of the Markov chain {Xk}) till the Markov chain gets
sufficiently ‘close’ to its stationary distribution; yet,
in sharp contrast, our bound (15) is effective from the
first iteration for Markov chains starting with any ini-
tial distribution. Furthermore, our stead-state value
(the last term of (15)) scales only with the stepsize
ε > 0 (which has removed the independence on τ from
the bound in [Srikant and Ying, 2019]), and it van-
ishes as ε→ 0.

Evidently, with the bound in (15), one can easily esti-
mate the number of data samples (e.g., the length of a
Markov chain trajectory) required for the mean-square
error to be of the same order as its steady-state value.

4 APPLICATIONS TO
APPROXIMATE Q-LEARNING

We now turn to the consequences of our general re-
sults for the problem of Q-learning with linear func-

tion approximation. Toward this objective, we begin
by providing a brief introduction to discounted MDPs
and basic RL algorithms; interested readers can re-
fer to standard sources (e.g., [Sutton and Barto, 2018],
[Bertsekas and Tsitsiklis, 1996]) for more background.

4.1 Background and Problem Setup

Consider a discounted MDP, defined by the quintuple
(S,U ,P, R, γ), where S is a finite set of possible states
(a.k.a. state space), U is a finite set of possible actions
(a.k.a. action space), P := {Pu ∈ R|S|×|S||u ∈ U} is
a collection of probability transition matrices, indexed
by actions u, R(s, u) : S ×U → R is a reward received
upon executing action u while in state s, and γ ∈ [0, 1)
is the discount factor. The results along with theoreti-
cal analysis developed in this paper may be generalized
to deal with infinite and compact state and/or action
spaces, but we restrict ourselves to finite spaces here
for an ease of exposition.

An agent selects actions to interact with the MDP (the
environment) by operating a policy. Specifically, at
each time step k ∈ N, the agent first observes the
state Sk = s ∈ S of the environment, and takes an
action Uk = u ∈ U by following a deterministic pol-
icy π : S → U , or a stochastic one Uk ∼ π(·|Sk),
where π(·|s) is a probability distribution function sup-
ported on U . The environment then moves to the
next state Sk+1 = s′ ∈ S with probability Puss′ =
Pr(Sk+1 = s′|Sk = s, Uk = u), associated with which
an instantaneous reward Rk := R(Sk, Uk) is revealed
to the agent. Repeating this procedure generates a sin-
gle trajectory of states, actions, and rewards, namely,
S0, U0, R0, S1, . . . , ST , UT , RT , ST+1, . . . over S×U×R.

We can define for control purpose the so-called action-
value function (a.k.a., Q-function), which measures the
quality of a given policy by the expected sum of dis-
counted instantaneous rewards, conditioned on start-
ing in a given state-action pair, and following the pol-
icy π to take subsequent actions; i.e.,

Q(s, u) = E
[ ∞∑
k=0

γkR(Sk, Uk)
∣∣S0 = s, U0 = u

]
,

where Uk ∼ π(·|Sk) for all k ∈ N+. (16)

Naturally, one would like to choose the policy π such
that the values of the Q-function are optimized. In
fact, it has been established that the Q-function as-
sociated with the optimal policy π∗, yielding the op-
timal Q-function denoted by Q∗, satisfies the follow-
ing Bellman equation [Bertsekas and Tsitsiklis, 1996,
Tsitsiklis, 1994, Watkins and Dayan, 1992]

Q∗(s, u) = E[R(s, u)] + γE
[

max
u′∈U

Q∗(s′, u′)
∣∣s, u] (17)
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for all state-action pairs (s, u) ∈ S × U . After
assuming a canonical ordering on the elements of
S × U , the table Q can be treated as a matrix in
R|S|×|U|. Once {Q∗(s, u)}s,u becomes available, an op-
timal policy π∗ can be recovered by setting π∗(s) ∈
arg maxu∈U Q

∗(s, u) for all s ∈ S, without any knowl-
edge about the transition probabilities.

In the learning context of interest, the transition prob-
abilities {Puss′}s,u,s′ are typically unknown and the di-
mensions |S| and/or |U| can be huge or even infinity
in practice, so it is almost impossible to exactly eval-
uate the Bellman equation (17). As one of the most
popular solutions for finding the optimal policy, Q-
learning [Watkins, 1989] iteratively updates the esti-
mate Qk of Q∗ using a single trajectory of samples
{(Sk, Uk, Sk+1)} generated by following the policy π,
according to the recursion

Qk+1(Sk, Uk) = Qk(Sk, Uk) + εk

[
R(Sk, Uk)

+ γmax
u′∈U

Qk(Sk+1, u
′)−Qk(Sk, Uk)

]
(18)

where {0 < εk < 1} is a sequence of stepsizes to
be chosen by the user. Under standard conditions
on the stepsizes, the sequence {Qk} converges to
Q∗ almost surely as long as every state-action pair
(s, u) ∈ S × U is visited infinitely often; see, for
instance, [Watkins and Dayan, 1992, Tsitsiklis, 1994,
Bertsekas and Tsitsiklis, 1996].

However, it is well known that for many impor-
tant problems of practical interest, the computa-
tional requirements of exact function estimation are
overwhelming, mainly because of a large number
of states and actions (i.e., Bellman’s “curse of di-
mensionality”) [Bertsekas and Tsitsiklis, 1996]. In-
stead, a popular approach has been to leverage low-
dimensional parametric approximations of the value
function, or the Q-function. Although contemporary
nonlinear approximators such as deep neural networks
[Mnih et al., 2015] could lead to more powerful ap-
proximations, the simplicity of RL with linear function
approximation [Sutton and Barto, 2018] allows us to
analyze them in detail.

