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ABSTRACT
Variabilities of renewable energy sources critically challenge
contemporary power distribution grids. Depending on grid
conditions, solar energy may have to be curtailed to comply
with network limitations. On the other hand, smart inverters
installed with solar panels enable for reactive power support
at fast response rates. Existing energy management schemes
may not efficiently integrate intermittent generation. Inher-
ent operational flexibilities, such as flexible voltage regulation
margins and instantaneous inverter or distribution line over-
loading could be judiciously exploited. To that end, an er-
godic energy management framework is put forth calling for
joint control of active and reactive power using smart invert-
ers. Although tighter operational constraints are enforced in
an average sense, looser margins are satisfied at all times. A
stochastic dual subgradient solver is devised using an approx-
imate linearized grid model. The algorithm is distribution-
free, and enjoys provable convergence. Numerical tests on a
56-bus distribution feeder demonstrate that the novel scheme
yields lower energy cost upon its deterministic counterpart.

Index Terms— Power distribution grids, voltage regula-
tion, stochastic dual subgradient, smart inverters.

1. INTRODUCTION

Distribution grids are undergoing transformative changes.
Voltage profiles are strongly influenced by renewable energy
sources and the deployment of electric vehicles [1]. Curtail-
ing solar energy and providing reactive power support using
smart inverters are vital parts of the envisioned near real-
time energy management tasks. Albeit currently not allowed
by all standards, the smart inverters found in solar panels
can be commanded to offer reactive support [2]. Their two-
way communication capabilities set them as an important
factor for reducing energy costs while complying with the
constraints imposed by the underlying physical grid.

Using the full AC grid model, reactive power control
constitutes an instance of the nonconvex optimal power flow
(OPF) problem, for which various convex relaxations have
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been developed [3]. Different energy management tasks are
pursued under these relaxations in a deterministic [4], or a
stochastic setting [5], [6]. Adopting the linear approxima-
tion model, local control algorithms have been devised for
loss minimization or voltage regulation; see e.g., [1], [7] and
references therein. Existing energy management schemes
satisfy voltage regulation and distribution network-related
constraints at all times. Nevertheless, operations in future
grids could benefit from unexploited system flexibilities.
Such flexibilities include time-dependent voltage limits and
the overloading capability of inverters or power lines. In par-
ticular, most voltage regulation standards including the ANSI
C84.1 and the EN 50160 standards, define two allowable
voltage magnitude ranges: one for normal operations and one
whose use is limited in time duration [8]. Further, grid-tied
inverters and power lines are empirically allowed to operate
higher than their nameplate apparent power rating for a short
time interval [9].

In this context, an ergodic energy management (EEM)
scheme for distribution grids with photovoltaics (PVs) is
proposed. Voltage regulation and inverter/line capacity con-
straints are effected in a stochastic rather than deterministic
manner. A stochastic optimization capturing joint active
power curtailment and reactive power control is formulated,
and tackled via a stochastic dual subgradient solver. The
devised algorithm sequentially observes the predictions, and
solves near optimally the EEM problem. Numerical tests
on a 56-bus grid using real data validate the efficacy of the
proposed scheme. Regarding notation, lower- (upper-) case
boldface letters denote column vectors (matrices), with the
exception of power flow vectors (P,Q). Calligraphic sym-
bols are reserved for sets, RN

+ for the set of nonnegative
N -dimensional vectors, and ⊤ stands for transposition.

2. PROBLEM STATEMENT

Consider a distribution grid equipped with smart power in-
verters installed in solar panels and storage devices located on
different distribution buses (connection points on the grid).
Featuring two-way communication and equipped with ad-
vanced power electronics, these inverters can quickly respond
to signals sent by the utility operator to curtail renewable
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Fig. 1. Electric quantities related to bus n and line n.

generation or to change their reactive power injection. Given
predictions for load demands and solar generation, and target-
ing near real-time energy management solutions, the problem
here is to find the most economical means of serving electric
loads while respecting the operational limitations imposed by
the underlying grid. The problem is mathematically formu-
lated after reviewing an approximate grid model.

3. DISTRIBUTION GRID MODELING

The distribution grid consists of N + 1 buses, and it is mod-
eled by a graph G := (No,L), where No := {0, 1, . . . , N} is
the set of nodes (buses), and L is the set of edges (distribution
lines). Given that distribution grids are typically operated as
radial, the graph G is assumed to be a tree, so that the number
of lines is |L| = N . The tree is rooted at the substation bus
indexed by n = 0, through which the distribution grid is con-
nected to the main grid. All non-root buses comprise the set
N := {1, . . . , N}. For every bus n ∈ No, let vn denote its
squared voltage magnitude, and pn + jqn the complex power
injection into bus n. The active and reactive power injections
at bus n can be decomposed into their generation and con-
sumption components as pn := pgn − pcn and qn := qgn − qcn.
To simplify the presentation, all nodal quantities on non-root
buses are collected in v := [v1 · · · vN ]⊤, p := [p1 · · · pN ]⊤,
and q := [q1 · · · qN ]⊤.

