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Abstract

Motivated by the emerging use of multi-
agent reinforcement learning (MARL) in var-
ious engineering applications, we investigate
the policy evaluation problem in a fully de-
centralized setting, using temporal-difference
(TD) learning with linear function approxi-
mation to handle large state spaces in prac-
tice. The goal of a group of agents is to
collaboratively learn the value function of a
given policy from locally private rewards ob-
served in a shared environment, through ex-
changing local estimates with neighbors. De-
spite their simplicity and widespread use, our
theoretical understanding of such decentral-
ized TD learning algorithms remains limited.
Existing results were obtained based on i.i.d.
data samples, or by imposing an ‘additional’
projection step to control the ‘gradient’ bias
incurred by the Markovian observations. In
this paper, we provide a finite-sample anal-
ysis of the fully decentralized TD(0) learn-
ing under both i.i.d. as well as Markovian
samples, and prove that all local estimates
converge linearly to a neighborhood of the
optimum. The resultant error bounds are
the first of its type—in the sense that they
hold under the most practical assumptions —
which is made possible by means of a novel
multi-step Lyapunov analysis.

1 INTRODUCTION

Reinforcement learning (RL) is concerned with how
artificial agents ought to take actions in an unknown
environment so as to maximize some notion of a cu-
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mulative reward. In recent years, combining with deep
learning, RL has demonstrated its great potential in
addressing challenging practical control and optimiza-
tion problems [Mnih et al., 2015, Yang et al., 2019].
Among all possible algorithms, the temporal differ-
ence (TD) learning has arguably become one of the
most popular RL algorithms so far, which is fur-
ther dominated by the celebrated TD(0) algorithm
[Sutton, 1988]. TD learning provides an iterative pro-
cess to update an estimate of the value function vµ(s)
with respect to a given policy µ based on temporally
successive samples. Dealing with a finite state space,
the classical version of the TD(0) algorithm adopts a
tabular representation for vµ(s), which stores entry-
wise value estimates on a per state basis.

Although it is conceptually simple as well as easy-to-
implement, the tabular TD(0) learning algorithm can
become intractable when the number of states grows
large or even infinite, which emerges in many contem-
porary control and artificial intelligence problems of
practical interest. This is also known as the “curse of
dimensionality” [Bertsekas and Tsitsiklis, 1996]. The
common practice to bypass this hurdle, is to approx-
imate the exact tabular value function with a class
of function approximators, including for example, lin-
ear functions or nonlinear ones using even deep neural
networks [Sutton and Barto, 2018].

Albeit nonlinear approximators using e.g., deep neu-
ral networks [Mnih et al., 2015, Wang et al., 2019a],
can be more powerful, linear approximation allows
for an efficient implementation of TD learning even
on large or infinite state spaces, which has been
demonstrated to perform well in several applications
[Sutton and Barto, 2018]. Specifically, TD learning
with linear approximation parameterizes the value
function with a linear combination of a set of prese-
lected basis functions (a.k.a., feature vectors) induced
by the states, and estimates the coefficients in the
spirit of vanilla TD learning. Indeed, recent theoretical
RL efforts have mostly been devoted to linear approx-
imation; see e.g., [Baird, 1995, Bhandari et al., 2018,
Hu and Syed, 2019, Xu et al., 2020].
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Early theoretical convergence results of TD learning
were mostly asymptotic [Sutton, 1988, Baird, 1995];
that is, results that hold only asymptotically when the
number of updates (data samples) tends to infinity.
By exploring the asymptotic behavior, TD(0) learning
with linear function approximation can be viewed as a
discretized version of an ordinary differential equation
(ODE) [Tsitsiklis and Van Roy, 1997], or a linear dy-
namical system [Borkar, 2008]; therefore, TD(0) up-
dates can be seen as tracking the trajectory of the
ODE provided the learning rate is infinitely small
[Tsitsiklis and Van Roy, 1997]. Motivated by the need
for dealing with massive data in modern signal pro-
cessing, control, and artificial intelligence tasks (e.g.,
[Chi et al., 2019, Mnih et al., 2015]), recent interests
have centered around developing non-asymptotic per-
formance guarantees that hold with even finite data
samples and help us understand the efficiency of the
algorithm or agent in using data.

Non-asymptotic analysis of RL algorithms, and TD
learning in particular, is generally more challenging
than their asymptotic counterpart, due mainly to two
reasons that: i) TD updates do not correspond to min-
imizing any static objective function as standard op-
timization algorithms do; and, ii) data samples gar-
nered along the trajectory of a single Markov chain
are correlated across time, resulting in considerably
large instantaneous ‘gradient’ bias in the updates. Ad-
dressing these challenges, a novel suite of tools has
lately been put forward. Adopting the dynamical sys-
tem viewpoint, the iterates of TD(0) updates after a
projection step were shown converging to the equi-
librium point of the associated ODE at a sublinear
rate in [Dalal et al., 2018]. With additional projection
steps, finite-time error bounds of a two-timescale TD
learning algorithm developed by [Sutton et al., 2009]
were established in [Gupta et al., 2019]. The authors
in [Bhandari et al., 2018] unified finite-time results of
TD(0) with linear function approximation, under both
identically, and independently distributed (i.i.d.) noise
and Markovian noise.

In summary, these aforementioned works in this
direction either assume i.i.d. data samples
[Dalal et al., 2018], or have to incorporate a projec-
tion step [Bhandari et al., 2018]. As pointed out in
[Dalal et al., 2018] however, although widely adopted,
i.i.d. samples are difficult to acquire in practice. On
the other hand, the projection step is imposed only for
analysis purposes, yet the projection can be difficult
to implement. Moreover, most existing theoretical RL
studies have considered the centralized setting, except
for [Doan et al., 2019] dealing with finite-time analysis
of decentralized TD(0) under the i.i.d. assumption and
with a projection step. In a fully decentralized setting,

multi-agents share a common environment but observe
private rewards. With the goal of jointly maximizing
the total accumulative reward, each agent can commu-
nicate with its neighbors, and updates the parameter
locally. Such decentralized schemes appear naturally
in several applications including robotics and mobile
sensor networks [Krishnamurthy et al., 2008].

As a complementary to existing theoretical RL ef-
forts, this paper offers a novel finite-sample analy-
sis for a fully decentralized TD(0) algorithm with
linear function approximation. For completeness of
our analytical results, we investigate both the i.i.d.
case as, well as, the practical yet challenging Marko-
vian setting, where data samples are gathered along
the trajectory of a single Markov chain. To render
the finite-time analysis under the Markovian noise
possible, we invoke a novel multi-step Lyapunov ap-
proach [Wang et al., 2019b], which successfully elim-
inates the need for a projection step as required by
[Doan et al., 2019]. Our theoretical results show that
a fully decentralized implementation of the original
TD(0) learning, converges linearly to a neighborhood
of the optimum under both i.i.d. and Markovian ob-
servations. Furthermore, the size of this neighborhood
can be made arbitrarily small by choosing a small
enough stepsize. In a nutshell, the main contributions
of this paper are summarized as follows.

c1) We investigate the fully decentralized TD(0)
learning with linear function approximation, and
establish the multi-agent consensus, as well as
their asymptotic convergence; and,

c2) We provide finite-time error bounds for all agents’
local parameter estimates in a fully decentralized
setting, under both i.i.d. and Markovian observa-
tions, through a multi-step Lyapunov analysis.

2 DECENTRALIZED
REINFORCEMENT LEARNING

A discounted Markov decision process (MDP) is a
discrete-time stochastic control process, which can be
characterized by a 5-tuple (S,A, P a, Ra, γ). Here, S
is a finite set of environment and agent states, A is a
finite set of actions of the agent, P a(s, s′) = Pr(s′|s, a)
is the probability of transition from state s ∈ S to state
s′ upon taking action a ∈ A, Ra(s, s′) : S × S → R
represents the immediate reward received after transi-
tioning from state s to state s′ with action a, and γ is
the discounting factor.

The core problem of MDPs is to find a policy for the
agent, namely a mapping µ : S × A → [0, 1] that
specifies the probability of choosing action a ∈ A
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when in state s. Once an MDP is combined with a
policy, this fixes the action for each state and their
combination determines the stochastic dynamics of a
Markov chain [Bhatnagar et al., 2009]. Indeed, this
is because the action a chosen in state s is com-
pletely determined by µ(s, a), then Pr(s′|s, a) reduces
to Pµ(s, s′) =

∑
a∈A µ(s, a)P a(s′|s), a Markov transi-

tion matrix P µ. Likewise, immediate reward Ra(s, s′)
also simplifies to the expected reward Rµ(s, s′) =∑
a∈A µ(s, a)P a(s′|s)Ra(s′|s).

The quality of policy µ is evaluated in terms of the
expected sum of discounted rewards over all states in
a finite-sample path while following policy µ to take
actions, which is also known as the value function vµ :
S → R. In this paper, we focus on evaluating a given
policy µ, so we neglect the dependence on µ hereafter
for notational brevity. Formally, v(s) is defined as

v(s) = E
[ ∞∑
k=0

γkR(s(k), s(k + 1))
∣∣∣s(0) = s

]
, ∀s ∈ S

(1)
where the expectation is taken over all transitions from
k = 0 to k = +∞.