4.2 Q-Learning With Linear Function
Approximation

In this section, we provide a non-asymptotic analysis
for the original Q-learning with linear function approx-
imation. Specifically, we assume that the Q-function
is parameterized by a linear function as follows

Q(s, u) ≈ Qθ(s, u) = ψ>(s, a)θ (19)

where θ ∈ Rd is a parameter vector to be learned,
typically of size d � |S| × |U|, the number of state-

action pairs; and the feature vector ψ(s, a) ∈ Rd stacks
up d features produced by pre-selected basis functions
{ψ`(s, u) : S × U → R}d`=1. For future reference, we
introduce the so-called feature matrix, given by

Ψ :=


ψ>(s1, u1)
ψ>(s1, u2)

...
ψ>(s|S|, u|U|)

 ∈ R|S||U|×d

which is assumed to have full column rank (that is,
linearly independent columns) and satisfy ‖ψ(s, u)‖ ≤
1 for all state-action pairs (s, u) ∈ S × U .

The well-known Q-learning algorithm up-
dates the parameter vector Θ, accord-
ing to (e.g., [Bertsekas and Tsitsiklis, 1996,
Sutton and Barto, 2018])

Θk+1 = Θk + εψ(Sk, Uk)
[
R(Sk, Uk)

+ γmax
u∈U

ψ>(Sk+1, u)Θk − ψ>(Sk, Uk)Θk

]
(20)

for some constant stepsize ε ∈ (0, 1). The goal here
is to obtain finite-time error bounds for (20), when
the observed data samples {(Sk, Uk, R(Sk, Uk), Sk+1,
Uk+1)}k∈N are collected along a single path of the
Markov chain {Sk}k∈N by following a deterministic
policy π. With Xk := (Sk, Uk, Sk+1), considering

F (θ,Xk) = ψ(Sk, Uk)
[
R(Sk, Uk) + γmax

u∈U
ψ>(Sk+1, u)θ

− ψ>(Sk, Uk)θ
]

(21)

it becomes obvious that (20) has the form of the SA
update (1). For our non-asymptotic error guarantees
established for nonlinear SA procedures in Theorem
2 to be applicable to Q-learning with linear function
approximation, it suffices to show that As. 1–3 are
satisfied by the Q-learning updates (20).

In general, Q-learning with even linear function ap-
proximation can diverge [Gordon, 1995]. This is
mainly because Q-learning implements off-policy 1

sampling to collect the data, which renders the ex-
pected Q-learning update possibly an expansive map-
ping [Gordon, 1995]. Under appropriate regularity
conditions on the sampling policy, asymptotic conver-
gence ofQ-learning with linear function approximation
was established in [Melo et al., 2008], and finite-time
analysis was recently given in [Zou et al., 2019]. In the

1On-policy methods estimate the value of a policy while
using it for control (namely, take actions); while in off-
policy methods, the policy used to generate behavior,
called the behavior/sampling policy, may be independent
of the policy that is evaluated and improved, called the
target/estimation policy [Sutton and Barto, 2018].
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following, we also impose a similar regularity condition
on the sampling policy π [Chen et al., 2019].

Assumption 4. Suppose that the Markov chain
{Sk}k∈N induced by policy π is irreducible and ape-
riodic, whose unique stationary distribution is denoted
by µ. Assume that the equation F̄ (θ) := Eµ[F (θ,X)] =
0 has a unique solution θ∗, and the next inequality
holds for all θ ∈ Rd

γ2Eµ
[

max
u′∈U

(
ψ>(s′, u′) θ

)2]− Eµ
[(
ψ>(s, u) θ

)2]≤−c‖θ‖2
where u ∼ π(·|s), for some constant 0 < c < 1.

Now, let us turn to verify As. 1–3. Toward this end,
we start by introducing θ̃ := θ−θ∗ and X := (S,U, S′).
It then follows that

f(θ̃) := F (θ̃ + θ∗, X)

= ψ(S,U)
[
R(S,U)+γmax

u∈U
ψ>(S′, u)θ−ψ>(S,U)θ

]
.

(22)

It is evident that f̄(θ̃) := Eµ[F (θ̃ + θ∗, X)] = 0 has a

unique solution θ̃∗ = 0. Now, we can rewrite (20) as

Θ̃k+1 = Θ̃k + εf(Θ̃k, Xk). (23)

Verifying As. 1. For any θ̃1, θ̃2, and x = (s, u, s′),
we have that

‖f(θ̃1, x)− f̄(θ̃2, x)‖

=
∥∥∥ψ(s, u)

[
R(s, u) + γ max

u1∈U
ψ>(s′, u1)

(
θ̃1 + θ∗

)
− ψ>(s, u)

(
θ̃1 + θ∗

)]
− ψ(s, u)

[
R(s, u)

+ γ max
u2∈U

ψ>(s′, u2)
(
θ̃2 + θ∗

)
− ψ>(s, u)

(
θ̃2 + θ∗

)]∥∥∥
=
∥∥∥γψ(s, u)

[
max
u1∈U

ψ>(s′, u1)
(
θ̃1 + θ∗

)
− max
u2∈U

ψ>(s′, u2)(θ̃2+ θ∗)
]
+ ψ(s, u)ψ>(s, u)(θ̃1− θ̃2)

∥∥∥
≤ γ

∣∣∣max
u1∈U

ψ>(s′, u1)(θ̃1+ θ∗)−max
u2∈U

ψ>(s′, u2)(θ̃2 + θ∗)
∣∣∣

+
∥∥θ̃1 − θ̃2

∥∥ (24)

where the last inequality follows from ‖ψ(s, u)‖ ≤ 1
for all (s, u) ∈ S × U .