The distribution line connecting bus n with its parent bus
is numbered by n ∈ L := {1, . . . , N}; see Fig. 1. Let
rn + jxn denote the impedance of line n, and Pn + jQn

the complex power flow on line n seen at its sending end. All
quantities related to lines are stacked on the N -dimensional
vectors r, x, P, and Q.

Recall the definition of the branch-bus incidence matrix
Ã ∈ R|L|×|No|: all entries of the n-th row are zero except for
those corresponding to the source and the destination buses
of line n which are +1 and −1, respectively. Due to the tree
structure of distribution grids, if Ã is partitioned as Ã =
[a0 A], the reduced branch-bus incidence matrix A is non-
singular with F := −A−1; see e.g., [7]. Upon ignoring the
power losses on distribution lines, the approximate LinDist-
Flow model comprises the linear equations [10]

P = −F⊤p (1a)

Q = −F⊤q (1b)
v = 2Rp+ 2Xq+ v01 (1c)

where R = Fdiag(r)F⊤ and X = F diag(x)F⊤; and v0 is
the squared voltage magnitude at the substation bus.

Using (1a)–(1b), the squared apparent power on line n can
be expressed as

P 2
n +Q2

n = p⊤fnf
⊤
n p+ q⊤fnf

⊤
n q (2)

where fn is the n-th column of F. Based on (2) and pre-
suming that voltage magnitudes are close to unity, the ac-
tive power losses experienced are approximated as ℓ(p,q) ≈∑N

n=1 rn(P
2
n + Q2

n) = p⊤Rp + q⊤Rq [11]. Then, the ac-
tive power flowing from the main grid into the distribution
grid through the substation bus can be written as

p0 = p⊤Rp+ q⊤Rq− 1⊤p. (3)

3.1. Deterministic Energy Management

Building on the model of (1)–(3), we next present schemes for
energy management of distribution grids. In the envisioned
scenario, the operation horizon is divided into short control
intervals indexed by t. During time slot t, the utility can buy
or sell energy p0,t at price π0,t > 0 from the main grid via
a real-time energy market. Within the distribution grid, elec-
tricity customers with PVs can enroll in a feed-in-tariff (FIT)
program. This program is a contract under which a renew-
able energy surplus can be bought by the utility at a fixed
price πf > 0 [12]. The utility aims at minimizing the en-
ergy cost π0,t p0,t +πf1⊤[pt]+ per slot t, where the operator
[a]+ := max{a,0} is applied entry-wise.

Prior to time slot t, the utility operator collects predic-
tions for load demand (pc

t ,q
c
t), the maximum renewable gen-

eration pg
t , and the price π0,t. Buses are then partitioned into

those with a renewable surplus comprising the set St := {n ∈
N : pgn,t ≥ pcn,t}, and its complement set St. Performing en-
ergy management through joint active power curtailment and
reactive power compensation can be posed as the following
optimization problem at each time slot t:

Ct := min
pg

t ,q
g
t

π0,t

(
p⊤
t Rpt+ q⊤

t Rqt −1⊤pt

)
+ πf1

⊤[pt]+

s.to 0 ≤ pgn,t ≤ pgn,t, ∀ n ∈ St (4a)

pgn,t = pgn,t, ∀ n ∈ St (4b)

|qgn,t| ≤ tan θc p
g
n,t, ∀ n (4c)

(pgn,t)
2 + (qgn,t)

2 ≤ s2n, ∀ n (4d)

p⊤
t fnf

⊤
n pt + q⊤

t fnf
⊤
n qt ≤ S2

n, ∀ n (4e)
vl ≤ 2Rpt + 2Xqt + v01 ≤ vu. (4f)

where pt := pg
t − pc

t , and qt := qg
t − qc

t are kept for sim-
plicity of exposition. Constraint (4a) limits renewable gener-
ation to the solar power currently available for all buses with
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renewable surplus. On the other hand, solar energy is not cur-
tailed in buses with renewable deficit according to (4b). Con-
straint (4c) lower bounds the power factor for inverter n by
cos θc, while (4d) upper limits the apparent power for inverter
n based on its nameplate rating sn. Similarly, constraint (4e)
limits the apparent power flow on line n by Sn. Finally, the
entry-wise inequalities in (4f) guarantee that nodal voltage
magnitudes remain within the desired range V := [vl,vu].