Assuming a canonical ordering on the elements of S,
say a renumbering {1, 2, . . . , |S|}, we can treat v as a
|S|-dimensional vector v := [v(1) v(2) · · · v(|S|)]> ∈
R|S|. It is well known that the value function
v(s) in (1) satisfies the so-called Bellman equation
[Bertsekas and Tsitsiklis, 1996]

v(s) =
∑
s′∈S

Pss′
[
R(s, s′) + γv(s′)

]
, ∀s ∈ S. (2)

If the transition probabilities {Pss′} and the expected
rewards {R(s, s′)} were known, finding v ∈ R|S| is tan-
tamount to solving a system of linear equations given
by (2). It is clear that when the number of states |S| is
large or even infinite, exact computation of v can be-
come intractable, which is also known as the “curse of
dimensionality” [Bertsekas and Tsitsiklis, 1996]. This
thus motivates well a low-dimensional (linear) function
approximation of v(s), parameterized by an unknown
vector θ ∈ Rp as follows

v(s) ≈ ṽ(s,θ) = φ>(s)θ, ∀s ∈ S (3)

where we oftentimes have the number of unknown pa-
rameters p � |S|; and φ(s) ∈ Rp is a preselected
feature or basis vector characterizing state s ∈ S.

For future reference, let vector ṽ(θ) := [ṽ(1,θ) ṽ(2,θ)
· · · ṽ(|S|,θ)]> collect the value function approxima-
tions at all states, and define the feature matrix

Φ :=


φ>(1)
φ>(2)

...
φ>(|S|)

 ∈ R|S|×p

then it follows that

ṽ(θ) = Φθ. (4)

Regarding the basis vectors {φ(s)} (or equivalently,
the feature matrix Φ), we make the next two stan-
dard assumptions [Tsitsiklis and Van Roy, 1997]: i)
‖φ(s)‖ ≤ 1, ∀s ∈ S, that is, all feature vectors are
normalized; and, ii) Φ is of full column rank, namely,
all feature vectors are linearly independent.

With the above linear approximation, the task of seek-
ing v boils down to find the parameter vector θ∗ that
minimizes the gap between the true value function v
and the approximated one ṽ(θ). Among many possi-
bilities in addressing this task, the original temporal
difference learning algorithm, also known as TD(0),
is arguably the most popular solution [Sutton, 1988].
The goal of this paper is to develop decentralized
TD(0) learning algorithms and further investigate
their finite-time performance guarantees in estimating
θ∗. To pave the way for decentralized TD(0) learning,
we first introduce standard centralized version below.

2.1 Centralized Temporal Difference
Learning

The classical TD(0) algorithm with function ap-
proximation [Sutton, 1988] starts with some initial
guess θ(0) ∈ Rp. Upon observing the kth transi-
tion from state s(k) to state s(k + 1) with reward
r(k) = R(s(k, s(k+1))), it first computes the so-called
temporal-difference error, given by

d(k) = r(k) + γṽ(s(k + 1),θ(k))− ṽ(s(k),θ(k)) (5)

which is subsequently used to update the parameter
vector θk as follows

θ(k + 1) = θ(k) + αd(k)∇ṽ(s(k),θ(k)). (6)

Here, α > 0 is a preselected constant stepsize, and the
symbol ∇ṽ(s(k),θ(k)) = φ(s(k)) denotes the gradient
of ṽ(s(k),θ) with respect to θ evaluated at the current
estimate θ(k). For ease of exposition, we define the
‘gradient’ estimate g(k) as follows

g(θ(k), ξk) := d(k)∇ṽ(s(k),θ(k))

= φ(s(k))
[
γφ>(s(k + 1))− φ>(s(k))

]
θ(k)

+ r(k)φ(s(k)). (7)

where ξk captures all the randomness corresponding
to the k-th transition (s(k), s(k + 1), {rm(k)}m∈M).
Thus, the TD(0) update (6) can be rewritten as

θ(k + 1) = θ(k) + αg(θ(k), ξk). (8)
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Albeit viewing g(θ(k), ξk) as some negative ‘gradient’
estimate, the TD(0) update in (8) based on online re-
wards resembles that of the stochastic gradient descent
(SGD). It is well known, however, that even the TD(0)
learning update does not correspond to minimizing
any fixed objective function [Sutton and Barto, 2018].
Indeed, this renders convergence analysis of TD al-
gorithms rather challenging, letting alone the non-
asymptotic (i.e., finite-time) analysis. To address this
challenge, TD learning algorithms have been inves-
tigated in light of the stability of a dynamical sys-
tem described by an ordinary differential equation
(ODE) [Borkar, 2008, Tsitsiklis and Van Roy, 1997,
Wang et al., 2019b].

Before introducing the ODE system for (8), let us first
simplify the expression of g(θ(k)). Upon defining

H(ξk) := φ(s(k))
[
γφ>(s(k + 1))− φ>(s(k))

]
(9)

and
b(ξk) := r(k)φ(s(k)) (10)

the gradient estimate g(θ(k)) can be re-expressed as

g(θ(k), ξk) = H(ξk)θ(k) + b(ξk). (11)

Assuming that the Markov chain is finite, irreducible,
and aperiodic, there exists a unique stationary dis-
tribution π ∈ R1×|S| [Levin and Peres, 2017], adher-
ing to πP = π. Moreover, let D be a diago-
nal matrix holding entries of π on its main diago-
nal. We also introduce r′(s) :=

∑
s′∈S P (s, s′)R(s, s′)

for all s ∈ S and collect them into vector r′ =[
r′(1) r′(2) · · · r′(|S|)

]>
.

It can be verified that after the Markov chain reaches
the stationary distribution, the following limits hold

H̄ := lim
k→∞

E[H(ξk)] = ΦD(γPΦ> −Φ>) (12)

b̄ := lim
k→∞

E[b(ξk)] = ΦDr′ (13)

yielding
ḡ(θ) := H̄θ + b̄. (14)

It has been shown that, under mild conditions
on the stepsize α, the TD(0) update (6) or (8)
can be understood as tracking the following ODE
[Tsitsiklis and Van Roy, 1997]

θ̇ = ḡ(θ). (15)

For any γ ∈ [0, 1), it can be further shown that al-
beit not symmetric, matrix H̄ is negative definite,
in the sense that θ>H̄θ < 0 for any θ 6= 0. Ap-
pealing to standard linear systems theory (see e.g.,
[Bof et al., 2018]), we have that the ODE (15) admits
a globally, asymptotically stable equilibrium point θ∗,
dictated by

ḡ(θ∗) = H̄θ∗ + b̄ = 0. (16)

2.2 Decentralized TD(0) Learning

The goal of this paper is to investigate the policy eval-
uation problem in the context of multi-agent reinforce-
ment learning (MARL), where a group of agents coop-
erate to evaluate the value function in an environment.
Suppose there is a set M of agents with |M| = M ,
distributed across a network denoted by G = (M, E),
where E ⊆ M × M represents the edge set. Let
Nm ⊆ M collect the neighbor(s) of agent m ∈ M,
for all m ∈M. We assume that each agent locally im-
plements a stationary policy µm. As explained in the
centralized setting, when combined with fixed policies
{µm}m∈M, the multi-agent MDP can be described by
the following 6-tuple(

S, {Am}Mm=1, P, {Rm}Mm=1, γ,G
)

(17)

where S is a finite set of states shared by all agents,
Am is a finite set of actions available to agent m, and
Rm is the immediate reward observed by agent m. It
is worth pointing out that, here, we assume there is
no centralized controller that can observe all informa-
tion; instead, every agent can observe the joint state
vector s ∈ S, yet its action am ∈ Am as well as reward
Rm(s, s′) is kept private from other agents.

Specifically, at time instant k, each agent m observes
the current state s(k) ∈ S and chooses action a ∈ Am
according to a stationary policy µm. Based on the
joint actions of all agents, the system transits to a
new state s(k + 1), for which an expected local re-
ward rm(k) = Rm(s(k), s(k + 1)) is revealed to agent
m. The objective of multi-agent policy evaluation is
to cooperatively compute the average of the expected
sums of discounted rewards from a network of agents,
given by

vG(s) = E
[

1

M

∑
m∈M

∞∑
k=0

γkRm(s(k), s(k+1))
∣∣∣s(0) = s

]
.

(18)
Similar to the centralized case, one can show that vG(s)
obeys the following multi-agent Bellman equation

vG(s) =
∑
s′∈S

Pss′
[ 1

M

∑
m∈M

Rm(s, s′)+γvG(s′)
]
, ∀s ∈ S.

(19)

Again, to address the “curse of dimensionality” in ex-
act computation of vG when the space S grows large,
we are particularly interested in low-dimensional (lin-
ear) function approximation ṽG(s) of vG(s) as given in
(3), or (4) in a matrix-vector representation.