Suppose that u∗1 ∈ maxu1∈U ψ
>(s′, u1)

(
θ̃1 + θ∗

)
, then

max
u1∈U

ψ>(s′, u1)
(
θ̃1 + θ∗

)
− max
u2∈U

ψ>(s′, u2)
(
θ̃2 + θ∗

)
= ψ>(s′, u∗1)

(
θ̃1 + θ∗

)
− max
u2∈U

ψ>(s′, u2)
(
θ̃2 + θ∗

)
≤ ψ>(s′, u∗1)

(
θ̃1 + θ∗

)
− ψ>(s′, u∗1)

(
θ̃2 + θ∗

)
= ψ>(s′, u∗1)

(
θ̃1 − θ̃2

)

≤
∥∥θ̃1 − θ̃2

∥∥ (25)

due again to ‖ψ(s′, u∗1)‖ ≤ 1. On the other hand, if
we let u∗2 ∈ maxu2∈U ψ

>(s′, u2)
(
θ̃2 + θ∗

)
, it follows

similarly that

max
u1∈U

ψ>(s′, u1)
(
θ̃1 + θ∗

)
− max
u2∈U

ψ>(s′, u2)
(
θ̃2 + θ∗

)
= max
u1∈U

ψ>(s′, u1)
(
θ̃1 + θ∗

)
− ψ>(s′, u∗2)

(
θ̃2 + θ∗

)
≥ ψ>(s′, u∗2)

(
θ̃1 + θ∗

)
− ψ>(s′, u∗2)

(
θ̃2 + θ∗

)
= ψ>(s′, u∗2)

(
θ̃1 − θ̃2

)
≥ −

∥∥θ̃1 − θ̃2

∥∥. (26)

Combining (25) and (26) yields∣∣∣max
u1∈U

ψ>(s′, u1)
(
θ̃1 + θ∗

)
− max
u2∈U

ψ>(s′, u2)
(
θ̃2 + θ∗

)∣∣∣
≤
∥∥θ̃1 − θ̃2

∥∥ (27)

which, in conjunction with (24), proves that

‖f(θ̃1, x)− f(θ̃2, x)‖ ≤ (γ + 1)
∥∥θ̃1 − θ̃2

∥∥. (28)

In the meanwhile, it is easy to see that

‖f(θ̃, x)‖ =
∥∥∥ψ(s, u)

[
R(s, u) + γ max

u1∈U
ψ>(s′, u1)

(
θ̃ + θ∗

)
− ψ>(s, u)

(
θ̃ + θ∗

)]∥∥∥
≤ |R(s, u)|+ γ‖ψ(s′, u∗1)‖

∥∥θ̃ + θ∗
∥∥

+ ‖ψ(s, u)‖
∥∥θ̃ + θ∗

∥∥
≤ r̄ + (γ + 1)

(
‖θ̃‖+ ‖θ∗‖

)
= (γ + 1)‖θ̃‖+

[
r̄ + (γ + 1)‖θ∗‖

]
(29)

where we have used the fact that |R(s, u)| ≤ r̄ for all
(s, u) ∈ S × U . With (28) and (29), we have proved
that As. 1 is met with L := max{γ+1, r̄+(γ+1)‖θ∗‖}.

Verifying As. 2. The ODE associated with the
(centered) Q-learning update (23) is

˙̃
θ= f̄(θ̃)= Eµ

{
ψ(s, u)

[
R(s, u)+γmax

u′∈U
ψ>(s′, u′)(θ̃ + θ∗)

− ψ>(s, u)(θ̃ + θ∗)
]}

(30)

for which we consider the Lyapunov candidate function
W (θ̃) = ‖θ̃‖2/2. Evidently, it follows that W (θ̃) ≥
0 for all θ̃ 6= 0, so (6a) holds with c1 = c2 = 1/2.
Secondly, using f̄(θ̃∗) = 0, we have that(∂W (θ̃)

∂θ̃

)>
f̄(θ̃)

=
(∂W (θ̃)

∂θ̃

)>[
f̄(θ̃)− f̄(θ̃∗)

]
= θ̃>Eµ

{
ψ(s, u)

[
R(s, u) + γ max

u1∈U
ψ>(s′, u1)(θ̃ + θ∗)
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− ψ>(s, u)
(
θ̃ + θ∗

)]
− ψ(s, u)

[
R(s, u)

+ γ max
u2∈U

ψ>(s′, u2)θ∗ − ψ>(s, u)θ∗
]}

= γEµ
{
θ̃>ψ(s, u)

[
max
u1∈U

ψ>(s′, u1)(θ̃ + θ∗)

− max
u2∈U

ψ>(s′, u2)θ∗
]}
− Eµ

[
ψ>(s, u)θ̃

]2
≤ −Eµ

[
ψ>(s, u)θ̃

]2
+ γ

√
Eµ
[
ψ>(s, u)θ̃

]2
×
√

Eµ
[

max
u1∈U

ψ>(s′, u1)(θ̃ + θ∗)−max
u2∈U

ψ>(s′, u2)θ∗
]2

(31)

≤
√
Eµ[ψ>(s, u)θ̃]2

{
γ

√
Eµmax

u′∈U
[ψ>(s′, u′)θ̃]2

−
√

Eµ
[
ψ>(s, u)θ̃

]2}
(32)

=

√
Eµ
[
ψ>(s, u)θ̃

]2
× γ2Eµ

[
maxu′∈U

(
ψ>(s′,u′)θ̃

)2]
−Eµ
[
ψ>(s,u)θ̃

]2
γ

√
Eµ maxu′∈U

[
ψ>(s′,u′)θ̃

]2
+

√
Eµ
[
ψ>(s,u)θ̃

]2 (33)

≤ −c
∥∥θ̃∥∥2√

γ2Eµ
[

maxu′∈U

(
ψ>(s′,u′)θ̃

)2]/
Eµ
[
ψ>(s,u)θ̃

]2
+1

(34)

≤ −c
∥∥θ̃∥∥2

2−c (35)

which suggests that (6b) holds with c3 := c/[(2− c)L].

On the other hand, it follows for any θ̃, θ̃′ that∥∥∥∂W
∂θ̃

∣∣
θ̃
− ∂W

∂θ̃

∣∣
θ̃′

∥∥∥ =
∥∥θ̃ − θ̃′∥∥

validating (6c) with c4 = 1.

Verifying As. 3. Let Puss′ be the transition proba-
bility of the Markov chain {Sk}k∈N from states s to s′

after taking action u; and let p
(n)
ss′ be the n-step tran-

sition probability from states s to s′ following policy
π. Define Xk := (Sk, Uk, Sk+1). It can be verified that
{Xk}k∈N is a Markov chain with state space X := {x =
(s, u, s′) : s ∈ S, π(u|s) > 0, Puss′ > 0} ⊆ S × U × S.
Next, we show that {Xk} is aperiodic and irreducible.