Define bm(k) := rm(k)φ(s(k)), b̄m = Eπ[bm(k)],
bG := 1

M

∑
m∈M bm(k) and b̄G := 1

M

∑
m∈M b̄m. As

all agents share the same environment by observing
a common state vector s(k), and differ only in their
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Algorithm 1 Decentralized TD(0) learning

1: Input: stepsize α > 0, feature matrix Φ, and weight
matrix W .

2: Initialize: {θm(0)}m∈M.
3: for k = 0, 1, · · · ,K do
4: for m = 1, 2, · · · ,M do
5: Agent m receives θm′(k) from its neighbors m′ ∈

Nm;
6: Agent m observes (s(k), s(k+1), rm(k)), and com-

putes gm(θm(k)) according to (21);
7: Agent m updates θm(k) via (22), and broadcasts

θm(k + 1) to its neighbors m′ ∈ Nm.
8: end for
9: end for

rewards, the parameter vector θ∗ such that the linear
function approximator ṽG = Φθ∗ satisfies the multi-
agent Bellman equation (19); that is,

H̄θ∗ + b̄G = 0 (20)

We are ready to study a standard consensus-based dis-
tributed variant of the centralized TD(0) algorithm,
which is tabulated in Algorithm 1 for reference. Specif-
ically, at the beginning of time instant k, each agent
m first observes (s(k), s(k+1), Rm(s(k), s(k+1))) and
calculates the local gradient

gm(θm(k), ξk) :=φ(s(k))
[
γφ>(s(k+1))−φ>(s(k))

]
θm(k)

+ rm(k)φ(s(k)) (21)

Upon receiving estimates {θm′(k)} from its neighbors
m′ ∈ Nm, agent m (m ∈M) updates its local estimate
θm(k) according to the following recursion

θm(k+1) =
∑
m′∈M

Wmm′θm′(k)+αgm(θm(k), ξk), (22)

where Wmm′ is a weight attached to the edge (m,m′);
and Wmm′ > 0 if m′ ∈ Nm, and Wmm′ = 0, otherwise.
Throughout this paper, we have following assumption
on the network.

Assumption 1. The communication network is con-
nected and undirected, and the associated weight ma-
trix W is a doubly stochastic matrix.

For ease of exposition, we stack up all local parameter
estimates {θm}m∈M into matrix

Θ :=


θ>1
θ>2
...
θ>M

 ∈ RM×p. (23)

and similarly for all local gradient estimates

{gm(θm, ξk)}m∈M

G(Θ, ξk) :=


g>1 (θ1, ξk)
g>2 (θ2, ξk)

...
g>M (θM , ξk)

 ∈ RM×p (24)

which admits the following compact representation

G(Θ, ξk) = ΘH>(ξk) + r(k)φ>(s(k)) (25)

where r(k) = [r1(k) r2(k) · · · rM (k)]> concatenates
all local rewards. With the above definitions, the de-
centralized TD(0) updates in (22) over all agents can
be collectively re-written as follows

Θ(k + 1) = WΘ(k) + αG(Θ(k), ξk). (26)

In the sequel, we will investigate finite-sample analysis
of the decentralized TD(0) learning algorithm in (26)
in two steps. First, we will show that all local pa-
rameters reach a consensus, namely, converge to their
average. Subsequently, we will prove that the average
converges to the Bellman optimum θ∗.

To this end, let us define the average θ̄ := (1/M)ΘT1
of the parameter estimates by all agents, which can be
easily shown using (26) to exhibit the following average
system (AS) dynamics

AS : θ̄(k + 1) = θ̄(k) +
α

M
G>(Θ(k), ξk)1. (27)

Subtracting from each row of (26) (namely, each lo-
cal parameter estimate) the average estimate in (27),
yields

Θ(k + 1)− 1θ̄>(k + 1)

= WΘ(k)− 1θ̄>(k) + α
(
I − 11>

M

)
G(Θ(k), ξk).

For notational convenience, we define the network dif-
ference operator ∆ := I − (1/M)11>. Since W is
a doubly stochastic matrix, it can be readily shown
that ∆Θ = Θ− 1θ̄>capturing the difference between
local estimates and the global average. After simple al-
gebraic manipulations, we deduce that the parameter
difference system (DS) evolves as follows

DS : ∆Θ(k + 1) = W∆Θ(k) + α∆G(Θ(k)). (28)

3 NON-ASYMPTOTIC
PERFORMANCE GUARANTEES

The goal of this paper is to gain deeper understanding
of statistical efficiency of decentralized TD(0) learn-
ing algorithms, and investigate their finite-time per-
formance. We will start off by establishing conver-
gence of the DS in (28), that is addressing consensus
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among all agents. Formally, we have the following re-
sult. Proofs of the theorems, lemmas, and propositions
can be found in the supplementary document.

Theorem 1. Assume that all local rewards are uni-
formly bounded as rm(k) ∈ [0, rmax], ∀m ∈ M, and
the feature vectors φ(s) have been properly scaled such
that ‖φ(s)‖ ≤ 1, ∀s ∈ S. For any deterministic ini-
tial guess Θ(0) and any constant stepsize 0 < α ≤
(1 − λW2 )/4, the parameter estimate difference over
the network at any time instant k ∈ N+, satisfies

‖∆Θ(k)‖F ≤
(
λW2 +2α

)k‖∆Θ(0)‖F +
2α
√
Mrmax

1−λW2
(29)

where 0 < λW2 < 1 denotes the second largest eigen-
value of W .

Regarding Theorem 1, some remarks come in order.

To start, it is clear that the smaller λW2 is, the faster
the convergence is. In practice, it is possible that the
operator of the multi-agent system has the freedom
to choose the weight matrix W , so we can optimize
the convergence rate by carefully designing W . Fur-
thermore, as the number k of updates grows large, the
first term on the right-hand-side of (29) becomes neg-
ligible, implying that the parameter estimates of all
agents converge to a small neighborhood of the global
average θ̄(k), whose size is proportional to the con-
stant stepsize α > 0 (multiplied by a certain constant
depending solely on the communication network).

So far, we have established the convergence of the DS.
What remains is to show that the global average θ̄(k)
converges to the optimal parameter value θ∗ [cf. (20)],
which is equivalent to showing convergence of the AS
in (27). In this paper, we investigate finite-time per-
formance of decentralized TD(0) learning from data
samples observed in two different settings, that is the
i.i.d. setting as well as the Markovian setting, which
occupy the ensuing two subsections.

3.1 The I.I.D. Setting

In the i.i.d. setting, we assume that data observations
{(s(k), s(k+1), {rm(k)}m∈M)}k∈N+ sampled along the
trajectory of the underlying Markov chain are i.i.d..
Nevertheless, s(k) and s(k + 1) are dependent within
each data tuple. Indeed, the i.i.d. setting can be re-
garded as a special case of the Markovian setting de-
tailed in the next subsection, after the Markov chain
has reached a stationary distribution. To see this, con-
sider the probability of the tuple (s(k), s(k+1), rm(k))
taking any value (s, s′, rm) ⊆ S × S × R

Pr{(s(k), s(k + 1)) = (s, s′)} = π(s)P (s, s′). (30)

An alternative way to obtain i.i.d. samples is
to generate independently a number of trajecto-
ries and using first-visit methods; see details in
[Bertsekas and Tsitsiklis, 1996].

With i.i.d. data samples, we can establish the follow-
ing result which characterizes the relationship between
(1/M)G>(Θ, ξj)1 and ḡ.

Lemma 1. Let {F(k)}k∈N+ be an increasing fam-
ily of σ-fields, with Θ(0) being F(0)-measurable, and
G(Θ(k), ξk) being F(k)-measurable. The average
(1/M)G>(Θ(k), ξk)1 of the gradient estimates at all
agents is an unbiased estimate of ḡ(θ̄(k)); that is,

Eπ
[

1

M
G>(Θ(k), ξk)1− ḡ(θ̄(k))

∣∣∣F(k)

]
= 0,∀ξk (31)

and the variance satisfies

Eπ

[∥∥∥∥ 1

M
G>(Θ(k), ξk)1− ḡ(θ̄(k))

∥∥∥∥2 ∣∣∣F(k)

]
≤ 4β2‖θ̄(k)− θ∗‖2 + 4β2‖θ∗‖2 + 8r2

max,∀ξj (32)

where β is the maximum spectral radius of matrices
H(ξk)− H̄ for all k.

This lemma suggests that (1/M)G>(Θ(k), ξj)1 is a
noisy estimate of ḡ(θ̄(k)), and the noise is zero-mean
and its variance depends only on θ̄(k). Evidently, the
maximum spectral radius of H(ξk)− H̄ can be upper
bounded by 2(1 + γ) using the definitions of H(ξk) in
(9) and H̄ in (12).

We are now ready to state our main convergence result
in the i.i.d. setting.

Theorem 2. Letting λH̄max < 0 denote the largest
eigenvalue of H̄ given in (12). For any constant step-

size 0 < α ≤ − λH̄
max

2[4β2+(λH̄
min)2]

, the average parameter

estimate over all agents converges linearly to a small
neighborhood of the equilibrium point θ∗; i.e.,

E
[∥∥θ̄(k)− θ∗

∥∥2
]
≤ ck1

∥∥θ̄(0)− θ∗
∥∥2

+ c2α (33)

where the constants 0 < c1 := 1 + 2αλH̄max + 8α2β2 +

2α2(λH̄min)2 < 1 and c2 :=
8β2‖θ∗‖2+16r2

max

−λH̄
max

.

Particularly for the i.i.d. setting, the AS drives θ̄(k)
to the optimal solution θ∗ as SGD does, which is in-
deed due to the fact that (1/M)G>(Θ(k), ξj)1 is an
unbiased estimate of ḡ(θ̄(k)).

Putting together the convergence result of the global
parameter estimate average in Theorem 2 as, well as,
the established consensus among the multi-agents’ pa-
rameter estimates in Theorem 1, it follows readily con-
vergence of the local parameter estimates {θm}m∈M,
summarized in the next proposition.
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Proposition 1. Choosing any constant stepsize 0 <

α < αmax , min
{

1−λW
2

4 ,− λH̄
max

2[4β2+(λH̄
min)2]

}
, then the

decentralized TD(0) update in (22) guarantees that
each local parameter estimate θm converges linearly to
a neighborhood of the optimum θ∗; that is,

E
[∥∥θm(k)− θ∗

∥∥2
]
≤ ck3V0 + c4α, ∀m ∈M (34)

where the constants c3 := max{(λW2 + 2αmax)2, c1},
V0 := 2 max{4‖∆Θ(0)‖2F , 2‖θ̄(0) − θ∗‖2}, and c4 :=

αmax
8Mr2

max

(1−λW
2 )2 +

16β2‖θ∗‖2+32r2
max

−λH̄
max

.

3.2 The Markovian Setting

Although the i.i.d. assumption on the data samples
{(s(k), s(k + 1), rm(t))}k helps simplify the analysis
of TD(0) learning, it represents only an ideal set-
ting, and undermines the practical merits. In this
subsection, we will consider a more realistic scenario,
where data samples are collected along the trajec-
tory of a single Markov chain starting from any ini-
tial distribution. For the resultant Markovian obser-
vations, we introduce an important result bounding
the bias between the time-averaged ‘gradient estimate’
G(Θ, ξk) and the limit ḡ(θ̄), where ξk captures all
the randomness corresponding to the k-th transition
(s(k), s(k + 1), {rm(k)}m∈M).

Lemma 2. Let {F(k)}k∈N+ be an increasing fam-
ily of σ-fields, with Θ(0) being F(0)-measurable, and
G(Θ, ξk) being F(k)-measurable. Then, for any given
Θ ∈ Rp and any integer j ∈ N+, the following holds

∥∥∥ 1

KM

k+K−1∑
j=k

E
[
G>(Θ, ξj)1

∣∣F(k)
]
− ḡ(θ̄)

∥∥∥
≤ σk(K)(‖θ̄ − θ∗‖+ 1). (35)

where σk(K) := (1+γ)ν0ρ
k

(1−ρ)K ×max{2‖θ∗‖+rmax, 1}, with

constants ν0 > 0 and 0 < ρ < 1 determined by the
Markov chain. In particular for any k ∈ N+, it holds

that σk(K) ≤ (1+γ)ν0

(1−ρ)K ×max
{

2‖θ∗‖+rmax, 1
}
, σ(K).

Comparing Lemma 2 with Lemma 1, the consequence
on the update (26) due to the Markovian observations
is elaborated in the following two remarks.

Remark 1. In the Markovian setting, per time in-
stant k ∈ N, the term (1/M)G>(Θ(k), ξk)1 is a biased
estimate of ḡ(θ̄(k)), but its time-averaged bias over a
number of future consecutive observations can be upper
bounded in terms of the estimation error ‖θ̄(k)− θ∗‖.
Remark 2. The results in Lemma 1 for i.i.d. samples
correspond to requiring σ(K) = 0 for all K ∈ N+ in
Lemma 2. That is, the i.i.d. setting is indeed a special
case of the Markovian one.

In fact, due to the unbiased ‘gradient’ estimates under
i.i.d. samples, we were able to directly investigate the
convergence of θ̄(k) − θ∗. In the Markovian setting
however, since we have no control over the instanta-
neous gradient bias, it becomes challenging, if not im-
possible, to directly establish convergence of θ̄(k)−θ∗
as dealt with in the i.i.d. setting. In light of the re-
sult on the bounded time-averaged gradient bias in
Lemma 2, we introduce the following multi-step Lya-
punov function that involves K future consecutive es-
timates {θ̄(k)}k0+K−1

k=k0
:

V(k) :=

k+K−1∑
j=k

∥∥θ̄(j)− θ∗
∥∥2
, k ∈ N+. (36)

Concerning the multi-step Lyapunov function, we es-
tablish the following result.

Lemma 3. Define the following functions

Γ1(α,K) = 32α3K4(1 + 2α)2K−4 + 32Kα

+ 8αK2(1 + 2α)K−2 + 4Kσ(K)

Γ2(α,K) =
[
32α3K4(1 + 2α)2K−4 + 32Kα

+ αK2(1 + 2α)K−2
]
‖θ∗‖2 +

[
4α3K4(1 + 2α)2K−4

+
1

2
αK2(1 + 2α)K−2 + 4αK

]
r2
max +

1

2
Kσ(K)

There exists a pair of constants (αmax, KG) such that
0 < 1 + 2αKGλ

H̄
max + αΓ1(αmax,KG) < 1 holds for

any fixed α ∈ (0, αmax) and K = KG. Moreover, the
multi-step Lyapunov function satisfies

E
[
V(k + 1)− V(k)

∣∣F(k)
]

≤ α
[
2KGλ

H̄
max + Γ1(αmax,KG)

]∥∥θ̄(k)− θ∗
∥∥2

+ αΓ2(αmax,KG). (37)

Here, we show by construction the existence of a pair
(αmax, KG) meeting the conditions on the stepsize.
Considering the monotonicity of function σ(K), a sim-
ple choice for KG is

KG = min
K

{
K
∣∣σ(K) < −1

4
λH̄max

}
. (38)

Fixing K = KG ≥ 1, it follows that

2KλH̄max + Γ1(α,K) = Γ0(α,KG) (39)

where Γ0(α,KG) = 32α3K6
G(1 + 2α)2KG−4 + 32α +

8αK3
G(1 + 2α)KG−2 + KGλ

H̄
max can be shown to be

monotonically increasing in α. Considering further
that Γ0(0,KG) = KGλ

H̄
max < 0, then there exist a step-

size α0 such that Γ0(α0,KG) = 1
2KGλ

H̄
max < 0 holds.

Setting now

αmax := min
{
− 1

2KGλH̄max

, α0

}
(40)
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then one can easily check that 0 < 1 + 2αKλH̄max +
Γ1(α,K) ≤ 1 + 1

2αKGλ
H̄
max < 1 holds true for any

constant stepsize 0 < α < αmax. In the remainder of
this paper, we will work with K = KG and 0 < α <
αmax, yielding

Γ0(0,KG) = KGλ
H̄
max ≤ 2KGλ

H̄
max + Γ1(α,KG)

≤ 1

2
KGλ

H̄
max (41)

where the first inequality uses the fact that Γ0(α,KG)
is an increasing function of α > 0, while the second
inequality follows from the definition of α0.

Before presenting the main convergence results in the
Markovian setting, we provide a lemma that bounds
the multi-step Lyapunov function along the trajectory
of a Markov chain. This constitutes a building block
for establishing convergence of the averaged parameter
estimate.

Lemma 4. The multi-step Lyapunov function is upper
bounded as follows

V(k) ≤ c5
∥∥θ̄(k)− θ∗

∥∥2
+ c6α

2, ∀k ∈ N+ (42)

where the constants c5 and c6 are given by

c5 :=
(3 + 12α2

max

)KG − 1

2 + 3α2
max

c6 :=
6(3 +12α2

max)
[
(3 +12α2

max)KG−1− 1
]
− 6KG + 6

2 + 12α2
max

(4‖θ∗‖2 + r2
max

)
.

With the above two lemmas, we are now on track to
state our convergence result for the averaged parame-
ter estimate, in a Markovian setting.

Theorem 3. Define constants c7 := 1 +
(1/2c5)αmaxKGλ

H̄
max ∈ (0, 1), and c′8 :=[

16α2
maxK

6
G(1 + 2αmax)2KG−4 + 32KG + 2K3

G(1 +

2αmax)KG−2
]
‖θ∗‖2 + 4KGr

2
max − 1

8KGλ
H̄
max −

αmaxc6
c5

KGλ
H̄
max. Then, fixing any constant step-

size 0 < α < αmax and K = KG defined in (38),
the averaged parameter estimate θ̄(k) converges at a
linear rate to a small neighborhood of the equilibrium
point θ∗; that is,

E
[∥∥θ̄(k)− θ∗

∥∥2
]
≤ c5ck7

∥∥θ̄(0)− θ∗
∥∥2 − 2c5c

′
8

KGλH̄max

α

+ min
{

1, ck−kα7

}(
α2c6 −

2c5c
′
8

KGλH̄max

)
(43)

where kα := max{k ∈ N+|ρk ≥ α}.