Consider two arbitrary states xi = (si, ui, s
′
i), xj =

(sj , uj , s
′
j) ∈ X . Since {Sk}k is irreducible, there exists

an integer n > 0 such that p
(n)
s′i,sj

> 0. Using the

definition of {Xk}k, it follows that

p(n+1)
xi,xj = p

(n)
s′isj

π(uj |sj)P
uj
sjs′j

> 0 (36)

which corroborates that the Markov chain {Xk}k is
irreducible; see e.g., [Levin and Peres, 2017, Ch. 1.3].

To prove that {Xk}k is aperiodic, we assume, for the
sake of contradiction, that {Xk}k is periodic with pe-
riod d ≥ 2. As {Xk}k has been shown irreducible, it

follows readily that every state in X has the same pe-
riod of d. Hence, for each state x = (s, u, s′) ∈ X , it

holds that p
(n+1)
x,x = 0 for all integers n + 1 > 0 not

divisible by d. Further, we deduce for any positive
integer (n+ 1) not divisible by d that

p
(n+1)
s′s′ =

∑
s∈S

p
(n)
s′sp

(1)
ss′ =

∑
s∈S

p
(n)
s′s

∑
u∈U

π(u|s)Puss′

=
∑
s∈S

∑
u∈U

p(n+1)
xx = 0 (37)

where the last two equalities arise from (36) and the
periodicity assumption of {Xk}k, respectively. It be-
comes evident from (37) that {Sk}k is periodic too,
and its period is at least d. This clearly contradicts
with the assumption that {Sk}k is aperiodic. There-
fore, we conclude that the Markov chain {Xk}k is ir-
reducible and aperiodic provided that {Sk}k is irre-
ducible and aperiodic.

Consider now two arbitrary states xT0
= (sT0

, uT0
, s′T0

)
and x = (s, u, s′) ∈ X . It follows that

∥∥∥ 1
T

T0+T∑
k=T0+1

E
[
f(θ̃, Xk)

∣∣XT0
= xT0

]
− f̄(θ̃)

∥∥∥
=
∥∥∥ 1
T

T0+T∑
k=T0+1

∑
x∈X

[
p(k)
xT0x

− µ(x)
]
f(θ̃, x)

∥∥∥ (38)

=
∥∥∥ 1
T

T∑
k=T0+1

∑
s,s′∈S

∑
u∈U

[
p

(k−1)
s′T0

s π(u|s)Puss′ − µ(x)
]

× ψ(s, u)
[
R(s, u) + γmax

u′∈U
ψ>(s′, u′)(θ̃ + θ∗)

− ψ>(s, u)(θ̃ + θ∗)
]∥∥∥ (39)

≤ max
(s,u,s′)∈X

∥∥∥ψ(s, u)
[
R(s, u) + γmax

u′∈U
ψ>(s′, u′)(θ̃ + θ∗)

− ψ>(s, u)(θ̃ + θ∗)
]∥∥∥

× 1
T

T∑
k=T0+1

∑
x∈X

∣∣p(k−1)
s′T0

s π(u|s)Puss′ − µ(x)
∣∣

≤ (‖θ̃‖+ 1)× 1
T

T∑
k=T0+1

2cηk−T0−1 (40)

≤ 2c/(1−η)
T (‖θ̃‖+ 1)

where (38) is due to f̄(θ̃) = EX∼µ[f(θ̃, X)] =∑
x∈X µ(x)f(θ̃, x); equality (39) uses (22) and (36);

and, (40) arises from the geometric mixing prop-
erty of irreducible, aperiodic Markov chain {Xk}k
[Levin and Peres, 2017, Theorem 4.9] as well as (29).

We have proved that As. 1–3 are satisfied by Q-
learning with linear function approximation, provided
that certain conditions on the sampling policy and
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function approximators hold. Hence, the established
finite-time error bound in Theorem 2 holds for Q-
learning with linear function approximation.

5 CONCLUSIONS

In this paper, we provided a non-asymptotic analysis
for a class of biased SA algorithms driven by a broad
family of stochastic perturbations, which include as
special cases e.g., i.i.d. random sequences of vectors
and ergodic Markov chains. Taking a dynamical sys-
tems viewpoint, our approach has been to design a
novel multistep Lyapunov function that involves future
iterates to control the gradient bias. We proved a gen-
eral convergence result based on this multistep Lya-
punov function, and developed non-asymptotic bounds
on the mean-square error of the iterate generated by
the SA procedure to the equilibrium point of the as-
sociated ODE. Subsequently, we illustrated this gen-
eral result by applying it to obtain a finite-time error
bound for Q-learning with linear function approxima-
tion from data gathered along a single trajectory of a
Markov chain. Our bound holds for Markov chains
with general mixing rates and from any initial dis-
tribution. Although the focus here has been on bi-
ased SA procedures with constant stepsizes, our non-
asymptotic results can be extended to accommodate
time-varying stepsizes as well. Our future work will
also aim at generalizing this novel analysis to decen-
tralized and deep RL algorithms.
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Remark. The equations (1)–(40) and Assumptions 1–4 are referenced with respect to the indexing used in the
paper.

A Proof of Prop. 1

We start off the proof by introducing the following auxiliary function

g(k, T,Θk) := Θk+T −Θk − ε
k+T−1∑
j=k

f(Θk, Xj), ∀T ≥ 1 (41)

which is evidently well defined under our working Assumptions 1 and 3. Regarding the function g(k, T,Θk)
above, we present the following useful bound, whose proof details are, however, postponed to Appendix E for
readability.