As a direct result of Theorems 1 and 3, the convergence
of all local parameter estimates comes ready.

Proposition 2. Choosing a constant stepsize 0 < α <
min

{
αmax, (1 − λW2 )/4

}
, and any integer K ≥ KG,

each local parameter θm(k) converges linearly to a
neighborhood of the equilibrium point θ∗; that is, the
following holds true for each m ∈M

E
[∥∥θm(k)− θ∗

∥∥2
]
≤ ck9 V ′0 +

8α2Mr2
max(

1− λW2
)2 − 2c5c

′
8

KGλH̄max

α

+ min
{

1, ck−kα7

}(
α2c6 −

2c5c
′
8

KGλH̄max

)
where the constants c9 := max{(λW2 + 2αmax)2, c7},
and V ′0 := 2 max{4‖∆Θ(0)‖2F , 2c5‖θ̄(0)− θ∗‖2}.

The proof is similar to that of Proposition 1, and
hence is omitted. Proposition 2 establishes that even
in a Markovian setting, the local estimates produced
by decentralized TD(0) learning converge linearly to
a neighborhood of the optimum. Interestingly, differ-
ent than the i.i.d. case, the size of the neighborhood
is characterized in two phases, which correspond to
Phase I (k ≤ kα), and Phase II (k > kα). In Phase
I, the Markov is far from its stationary distribution
π, giving rise to sizable gradient bias in Lemma 2,
and eventually contributing to a constant-size neigh-
borhood −2c5c

′
8/(KGλ

H̄
max); while, after the Markov

chain gets close to π in Phase II, confirmed by the
geometric mixing property, we are able to have gradi-
ent estimates of size-O(α) bias in Lemma 2, and the
constant-size neighborhood vanishes with ck−kα7 .

4 CONCLUSIONS

In this paper, we studied the dynamics of a decen-
tralized linear function approximation variant of the
vanilla TD(0) learning, for estimating the value func-
tion of a given policy. We proved that such decen-
tralized TD(0) algorithms converge linearly to a small
neighborhood of the optimum, under both i.i.d. data
samples as, well as, the realistic Markovian observa-
tions collected along the trajectory of a single Markov
chain. To address the ‘gradient bias’ in a Markovian
setting, our novel approach has been leveraging a care-
fully designed multi-step Lyapunov function to enable
a unique two-phase non-asymptotic convergence anal-
ysis. Comparing with previous contributions, this pa-
per provides the first finite-sample error bound for
fully decentralized TD(0) learning under challenging
Markovian observations.
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Supplementary materials for
“Finite-Sample Analysis of Decentralized Temporal-Difference

Learning with Linear Function Approximation”

A Proof of Theorem 1

Proof. From the definition of G(Θ) in (24), we have that

G(Θ(k), ξk) =


θ>1 (k)[γφ(s(k + 1))− φ(s(k))]φ>(s(k))
θ>2 (k)[γφ(s(k + 1))− φ(s(k))]φ>(s(k))

...
θ>M (k)[γφ(s(k + 1))− φ(s(k))]φ>(s(k))

+


r1(k)φ>(s(k))
r2(k)φ>(s(k))

...
rM (k)φ>(s(k))


= Θ(k)

[
γφ(s(k + 1))− φ(s(k))

]
φ>(s(k)) + r(k)φ>(s(k))

= Θ(k)H>(ξk) + r(k)φ>(s(k))

where we have used the definitions that r(k) = [r1(k) r2(k) · · · rM (k)]> and H(ξk) := φ(s(k))[γφ>(s(k+ 1))−
φ>(s(k))]. Using standard norm inequalties, it follows that

‖∆G(Θ(k), ξk)‖F ≤
∥∥[γφ(s(k + 1))− φ(s(k))]φ>(s(k))

∥∥
F
· ‖∆Θ(k)‖F +

∥∥r(k)φ>(s(k))
∥∥
F

≤
[
‖γφ(s(k + 1))‖F + ‖φ(s(k))‖F

]
· ‖φ>(s(k))‖F · ‖∆Θ(k)‖F + ‖r(k)‖F · ‖φ(s(k))‖F

≤ (1 + γ)‖∆Θ(k)‖F +
√
Mrmax

≤ 2‖∆Θ(k)‖F +
√
Mrmax (44)

where 1 + γ ≤ 2 for the discounting factor 0 ≤ γ < 1, and the last inequality holds since feature vectors
‖φ(s)‖ ≤ 1, rewards r(k) ≤ rmax, and the Frobenious norm of rank-one matrices is equivalent to the `2-
norm of vectors. For future reference, notice from the above inequality that λmax(H(ξk)) ≤ ‖H(ξk)‖F =∥∥[γφ(s(k + 1))− φ(s(k))]φ>(s(k))

∥∥ ≤ 1 + γ ≤ 2, for all k ∈ N+.

It follows from (28) that

‖∆Θ(k + 1)‖F ≤ ‖W∆Θ(k)‖F + α‖∆G(Θ(k))‖F
≤
[
λW2 + 2α

]
‖∆Θ(k)‖F + α

√
Mrmax (45)

where the second inequality is obtained after using (44), and the following inequality [Nedić et al., 2018,
Ma et al., 2019]

‖W∆Θ(k)‖F =

∥∥∥∥W (
I − 1

M
11>

)
Θ(k)

∥∥∥∥ ≤ λW2 ‖∆Θ(k)‖F . (46)

Then applying (45) recursively from iteration k to 0 gives rise to

‖∆Θ(k)‖F ≤
(
λW2 + 2α

)k‖∆Θ(0)‖F + α
√
Mrmax

k−1∑
i=0

(
λW2 + 2α

)i
≤
(
λW2 + 2α

)k‖∆Θ(0)‖F +
α
√
Mrmax

1− λW2 − 2α

≤
(
λW2 + 2α

)k‖∆Θ(0)‖F + α · 2
√
Mrmax

1− λW2
(47)

where the last inequality is a consequence of using the fact that 0 < α < 1
2 ·

1−λW
2

2 . This concludes the proof of
Theorem 1.
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B Proof of Lemma 1

Proof. Recalling the definitions of H(ξk) (H̄) and b(ξk) (b̄), it is not difficult to verify that in the stationary
distribution π of the Markov chain, the expectations of H(ξk) and b(ξk) obey

Eπ[H(ξk)] = H̄ (48)

and
Eπ[bG(ξk)] = b̄G . (49)

Thus,

Eπ
[

1

M
G>(Θ(k), ξk)1

∣∣∣F(k)

]
= Eπ

[
H(ξk)θ̄(k) + bG(ξk)

∣∣F(k)
]

= H̄θ̄(k) + b̄G (50)

and its variance satisfies

Eπ
[∥∥∥ 1

M
G>(Θ(k), ξk)1− ḡ(θ̄(k))

∥∥∥2∣∣∣F(k)

]
= Eπ

[∥∥(H(ξk)− H̄)θ̄(k) + bG(ξk)− b̄G
∥∥2∣∣F(k)

]
≤ Eπ

[
2
∥∥(H(ξk)− H̄)θ̄(k)

∥∥2
+ 2
∥∥bG(ξk)− b̄G

∥∥2∣∣F(k)
]

≤ 2β2‖θ̄(k)− θ∗ + θ∗‖2 + 8r2
max

≤ 4β2‖θ̄(k)− θ∗‖2 + 4β2‖θ∗‖2 + 8r2
max (51)

where β denotes the largest absolute value of eigenvalues of H(ξk)− H̄, for any k ∈ N+.

C Proof of Theorem 2

Proof. Clearly, it holds that

Eπ[‖θ̄(k + 1)− θ∗‖2
∣∣F(k)] = Eπ

[∥∥∥θ̄(k)− θ∗ + α
1

M
G>(Θ, ξk)1

∥∥∥2∣∣∣F(k)
]

≤ ‖θ̄(k)− θ∗‖2 + 2α

〈
θ̄(k)− θ∗,Eπ

[ 1

M
G(Θ(k), ξk)T1

∣∣∣F(k)
]〉

+ α2Eπ
[∥∥∥ 1

M
G(Θ(k), ξk)T1− ḡ(θ̄(k)) + ḡ(θ̄(k))

∥∥∥2∣∣F(k)
]

≤ ‖θ̄(k)− θ∗‖2 + 2α
〈
θ̄(k)− θ∗, ḡ(θ̄(k))− ḡ(θ̄∗)

〉
+ 2α2(β2‖θ̄‖2 + r2

max) + 2α2‖ḡ(θ̄(k))− ḡ(θ̄∗)‖2

≤ ‖θ̄(k)− θ∗‖2 + 2α
〈
θ̄(k)− θ∗, H̄(θ̄(k)− θ∗)

〉
+ 2α2(4β2‖θ̄ − θ∗‖2 + 4β2‖θ∗‖2 + 8r2

max) + 2α2‖H̄(θ̄(k)− θ∗)‖2

≤
[
1 + 2αλH̄max + 8α2β2 + 2α2(λH̄min)2

]
‖θ̄(k)− θ∗‖2

+ (8α2β2‖θ∗‖2 + 16α2r2
max). (52)

where λH̄max and λH̄min are the largest and the smallest eigenvalues of H̄, respectively. Because H̄ is a negative

definite matrix, then it follows that λH̄min < λH̄max < 0.

Defining constants c1 := 1 + 2αλH̄max + 8α2β2 + 2α2(λH̄min)2, and choosing any constant stepsize α obeying

0 < α ≤ − 1
2 ·

λH̄
max

4β2+(λH̄
min)2

, then we have c1 < 1 and 1
1−c1 ≤ −

1
αλH̄

max

. Now, taking expectation with respect to

F(k) in (52) gives rise to

E
[
‖θ̄(k + 1)− θ∗‖2

]
≤ c1E

[
‖θ̄(k)− θ∗‖2

]
+ (8α2β2‖θ∗‖2 + 16α2r2

max). (53)

Applying the above recursion from iteration k to iteration 0 yields

E
[
‖θ̄(k)− θ∗‖2

]
≤ ck1‖θ̄(0)− θ∗‖2 +

1− ck1
1− c1

(
8α2β2‖θ∗‖2 + 16α2r2

max

)
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≤ ck1‖θ̄(0)− θ∗‖2 +
8α2β2‖θ∗‖2 + 16α2r2

max

−αλH̄max

≤ ck1‖θ̄(0)− θ∗‖2 + αc2 (54)

where c2 :=
8β2‖θ∗‖2+16r2

max

−λH̄
max

, and this concludes the proof.

D Proof of Proposition 1

Proof. We have that

E
[
‖θm(k)− θ∗‖2

]
= E

[
‖θm(k)− θ̄(k) + θ̄(k)− θ∗‖2

]
≤ 2E

[
‖θm(k)− θ̄(k)‖2

]
+ 2E

[
‖θ̄(k)− θ∗‖2

]
≤ 2E

[
‖∆Θ(k)‖2F

]
+ 2E

[
‖θ̄(k)− θ∗‖2

]
≤ 2E

[(
λW2 + 2α

)k‖∆Θ(0)‖F +
2α
√
Mrmax

1− λW2

]2

+ 2ck1‖θ̄(0)− θ∗‖2 + 2αc2

≤ 4
(
λW2 + 2α

)2k‖∆Θ(0)‖2F +
8α2Mr2

max

(1− λW2 )2
+ 2ck1‖θ̄(0)− θ∗‖2 + 2αc2. (55)

where the third inequality follows from using (29) and (54). Letting c3 := max{
(
λW2 + 2α

)2
, c1}, V0 :=

2 max{4‖∆Θ(0)‖2F , 2‖θ̄(0) − θ∗‖2}, and c4 := α · 8Mr2
max

(1−λW
2 )2 +

16β2‖θ∗‖2+32r2
max

−λH̄
max

, then it is straightforward from

(55) that our desired result follows; that is,

E
[
‖θm(k)− θ∗‖2

]
≤ ck3V0 + c4α (56)

which concludes the proof.

E Proof of Lemma 2

Proof. For notational brevity, let rG(k) := (1/M)
∑
m∈M rm(k) for each k ∈ N+. It then follows that

∥∥∥ 1

KM

k+K−1∑
j=k

E
[
G>(Θ, ξj)1

∣∣F(k)
]
− ḡ(θ̄)

∥∥∥
=
∥∥∥ 1

K

k+K−1∑
j=k

E
[
φ(s(k))[γφ(s(k + 1))− φ(s(k))]>θ̄ +

1

M
φ(s(k))r>(k)1

]
− Eπ

[
g(θ̄)

]∥∥∥
=
∥∥∥ 1

K

k+K−1∑
j=k

∑
s∈S

(
Pr
[
s(j) = s|F(k)

]
− π(s)

) [
φ(s)

(
γP (s, s′)φ(s′)− φ(s)

)>
(θ̄ + θ∗) + rG(s)φ(s)

] ∥∥∥
≤ max

s,s′

∥∥∥φ(s)
[
γP (s, s′)φ(s′)− φ(s)

]>
(θ̄ + θ∗) + rG(s)φ(s)

∥∥∥
× 1

K

k+K−1∑
j=k

∑
s∈S

∣∣∣Pr[s(j) = s|F(k)]− π(s)
∣∣∣

≤ (1 + γ)
(
‖θ̄ − θ∗‖+ 2‖θ∗‖+ rmax

)
× 1

K

k+K−1∑
j=k

ν0ρ
k · ρj−k

≤ (1 + γ)ν0ρ
k

(1− ρ)K
(‖θ̄ − θ∗‖+ 2‖θ∗‖+ rmax)

≤ σk(K)
(
‖θ̄ − θ∗‖+ 1

)
(57)
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where σk(K) = (1+γ)ν0ρ
k

(1−ρ)K ×max
{

2‖θ∗‖+ rmax, 1
}

, and the second inequality arises from the fact that any finite-

state, irreducible, and aperiodic Markov chains converges geometrically fast (with some initial constant ν0 > 0
and rate 0 < ρ < 1) to its unique stationary distribution [Levin and Peres, 2017, Thm. 4.9]. Thus, we conclude
that Lemma 2 holds true with monotonically decreasing function σ(K) of K ∈ N+ as defined above.

F Proof of Lemma 3

Proof. Recalling the definition of our multi-step Lyapunov function, we obtain that

E
[
V(k + 1)− V(k)

∣∣F(k)
]

= E
[
‖θ̄(k +K)− θ∗‖2 − ‖θ̄(k)− θ∗‖2

∣∣F(k)
]
. (58)

Thus, we should next derive the bound of the right hand side of above equation. Following from iterate (27), we
can write

θ̄(k +K) = θ̄(k) +
α

M

k+K−1∑
j=k

G>(Θ(j), ξj)1. (59)

As a consequence (without particular statement, the expectation in the rest of this proof is taken with respect
to the ξk to ξk+K−1 conditioned on ξ0 to ξk−1),

E
[
‖θ̄(k +K)− θ∗‖2

∣∣F(k)
]

= E
[∥∥∥θ̄(k)− θ∗ +

α

M

k+K−1∑
j=k

G>(Θ(j), ξj)1
∥∥∥2∣∣F(k)

]

= E
[∥∥∥θ̄(k)− θ∗ +

α

M

k+K−1∑
j=k

[
G>(Θ(j), ξj)1−G>(Θ(k), ξj)1 +G>(Θ(k), ξj)1

]∥∥∥2∣∣∣F(k)

]
= ‖θ̄(k)− θ∗‖2

+ 2αE
[〈
θ̄(k)− θ∗,Kḡ(θ̄(k))+

1

M

k+K−1∑
j=k

[
G>(Θ(j), ξj)1−G>(Θ(k), ξj)1+G>(Θ(k), ξj)1

]
−Kḡ(θ̄(k))

〉∣∣∣F(k)

]

+ α2E
[∥∥∥ 1

M

k+K−1∑
j=k

[
G>(Θ(j), ξj)1−G>(Θ(k), ξj)1 +G>(Θ(k), ξj)1

]∥∥∥2∣∣∣F(k)

]
= ‖θ̄(k)− θ∗‖2 + 2αE

[〈
θ̄(k)− θ∗,Kḡ(θ̄(k))−Kḡ(θ∗)

〉 ∣∣∣F(k)
]

︸ ︷︷ ︸
the second term

+ 2αE
[〈
θ̄(k)− θ∗,

k+K−1∑
j=k

1

M

[
G>(Θ(j), ξj)1−G>(Θ(k), ξj)1

]〉 ∣∣∣F(k)

]
︸ ︷︷ ︸

the third term

+ 2αE
[〈
θ̄(k)− θ∗,

k+K−1∑
j=k

1

M
G>(Θ(k), ξj)1−Kḡ(θ̄)

〉∣∣∣F(k)

]
︸ ︷︷ ︸

the fourth term

+ α2E
[∥∥∥∥ 1

M

k+K−1∑
j=k

[
G>(Θ(j), ξj)1−G>(Θ(k), ξj)1 +G>(Θ(k), ξj)1

]∥∥∥∥2∣∣∣F(k)

]
︸ ︷︷ ︸

the last term

(60)

where the second and the third equality result from adding and subtracting the same terms and the last equality
holds since ḡ(θ∗) = 0. In the following, we will bound the four terms in the above equality.