Lemma 2. For any Θk ∈ Rd, the function g(k, T,Θk) satisfies for all k ≥ 0

‖g(k, T,Θk)‖ ≤ ε2L2T 2(1 + εL)T−2, ∀T ≥ 1. (42)

On the other hand, note from (8) that

g′(k, T,Θk) = Θk+T −Θk − εT f̄(Θk) (43)

which, in conjunction with (41), suggests that we can write

g′(k, T,Θk) = g(k, T,Θk) + ε

k+T−1∑
j=k

f(Θk, Xj)− εT f̄(Θk)

= g(k, T,Θk) + ε

k+T−1∑
j=k

(
f(Θk, Xj)− f̄(Θk)

)
. (44)

By taking expectation of both sides of (44) conditioned on the σ-field Fk, along with the fact that Θk is Fk-
measurable, we obtain

E
[
g′(k, T,Θk)

∣∣Fk] =E
[
g(k, T,Θk)

∣∣Fk]+ εE

k+T−1∑
j=k

(
f(Θk, Xj)− f̄(Θk)

) ∣∣∣Fk


=E
[
g(k, T,Θk)

∣∣Fk]+ εT

 1
T

k+T−1∑
j=k

E
[
f(Θk, Xj)

∣∣Fk]− f̄(Θk)


≤ εLT

[
εLT (1 + εL)

T−2
+ σ(T )

]
(‖Θk‖+ 1) (45)

where the last inequality follows from Lemma 2 as well as the property of the averaged operator f̄ in (7) under
our working Assumption 3. This concludes the proof.

B Proof of Theorem 1

We prove this theorem by carefully constructing function for W ′(k,Θk) from W (Θk) (recall under our working
assumption 2 that W (Θk) exists and satisfies properties (53)—(6c)). Toward this objective, let us start with the
following candidate

W ′(k,Θk) =

k+T−1∑
j=k

W (Θj(k,Θk)) (46)
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where, to make the dependence of Θj≥k on Θk explicit, we maintain the notation Θj = Θj(k,Θk), which is
understood as the state of the recursion (1) at time instant j ≥ k, with an initial condition Θk at time instant k.

In the following, we will show that there exists and also determine a value for the parameter T ∈ N+ such that
the inequalities (11) and (12) are satisfied.

For ease of exposition, we start by proving the second inequality (12). To this end, observe from the definition
of W ′(k,Θk) in (46) that

W ′(k + 1,Θk + εf(Θk, Xk))−W ′(k,Θk) =

k+T∑
j=k+1

W (Θj(k,Θk))−
k+T−1∑
j=k

W (Θj(k,Θk))

= W (Θk+T (k,Θk))−W (Θk(k,Θk))

= W (Θk+T (k,Θk))−W (Θk) (47)

where the last equality is due to the fact that Θk(k,Θk) = Θk.

To upper bound the term in (47), we will focus on bound the first term W (Θk+T (k,Θk)). Recall from (8) that

Θk+T (k,Θk) = Θk + εT f̄(Θk) + g′(k, T,Θk)

based on which we can find the second-order Taylor expansion of W (Θk+T (k,Θk)) (which is twice differentiable
under Assumption 2) around Θk, as follows

W (Θk+T (k,Θk)) = W (Θk) +
(
∂W
∂θ

∣∣
Θk

)> [
εT f̄(Θk) + g′(k, T,Θk)

]
+
[
εT f̄(Θk) + g′(k, T,Θk)

]>∇2W (Θ′k)
[
εT f̄(Θk) + g′(k, T,Θk)

]
(48)

where we have employed the so-called mean-value theorem, suggesting that (48) holds with Θ′k := Θk +
η
[
εT f̄(Θk) + g′(k, T,Θk)

]
for some constant η ∈ [0, 1].

Next, we will pursue an upper bound for each individual term on the right hand side of (48) by conditioning on
the σ-field Fk. Again, using the fact that Θk is Fk-measurable and invoking (6b), we have that

E
[
εT
(
∂W
∂θ

∣∣
Θk

)>
f̄(Θk)

∣∣∣Fk] ≤ −c3εLT‖Θk‖2. (49)

One can further verify the following bounds

E
[(

∂W
∂θ

∣∣
Θk

)>
g′(k, T,Θk)

∣∣∣Fk] =
(
∂W
∂θ

∣∣
Θk

)>
E
[
g′(k, T,Θk)

∣∣Fk]
≤
∥∥∥ ∂W∂θ ∣∣Θk∥∥∥ · ∥∥E[g′(k, T,Θk)

∣∣Fk]∥∥ (50)

≤ c4‖Θk‖ · εLTβ(T, ε)(‖Θk‖+ 1) (51)

≤ 2c4εLTβ(T, ε)(‖Θk‖2 + 1). (52)

In particular, (50) uses the Cauchy-Schwartz inequality, (51) calls for Proposition 1, and the last one follows
from the inequality ‖θ‖(‖θ‖+ 1) ≤ 2(‖θ‖2 + 1).

As far as the last term of (47) is concerned, it is clear that

E
{[
εT f̄(Θk) + g′(k, T,Θk)

]>∇2W (Θ′k)
[
εT f̄(Θk) + g′(k, T,Θk)

]∣∣∣Fk}
≤ c4 E

[∥∥εT f̄(Θk) + g′(k, T,Θk)
∥∥2
∣∣∣Fk] (53)

≤ 2c4ε
2T 2

∥∥f̄(Θk)
∥∥2

+ 2c4E
[∥∥g′(k, T,Θk)

∥∥2
∣∣∣Fk] (54)

≤ 2c4ε
2T 2L2‖Θk‖2 + 2c4E

[∥∥g′(k, T,Θk)
∥∥2
∣∣∣Fk] (55)
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where (53) leverages the upper bound on the Hessian matrix of W (θ) arising from the property (6c), (54) follows
from the inequality ‖a+ b‖2 ≤ 2(‖a‖2 + ‖b‖2) for any real-valued vectors a, b ∈ Rd, and (55) uses the Lipschitz
property of function f̄(θ) that can be easily verified since f(θ, x) is Lipschitz in θ.

To further upper bound the last term of (55), we establish the following helpful result whose proof is also
postponed to Appendix F for readability.