1) Bounding the second term. As a direct result of the definition of ḡ(θ), we have that ḡ(θ̄) − ḡ(θ∗) =
H̄(θ̄ − θ∗). Therefore, it holds that

2αE
[〈
θ̄(k)− θ∗,Kḡ(θ̄(k))−Kḡ(θ∗)

〉 ∣∣∣F(k)
]

= 2αKE
[
(θ̄(k)− θ∗)>H̄(θ̄(k)− θ∗)|F(k)

]
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≤ 2αKλH̄max‖θ̄(k)− θ∗‖2 (61)

where λH̄max is the largest eigenvalue of H̄. Because H̄ is a negative definite matrix, it holds that λH̄max < 0.

2) Bounding the third term. Defining first p(k,Θ(k),K) :=
∑k+K−1
j=k

1
M

[
G>(Θ(j), ξj)1−G>(Θ(k), ξj)1

]
,

then it follows that

p(k,Θ(k),K) =

k+K−2∑
j=k

1

M

[
G>(Θ(j), ξj)1−G>(Θ(k), ξj)1

]
+

1

M

[
G>(Θ(k +K − 1), ξk+K−1)1−G>(Θ(k), ξk+K−1)1

]
= p(k,Θ(k),K − 1) +

1

M

[
G>(Θ(k +K − 1), ξk+K−1)1−G>(Θ(k), ξk+K−1)1

]
= p(k,Θ(k),K − 1) +H(k +K − 1)[θ̄(k +K − 1)− θ̄(k)].

Recalling that 2 is the largest absolute value of eigenvalues of H(k) for any k ∈ N+ (which clearly exists
and is bounded due to the bounded feature vectors φ(s) for any s ∈ S), the norm of p(k,Θ(k),K) can be
bounded as follows

‖p(k,Θ(k),K)‖ ≤ ‖p(k,Θ(k),K − 1‖+ 2‖θ̄(k +K − 1)− θ̄(k)‖

= ‖p(k,Θ(k),K − 1)‖+ 2α

∥∥∥∥ k+K−2∑
j=k

1

M

[
G>(Θ(j), ξj)1−G>(Θ(k), ξj)1

]

+

k+K−2∑
j=k

1

M
G>(Θ(k), ξj)1

∥∥∥∥
≤ (1 + 2α)‖p(k,Θ(k),K − 1)‖+ 2

k+K−2∑
j=k

α‖H(j)θ̄(k) + bG‖

≤ (1 + 2α)‖p(k,Θ(k),K − 1)‖+ 4α

( k+K−2∑
j=k

‖θ̄(k)‖+
rmax

2

)
where the last inequality follows from ‖H(j)θ̄(k)‖ ≤ 2‖θ̄(k)‖ for any j ≥ 0. Following the above recursion,

we can write

‖p(k,Θ(k),K)‖ ≤ (1 + 2α)K‖p(k,Θ(k), 0)‖+ 4αK‖θ̄(k)‖
K−1∑
j=0

(1 + 2α)j(K − 1− j)

≤ 4α(‖θ̄(k)‖+
rmax

2
)

K−1∑
j=0

(1 + 2α)j(K − 1− j)

(62)

where the second inequality because ‖p(k,Θ(k), 0)‖ = 0.

For any positive constant x 6= 1 and K ∈ N+, the following equality holds

K−1∑
j=0

xj(K − 1− j) =
xK −Kx+K − 1

(1− x)2
. (63)

Substituting x = (1 + 2α) into (63) along with plugging the result into (62) yields

‖p(k,Θ(k),K)‖ ≤ (1 + 2α)K − 2Kα− 1

α
K‖θ̄(k)‖. (64)

According to the mid-value theorem, there exists some suitable constant δ ∈ [0, 1] such that the following
holds true

(1 + 2α)K = 1 + 2Kα+
1

2
K(K − 1)(1 + δ(2α)K−2(2α)2
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≤ 1 + 2Kα+
1

2
K2(1 + 2α)K−2(2α)2. (65)

Thus, it is clear that

(1 + 2α)K − 2Kα− 1

α
≤ 2αK2(1 + 2α)K−2. (66)

Upon plugging (66) into (64), it follows that

‖p(k,Θ(k),K)‖ ≤ 2αK2(1 + 2α)K−2(‖θ̄(k)‖+
rmax

2
)

≤ 2αK2(1 + 2α)K−2(‖θ̄(k)− θ∗‖+ ‖θ∗‖+
rmax

2
). (67)

Now, we turn to the third term in (60)

2αE
[〈
θ̄(k)− θ∗,

k+K−1∑
j=k

1

M

[
G>(Θ(j), ξj)1−G>(Θ(k), ξj)1

]〉 ∣∣∣F(k)

]
= 2αE

[〈
θ̄(k)− θ∗,p(k,Θ(k),K)

〉
|F(k)

]
≤ 2αE

[
‖θ̄(k)− θ∗‖ · ‖p(k,Θ(k),K)‖

∣∣F(k)
]

= 2α‖θ̄(k)− θ∗‖ · E
[
‖p(k,Θ(k),K)‖

∣∣F(k)
]

≤ 4α2K2(1 + 2α)K−2‖θ̄(k)− θ∗‖ · (‖θ̄(k)− θ∗‖+ ‖θ∗‖+
rmax

2
)

≤ 4α2K2(1 + 2α)K−2
(

2‖θ̄(k)− θ∗‖2 +
1

4
‖θ∗‖2 +

rmax

8

)
. (68)

where the second inequality is obtained by plugging in (67), and the last one follows from the inequality
a(a+ b) ≤ 2a2 + (1/4)b2.

3) Bounding the fourth term. It follows that

2αE
[〈
θ̄(k)− θ∗,

k+K−1∑
j=k

1

M
G>(Θ(k), ξj)1−Kḡ(θ̄(k))

〉∣∣∣F(k)

]

= 2α

〈
θ̄(k)− θ∗,E

[ k+K−1∑
j=k

1

M
G(Θ(k), ξj))

T1−Kḡ(θ̄(k))
∣∣∣F(k)

]〉

≤ 2α‖θ̄(k)− θ∗‖ ·
∥∥∥E[ k+K−1∑

j=k

1

M
G(Θ(k), ξj))

T1−Kḡ(θ̄(k))
∣∣∣F(k)

]∥∥∥
≤ 2αKσ(K)‖θ̄(k)− θ∗‖(‖θ̄(k)− θ∗‖+ 1)

≤ 2αKσ(K)
(

2‖θ̄(k)− θ∗‖2 +
1

4

)
. (69)

4) Bounding the last term. Evidently, we have that

∥∥∥ 1

M

k+K−1∑
j=k

[
G>(Θ(j), ξj)1−G>(Θ(k), ξj)1 +G>(Θ(k), ξj)1

]∥∥∥2

≤ 2 ‖p(k,Θ(k),K)‖2 + 2
∥∥∥ k+K−1∑

j=k

1

M
G>(Θ(k), ξj)1

∥∥∥2

≤ 2 ‖p(k,Θ(k),K)‖2 + 2
∥∥∥ k+K−1∑

j=k

H(j)θ̄(k) +
1

M
r>(j)1φ(j)

∥∥∥2

≤ 16α2K4(1 + 2α)2K−4‖θ̄(k)‖2 + 16K‖θ̄(k)‖2 +
[
α2K4(1 + 2α)2K−4 + 4K

]
r2
max
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≤
[
32α2K6(1 + 2α)2K−4 + 32K

](
‖θ̄(k)− θ∗‖2 + ‖θ∗‖2

)
+
[
α2K4(1 + 2α)2K−4 + 4K

]
r2
max (70)

where the first and the last inequality is the result of ‖
∑n
i=1 xi‖2 ≤ n

∑n
i=1 ‖xi‖2 for any x and n; and the

second is obtained by plugging in (67). Hence, upon taking expectation of both sides of (70) conditioning
on F(k), we arrive at

α2E
[∥∥∥∥ 1

M

k+K−1∑
j=k

[
G>(Θ(j), ξj)1−G>(Θ(k), ξj)1 +G>(Θ(k), ξj)1

]∥∥∥∥2∣∣∣F(k)

]
≤
[
32α4K6(1 + 2α)2K−4 + 32Kα2

](
‖θ̄(k)− θ∗‖2 + ‖θ∗‖2

)
+ α2

[
α2K4(1 + 2α)2K−4 + 4K

]
r2
max. (71)

We have successfully bounded each of the four terms in (60). Putting now together the bounds in (61), (68),
(69), and (71) into (60), we finally arrive at

E
[∥∥θ̄(k +K)− θ∗

∥∥2∣∣F(k)
]
≤
[
1 + 2αTλH̄max + αΓ1(α,K)

]∥∥θ̄(k)− θ∗
∥∥2

+ αΓ2(α,K) (72)

where

Γ1(α,K) = 32α3K4(1 + 2α)2K−4 + 32Kα+ 8αK2(1 + 2α)K−2 + 4Kσ(K) (73)

Γ2(α,K) =
[
32α3K4(1 + 2α)2K−4 + 32Kα+ αK2(1 + 2α)K−2

]
‖θ∗‖2

+
[
4α3K4(1 + 2α)2K−4 +

1

2
αK2(1 + 2α)K−2 + 4αK

]
r2
max +

1

2
Kσ(K) (74)

From the definition of our multi-step Lyapunov function, we obtain that

E
[
V(k + 1)− V(k)

∣∣F(k)
]

= E
[∥∥θ̄(k +K)− θ∗

∥∥2∣∣F(k)
]
−
∥∥θ̄(k)− θ∗

∥∥2

≤ α[2KλH̄max + Γ1(α,K)]
∥∥θ̄(k)− θ∗

∥∥2
+ αΓ2(α,K)

≤ α[2KGλ
H̄
max + Γ1(αmax,KG)]

∥∥θ̄(k)− θ∗
∥∥2

+ αΓ2(αmax,KG) (75)

where the last inequality is due to the fact that functions Γ1(α,KG) and Γ2(α,KG) are monotonically increasing
in α. This concludes the proof.