Lemma 3. The following bound holds for any fixed θk ∈ Rd

E
[∥∥g′(k, T, θk)

∥∥2∣∣Fk] ≤ ε2L2T 2
[
ε2L2T 2(1 + εL)

2T−4
+ 12

]
‖θk‖2 + 8ε2L2T 2. (56)

Coming back to inequality (55), as E[Θk|Fk] = Θk, Lemma 3 now applies. Plugging (56) into (55), we establish
an upper bound on the last term of (47) as follows

E
{[
εT f̄(Θk) + g′(k, T,Θk)

]>∇2W (Θ′k)
[
εT f̄(Θk) + g′(k, T,Θk)

]∣∣∣Fk}
≤ 2c4ε

2T 2L2
[
ε2L2T 2(1 + εL)

2T−4
+ 13

]
‖Θk‖2 + 16c4ε

2L2T 2. (57)

Putting together the bounds in (49), (52), and (57), it follows from (48) that

E
[
W (Θk+T (k,Θk))−W (Θk)

∣∣Fk]
= E

[
εT
(
∂W
∂θ

∣∣
Θk

)>
f̄(Θk) +

(
∂W
∂θ

∣∣
Θk

)>
g′(k, T,Θk)

∣∣∣Fk]
+ E

{[
εT f̄(Θk) + g′(k, T,Θk)

]>∇2W (Θ′k)
[
εT f̄(Θk) + g′(k, T,Θk)

]∣∣∣Fk}
≤ −εLT

{
c3 − 2c4β(T, ε)− 2c4εLT

[
ε2L2T 2(1 + εL)

2T−4
+ 13

]}
‖Θk‖2

+ 2c4εLTβ(T, ε) + 16c4ε
2L2T 2

= −εLT [c3 − c4ρ(T, ε)]‖Θk‖2 + c4εLTκ(T, ε) (58)

where in the last equality, we have defined for notational brevity the following two functions

ρ(T, ε) := 2β(T, ε) + 2εLT
[
ε2L2T 2(1 + εL)

2T−4
+ 13

]
(59)

κ(T, ε) := 2β(T, ε) + 16εLT (60)

both of which depend on parameters T ∈ N+ and ε > 0.

In the sequel, we will show that there exist parameters ε > 0 and T ≥ 1 such that the coefficient of (58) obeys
c3 − c4ρ(T, ε) > 0. Formally, such a result is summarized in Proposition 2 below, whose proof is relegated to
Appendix G.

Proposition 2. Consider functions β(T, ε) and ρ(T, ε) defined in (10) and (59), respectively. Then for any
δ > 0, there exist constants εδ > 0 and Tδ ≥ 1, such that the following inequality holds for any ε ∈ (0, εδ)

ρ(Tδ, ε) ≤ δ. (61)

As such, by taking any δ < c3
c4

, feasible parameter values Tδ and εδ can be obtained according to (105) and (107),
respectively. Now by choosing

T ∗ = Tδ (62)

εc = εδ (63)

it follows that
c′3 := LT ∗ [c3 − c4ρ(T ∗, εc)] > 0. (64)

Furthermore, it is straightforward to deduce from (59) and (60) that

κ(T ∗, ε) < ρ(T ∗, ε) ≤ δ.
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If we now let c′4 := c4LT
∗, then (58) confirms that

E
[
W (Θk+T (k,Θk))−W (Θk)

∣∣Fk] ≤ −c′3ε‖Θk‖2 + c′4εδ. (65)

Finally, recalling (47), we deduce that

E
[
W ′(k + 1,Θk + εf(Θk, Xk))−W ′(k,Θk)

∣∣Fk] ≤ −c′3ε‖Θk‖2 + c′4εδ (66)

concluding the proof of (12).

Now, we turn to show the first inequality. It is evident from the properties of W (Θk) in Assumption 2 that

W ′(k,Θk) =

k+T−1∑
j=k

W (Θj(k,Θk)) ≥W (Θk(k,Θk))

≥ c1‖Θk(k,Θk)‖2

= c1‖Θk‖2 (67)

where the second inequality follows from (6a), and the last equality from the fact that Θk(k,Θk) = Θk. Therefore,
by taking c′1 = c1, we have shown that the first part of inequality (11) holds true. For the second part, it follows
that

‖Θj+1‖ = ‖Θj + εf(Θj , Xj)‖ ≤ (1 + εL)‖Θj‖+ εL, ∀j ≥ k (68)

yielding by means of telescoping series

‖Θj(k,Θk)‖ ≤ (1 + εL)j−k‖Θk‖+

j−k∑
j=1

(1 + εL)j−1εL

≤ (1 + εL)j−k‖Θk‖+ (1 + εL)j−k − 1, ∀j ≥ k.

Using further the inequality (a+ b)2 ≤ 2(a2 + b2), we deduce that

‖Θj(k,Θk)‖2 ≤ 2(1 + εL)2(j−k)‖Θk‖2 + 2
[
(1 + εL)

j−k − 1
]2
. (69)

Taking advantage of the properties of W (Θk) in Assumption 2 and (69), it follows that

W ′(k,Θk) =

k+T−1∑
j=k

W (Θj(k,Θk))

≤
k+T−1∑
j=k

c2‖Θj(k,Θk)‖2

≤ 2c2

k+T−1∑
j=k

(1 + εL)2(j−k)‖Θk‖2 + 2c2

k+T−1∑
j=k

[
(1 + εL)

j−k − 1
]2
. (70)

Let us now examine the two coefficients of (70) more carefully. Note that

k+T−1∑
j=k

(1 + εL)2(j−k) = (1+εL)2T−1
(1+εL)2−1 = T 2+(2T−1)(1+ε′L)2T−2εL

2+εL (71)

k+T−1∑
j=k

[
(1 + εL)j−k − 1

]2
=

k+T−1∑
j=k+1

[
(j − k)εL

(
1 + 1

2 (j − k − 1)
(
1 + ε′j−kL

)j−k−2
εL
)]2

(72)

= (εL)2
T−1∑
j=1

j2
[
1 + 1

2 (j − 1)
(
1 + ε′jL

)j−2
]2

(73)
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where both (71) and (72) follow from the mean-value theorem (1 + εL)j−k = 1 + (j − k)εL + 1
2 (j − k − 1)(1 +

ε′j−kL)j−k−2(εL)2 for any j − k ≥ 1 and some constants ε′j ∈ [0, ε].

According to Proposition 2, or more specifically, the inequalities (62) and (63), we see that ε′j ≤ ε ≤ εc for all
1 ≤ j ≤ T − 1.

On the other hand, it is easy to check that both terms [(71) and (73)] are monotonically increasing functions of
ε > 0. Therefore, if we define constants

c′2 := 2c2T
∗ 2+(2T∗−1)(1+εcL)2T

∗−2εcL
2+εcL

(74)

c′′2 := 2c2

T∗−1∑
j=1

j2
[
1 + 1

2 (j − 1)(1 + εcL)
j−2
]2

(75)

which are independent of ε, then we draw from (70), (71), and (73) that

W ′(k,Θk) ≤ c′2‖Θk‖2 + c′′2(εL)2. (76)

concluding the proof of the second part of (11).

C Proof of Lemma 1

Taking expectation of both sides of (11) conditioned on Fk gives rise to

E
[
W ′(k,Θk)|Fk

]
≤ c′2‖Θk‖2 + c′′2(εL)2. (77)

On the other hand, it is evident from (12) that

E
[
W ′(k + 1,Θk+1)|Fk

]
≤ E

[
W ′(k,Θk)|Fk

]
− c′3ε‖Θk‖2 + c′4εδ

= E
[
W ′(k,Θk)|Fk

]
− c′3ε

c′2

[
c′2‖Θk‖2 + c′′2(εL)2

]
+ c′4εδ +

c′3
c′2
c′′2ε(εL)2

≤ E
[
W ′(k,Θk)|Fk

]
− c′3ε

c′2
E
[
W ′(k,Θk)|Fk

]
+ c′′4ε

2 +
c′3
c′2
c′′2εc(εL)2 (78)

=
(

1− c′3ε
c′2

)
E
[
W ′(k,Θk)|Fk

]
+ ε2(c′′4 + c′′3εcL

2) (79)

where, in order to obtain (78), we have employed the inequality in (77), taken δ ≤ εc′′4/c
′
4 in (61) for any

sufficiently small constant c′′4 > 0, and used the fact that ε < εc. Upon defining constant c′′3 := c′3c
′′
2/c
′
2, then

(79) follows readily.

Finally, taking expectation of both sides of (79) with respect to the σ-field Fk concludes the proof.

D Proof of Theorem 2

Let us start with a basic Lemma, whose proof is elementary and is hence omitted here.

Lemma 4. Consider the recursion zt+1 = azt + b, where a 6= 1 and b are given constants. Then the following
holds

zt = atz0 + b(at−1)
a−1 . (80)

Letting a := 1−c′3ε/c′2 > 0 and b := ε2(c′′4 +c′′3εcL
2), then using the above lemma on the recursion {E[W ′(k,Θk)]}

in (14) yields

E
[
W ′(k,Θk)

]
≤
(

1− c′3ε
c′2

)
E
[
W ′(k − 1,Θk−1)

]
+ ε2(c′′4 + c′′3εcL

2)

≤
(

1− c′3ε
c′2

)k
E
[
W ′(0,Θ0)

]
+

[
1−

(
1− c′3ε

c′2

)k ]
εc′2
c′3

(
c′′4 + c′′3εcL

2
)
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≤
(

1− c′3ε
c′2

)k
E
[
W ′(0,Θ0)

]
+ ε
(
c′2c
′′
4

c′3
+ c′′2εcL

2
)

≤ c′2
(

1− c′3ε
c′2

)k
‖Θ0‖2 + ε

(
c′2c
′′
4

c′3
+ 2c′′2εcL

2
)

(81)

where the last inequality follows from the fact that

E[‖Θ0‖2|Θ0] ≤ c′2‖Θ0‖2 + c′′2ε
2L2 ≤ c′2‖Θ0‖2 + c′′2εεcL

2 (82)

where the initial guess Θ0 ∈ Rd is assumed given for simplicity.

On the other hand, using (11), the term E
[
W ′(k,Θk)

]
can be lowered bounded as follows

E
[
W ′(k,Θk)

]
≥ c′1‖Θk‖2 (83)

which, combined with (81), yields the finite-time error bounds in (15).

E Proof of Lemma 2

When T = 1 and for any Θk ∈ Rd, one can easily check that

g(k, 1,Θk) = Θk+1 −Θk − εf(Θk, Xk) = 0

implying G1 := ‖g(k, 1,Θk)‖ = 0. To proceed, let us start by introducing the function

h(k, T,Θk) :=

k+T−1∑
j=k

f(Θk, Xj)

which can be bounded as follows

∥∥h(k, T,Θk)
∥∥ =

∥∥∥∥∥∥
k+T−1∑
j=k

f(Θk, Xj)

∥∥∥∥∥∥ ≤
k+T−1∑
j=k

∥∥f(Θk, Xj)
∥∥

≤ L
k+T−1∑
j=k

(‖Θk‖+ 1)

= TL(‖Θk‖+ 1) (84)

where the second inequality follows from (5) in Assumption 1.