G Proof of Lemma 4

Proof. It is straightforward to check that

∥∥θ̄(k + i)− θ∗
∥∥2

=
∥∥∥θ̄(k + i− 1)− θ∗ +

α

M
G>(Θ(k + i− 1), ξk+i−1)1

− α

M
G>(1(θ∗)>, ξk+i−1)1 +

α

M
G>(1(θ∗)>, ξk+i−1)1

∥∥∥2

≤ ‖θ̄(k + i− 1)− θ∗‖2] + 3α2‖H(k)(θ̄(k + i− 1)− θ∗)‖2

+ 3α2
∥∥∥H(k)θ∗ +

1

M
φ(s(k))r>(k)1

∥∥∥2

≤ (3 + 12α2)‖θ̄(k + i− 1)− θ∗‖2 + 6α2
[
4‖θ∗‖2 + r2

max

]
≤ (3 + 12α2)i‖θ̄(k)− θ∗‖2 + 6α2

[
4‖θ∗‖2 + r2

max

] i−1∑
j=0

(3 + 12α2)j . (76)
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As as result, V(k) can be bounded as

V(k) =

KG−1∑
i=0

‖θ̄(k + i)− θ∗‖2

≤
KG−1∑
i=0

(3 + 12α2)i‖θ̄(k)− θ∗‖2 + 6α2(4‖θ∗‖2 + rmax)

KG−1∑
i=1

i−1∑
j=0

(3 + 12α2)j

=
(3 + 12α2)KG − 1

2 + 12α2
‖θ̄(k)− θ∗‖2

+ α2 6(3 + 12α2)
[
(3 + 12α2)KG−1 − 1

]
− 6KG + 6

(2 + 12α2)2

[
4‖θ∗‖2 + r2

max

]
(77)

With c5 :=
(3+12α2

max)KG−1
2+3α2

max
and c6 :=

6(3+12α2
max)

[
(3+12α2

max)KG−1−1
]
−6KG+6

2+12α2
max

(4‖θ∗‖2 + r2
max

)
, we conclude that

V(k) ≤ c5‖θ̄(k)− θ∗‖2 + α2c6. (78)

H Proof of Theorem 3

Proof. The convergence of E
[∥∥θ̄(k)− θ∗

∥∥2
]

is separately addressed in two phases:

1) The time instant k < kα, with kα = max{k|ρk ≥ α}, namely, it holds that ασ(K) ≤ σk(K) ≤ σ(K) for any
k < kα;
2) The time instant k ≥ kα, i.e., it holds that σk(K) ≤ ασ(K) for any k ≥ kα.

Convergence of the first phase

From Lemma 4, we have

−‖θ̄(k)− θ∗‖2 ≤ − 1

c5
V(k) +

α2c6
c5

. (79)

Substituting (79) into (75), and rearanging the terms give the recursion of Lyapunov function as follows

E
[
V(k + 1)

∣∣F(k)
]
≤
{

1 +
1

c5

[
2αKGλ

H̄
max + αΓ1(αmax,KG)

]}
E
[
V(k)

∣∣F(k)
]

+ α
{

Γ2(α,KG)− α2c6
c5

[
2KGλ

H̄
max + Γ1(αmax,KG)

]}
≤ c7E

[
V(k)

∣∣F(k)
]

+ αc8 (80)

where c7 := 1 + 1
2c5
αmaxKGλ

H̄
max ∈ (0, 1); constant c8 := Γ2(αmax,KG) − α2

maxc6
c5

KGλ
H̄
max > 0, and the last

inequality holds true because of (41).

Deducing from (80), we obtain that

E[V(k)] ≤ ck7V(0) + αc8
1− ck7
1− c7

= c5c
k
7‖θ̄(0)− θ∗‖2 + α2c6c

k
7 + αc8

1− ck7
1− c7

≤ c5ck7‖θ̄(0)− θ∗‖2 + α2c6 +
αc8

1− c7
(81)

= c5c
k
7‖θ̄(0)− θ∗‖2 + α2c6 −

2c5c8

KGλH̄max

(82)

Recalling the definition of Lyapunov function, it is obvious that

E
[
‖θ̄(k)− θ∗‖2

]
≤ E[V(k)] ≤ c5ck7‖θ̄(0)− θ∗‖2 + α2c6 −

2c5c8

KGλH̄max

(83)
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which finishes the proof of the first phase.

Convergence of the second phase
Without repeating similar derivation, we directly have that the following holds for σk(K) ≤ ασ(K):

Γ1(α,K) := 32α3K4(1 + 2α)2K−4 + 32Kα+ 8αK2(1 + 2α)K−2 + 4Kασ(K) (84)

Γ2(α,K) :=
[
32α3K4(1 + 2α)2K−4 + 32Kα+ αK2(1 + 2α)K−2

]
‖θ∗‖2

+
[
4α3K4(1 + 2α)2K−4 +

1

2
αK2(1 + 2α)K−2 + 4αK

]
r2
max +

1

2
Kασ(K). (85)

Subsequently, we have the following recursion of V(k) that is similar to but slightly different from (80).

E
[
V(k + 1)

∣∣F(k)
]
≤ c7E

[
V(k)

∣∣F(k)
]

+ α2c′8, ∀k ≥ kα (86)

where c′8 :=
[
16α2

maxK
6
G(1 + 2αmax)2KG−4 + 32KG + 2K3

G(1 + 2αmax)KG−2
]
‖θ∗‖2 + 4KGr

2
max − 1

8KGλ
H̄
max −

αmaxc6
c5

KGλ
H̄
max. It is easy to check that c′8 ≥ c8 due to the fact that αmax < 1 in our case.

Repeatedly applying the above recursion from k = kα to any k > kα yields

E[V(k)] ≤ ck−kα7 E [V(kα)] + α2c′8
1− ck−kα7

1− c7

≤ ck−kα7

(
c5c

kα
7 ‖θ̄(0)− θ∗‖2 + α2c6 −

2c5c8

KGλH̄max

)
− α 2c5c

′
8

KGλH̄max

≤ c5ck7‖θ̄(0)− θ∗‖2 + ck−kα7 α2c6 − (ck−kα7 + α)
2c5c

′
8

KGλH̄max

(87)

where we have used c8 ≤ c′8 for simplicity.

Again, using the definition of the Lyapunov function and (87), it follows that

E
[
‖θ̄(k)− θ∗‖2

]
≤ c5ck7‖θ̄(0)− θ∗‖2 + ck−kα7 α2c6 − (ck−kα7 + α)

2c5c
′
8

KGλH̄max

, ∀k ≥ kα (88)

Combining the results in the above two phases, we conclude that the following bound holds for any k ∈ N+

E
[
‖θ̄(k)− θ∗‖2

]
≤ c5ck7‖θ̄(0)− θ∗‖2 − 2c5c

′
8

KGλH̄max

α+ min{1, ck−kα7 } ×
(
α2c6 −

2c5c
′
8

KGλH̄max

)
. (89)
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Figure 1: Consensus and convergence of decentralized TD(0) learning
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I SIMULATIONS

In order to verify our analytical results, we carried out experiments on a multi-agent networked system. The
details of our experimental setup are as follows: the number of agents M = 30, the state space size |S| = 100
with each state s being a vector of length |s| = 20, the dimension of learning parameter θ is p = 10, the
reward upper bound rmax = 10, and the stepsize α = 0.01. The feature vectors are cosine functions, that is,
φ(s) = cos(As), where A ∈ Rp×|s| is a randomly generated matrix. The communication weight matrix W
depicting the neighborhood of the agents including the topology and the weights was generated randomly, with
each agent being associated with 5 neighbors on average. As illustrated in Fig. 1(a), the parameter average θ̄
converges to a small neighborhood of the optimum at a linear rate. To demonstrate the consensus among agents,
convergence of the parameter norms ‖θm‖ for m = 1, 2, 3, 4 is presented in Fig. 1(b), while that of their first
elements |θm,1| is depicted in Fig. 1(c). The simulation results corroborate our theoretical analysis.