It is evident that

g(k, T + 1,Θk) = Θk+T+1 −Θk − ε
k+T∑
j=k

f(Θk, Xj)

= Θk+T + εf(Θk+T , Xk+T )−Θk − ε
[
f(Θk, Xk+T0

) +

k+T−1∑
j=k

f(Θk, Xj)

]
= g(k, T,Θk) + ε

[
f(Θk+T , Xk+T )− f(Θk, Xk+T )

]
. (85)

By means of triangle inequality, it follows that

GT+1 = ‖g(k, T + 1,Θk)‖ ≤
∥∥g(k, T,Θk)

∥∥+ ε
∥∥f(Θk+T , Xk+T )− f(Θk, Xk+T )

∥∥
≤ GT + εL

∥∥Θk+T −Θk

∥∥ (86)

≤ GT + εL
[
ε
∥∥h(k, T,Θk)

∥∥+
∥∥g(k, T,Θk)

∥∥] (87)

≤ (1 + εL)GT + ε2L2T (‖Θk‖+ 1) (88)
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≤ ε2L2(‖Θk‖+ 1)

T∑
k=0

(1 + εL)T−kk (89)

where the inequality (86) follows from the Lipschitz continuity of f(θ, x) in θ, (87) from the fact that Θk+T =
Θk+εh(k, T,Θk)+g(k, T,Θk), (88) from (84) as well as the definition GT := ‖g(k, T,Θk)‖, and the last inequality
is obtained by telescoping series and uses G1 = 0.

Lemma 5. Given any positive constant d 6= 1, the following holds for all T ≥ 1

ST+1 =

T∑
k=0

kdk = d(1−dT )
(1−d)2 −

TdT+1

1−d . (90)

Taking d = (1 + εL)−1 in (90), then (89) can be simplified as follows

GT ≤ ε2L2(1 + εL)T−1(‖Θk‖+ 1)

T−1∑
k=0

(1 + εL)−kk

=
[
(1 + εL)T − εLT − 1

]
(‖Θk‖+ 1). (91)

To further simplify this bound, the Taylor expansion along with the mean-value theorem confirms that the
following holds for some ε′ ∈ (0, 1)

(1 + εL)T = 1 + εLT + 1
2T (T − 1)(1 + ε′L)T−2(εL)

2
, ∀T ≥ 1 (92)

or equivalently,

(1 + εL)T − 1− εLT = 1
2T (T − 1)(1 + ε′L)T−2(εL)

2
(93)

≤ ε2L2T 2(1 + εL)T−2. (94)

F Proof of Lemma 3

Recalling that g′(k, T,Θk) = g(k, T,Θk) + ε
∑k+T−1
j=k [f(Θk, Xj)− f̄(Θk)], we have

∥∥g′(k, T,Θk)
∥∥2

=

∥∥∥∥g(k, T,Θk) + ε

k+T−1∑
j=k

(
f(Θk, Xj)− f̄(Θk)

) ∥∥∥∥2

≤ 2
∥∥g(k, T,Θk)

∥∥2
+ 2ε2T 2

∥∥∥∥ 1
T

k+T−1∑
j=k

f(Θk, Xj)− f̄(Θk)

∥∥∥∥2

(95)

≤ 4
[
(1 + εL)T − εLT − 1

]2
(‖Θk‖2 + 1)

+ 4ε2T 2

∥∥∥∥ 1
T

k+T−1∑
j=k

f(Θk, Xj)

∥∥∥∥2

+ 4ε2T 2
∥∥f̄(Θk)

∥∥2
(96)

where we have used the property ‖a+ b‖2 ≤ 2(‖a‖2 + ‖b‖2) for any real-valued vectors a, b in deriving (95) and
(96), as well as Proposition 1.

Squaring both sides of (93) yields[
(1 + εL)T − 1− εTL

]2
= 1

4T
2(T − 1)2(εL)4(1 + ε′L)2T−4 ≤ 1

4ε
4L4T 4(1 + εL)2T−4. (97)

Thus, the first term of (96) can be upper bounded by

4
[
(1 + εL)T − εLT − 1

]2
(‖Θk‖2 + 1) ≤ ε4L4T 4(1 + εL)2T−4 (‖Θk‖2 + 1). (98)
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Regarding the second term of (96), we have that∥∥∥∥ 1
T

k+T−1∑
j=k

f(Θk, Xj)

∥∥∥∥2

≤ 1
T

k+T−1∑
j=k

∥∥f(Θk, Xj)
∥∥2

(99)

≤ 1
T

k+T−1∑
j=k

L2(‖Θk‖+ 1)2 (100)

≤ 2L2‖Θk‖2 + 2L2 (101)

where (99) and (101) follow from the inequality ‖
∑n
i=1 zi‖2 ≤ n

∑n
i=1 ‖zi‖2 for all real-valued vectors {zi}ni=1,

and (100) from our working assumption on function f(θ, x).

Withe regards to the last term of (96), it follows directly from the Lipschitz property of the average operator
f̄(θ) that ∥∥f̄(Θk)

∥∥2 ≤ L2‖Θk‖2. (102)

Substituting the bounds in (98), (101), and (102) into (96), we arrive at

‖g′(k, T,Θk)‖2 ≤ ε2L2T 2
[
ε2L2T 2(1 + εL)

2T−4
+ 12

]
‖Θk‖2 + 8ε2L2T 2 (103)

concluding the proof.

G Proof of Proposition 2

We prove this claim by construction. By definition, it follows that

ρ(T, ε) = 2εLT
[
(1 + εL)

T−2
+ 13

]
+ 2(εLT )3(1 + εL)2T−4 + 2σ(T ). (104)

Under the assumption that limT→+∞ σ(T ) = 0, the function value σ(T ) ≥ 0 can be made arbitrarily small by
taking a sufficiently large integer T ∈ N+ in constructing the function W ′(k,Θk). Without loss of generality, let
us work with T such that

Tδ := min
{
T ∈ N+

∣∣σ(T ) ≤ δ
4

}
. (105)

It is clear that Tδ ≥ 1. Define function

ν(ε) := εLTδ

[
(1 + εL)

Tδ−2
+ 13

]
+(εLTδ)

3
(1 + εL)2Tδ−4 (106)

which can be easily shown to be a monotonically decreasing function of ε > 0, and which attains its minimum
ν = 0 at ε = 0. Let εc be the unique solution to the equation

ν(ε) = δ
4 , ε > 0. (107)

As a result, for all ε ∈ (0, εc], it holds that
ν(ε) ≤ δ

4 . (108)

Combining (105) and (108) concludes the proof of Proposition 2.