Problem (4) is convex, it can be solved efficiently, and
its solution satisfies the operational constraints at all times.
Nonetheless, it requires knowing parameters (pc

t ,q
c
t ,p

g
t ,π0,t)

that are hardly precisely known in advance. To better inte-
grate renewables, the key idea here is to exploit possible
system flexibilities. For example, instead of guaranteeing that
squared voltage magnitudes lie within vt ∈ V for all t, it
suffices that their time-averages lie in V , while letting their
instantaneous value be within a broader range V ′ := [vl,vu]
with V ⊆ V ′. For example, the ANSI C84.1 standard re-
quires voltage magnitudes to lie in V = [0.952, 1.052] p.u.
of normal operation, but in V ′ = [0.9172, 1.0582] p.u. over
short periods [8]. In addition, inverter power electronics are
empirically allowed to operate at even 1.2-1.5 times higher
than their nameplate rating over short-time intervals [9]. That
yields a larger instantaneous apparent power capability s̄n
over their average rating sn, i.e., s̄n > sn. Similarly, distribu-
tion lines could carry instantaneously higher apparent power
S̄n than their nominal limit Sn assuming protection devices
are adjusted accordingly.

3.2. Stochastic Energy Management

To leverage flexibilities and cope with uncertainties in (4),
a stochastic energy management scheme is better motivated
than a deterministic alternative. To that end, parameters
{(pc

t ,q
c
t ,p

g
t ,π0,t)}t are modeled as stationary and ergodic

stochastic processes [13]. The new energy management
scheme is thus posed as

C:= min
{pg

t ,q
g
t }
E
[
π0,t(p

⊤
t Rpt + q⊤

t Rqt−1⊤pt)+πf1
⊤[pt]+

]

s.to (4a) − (4c) for all t (5a)

(pgn,t)
2 + (qgn,t)

2 ≤ s2n, ∀ n, t (5b)

p⊤
t fnf

⊤
n pt + q⊤

t fnf
⊤
n qt ≤ Sn, ∀ n, t (5c)

vl ≤ 2Rpt + 2Xqt + v01 ≤ vu, ∀ t (5d)

E
[
(pgn,t)

2 + (qgn,t)
2
]
≤ s2n, ∀ n (5e)

E
[
p⊤
t fnf

⊤
n pt + q⊤

t fnf
⊤
n qt

]
≤ Sn, ∀ n (5f)

vl ≤ E [2Rpt + 2Xqt + v01] ≤ vu (5g)

where the expectations are taken over the joint distribution of
{(pc

t ,q
c
t ,p

g
t ,π0,t)}t. The stochastic problem in (5) involves

infinitely many optimization variables, which will be collec-
tively denoted by x := {(pg

t ,q
g
t )}t. The constraints in (5a)–

(5d) apply deterministically at all times, while those in (5b)–
(5d) correspond to looser instantaneous operational limits. On

the other hand, constraints (5e) to (5g) enforce tighter opera-
tional limits, yet in an average sense, hence coupling variables
across times.

Comparing problems (4) and (5), observe that constraint
(4d) implies constraints (5b) and (5e), but the converse is not
true. Similarly, constraint (4e) implies (5c) and (5f), and
constraint (4f) implies (5d) and (5g). Hence, the stochas-
tic problem in (5) constitutes a relaxation of the determin-
istic problem in (4) for all times t. As such, the minimiz-
ers of (5) could potentially yield lower average costs, namely
C ≤ E[Ct], where the expectation is taken over all random
variables at time t in problem (4). Understanding that cou-
pling among infinitely many variables challenges the solution
of (5), a stochastic dual subgradient solver is put forth next.

3.3. Stochastic Dual Subgradient Solver

Adopting the stochastic dual subgradient method (see e.g.,
[14]), constraints involving expectations are dualized. In par-
ticular, let λs, λS , λv , and λv ∈ RN

+ be the dual variables
corresponding to constraints (5e), (5f), as well as the lower
and upper voltage bounds in (5g). The remaining constraints,
which are deterministic and do not couple variables across
time, are left explicit. All dual variables are stacked in vector
λ := [λ⊤

s λ⊤
S λ⊤

v λ⊤
v ]

⊤. The Lagrangian of (5) is

L (x;λ) := E
[
π0,t(p

⊤
t Rpt+ q⊤

t Rqt− 1⊤pt)+ πf1
⊤[pt]+

]

+
N∑

n=1

λs,n

(
E
[
(pgn,t)

2 + (qgn,t)
2
]
− s2n

)
+

+
N∑

n=1

λS,n

(
E
[
p⊤
t fnf

⊤
n pt + q⊤

t fnf
⊤
n qt

]
− S2

n

)

+ λ⊤
v (vl − E [2Rpt + 2Xqt + v01])

+ λ⊤
v (E [2Rpt + 2Xqt + v01]− vu) .

The dual function is the minimum of the Lagrangian with re-
spect to x. Interchanging minimization and expectation oper-
ators yields g(λ) := E [gt(λ)]−

∑N
n=1

(
λS,nS2

n + λs,ns2n
)
+

λ⊤
v vl − λ⊤

v vu, where functions gt(λ) are given by

gt(λ) := min
pg

t ,q
g
t

{
π0,t(p

⊤
tRpt+ q⊤

t Rqt− 1⊤pt)+ πf1
⊤[pt]+

+
N∑

n=1

λs,n

[
(pgn,t)

2 + (qgn,t)
2
]

+
N∑

n=1

λS,n

(
p⊤
t fnf

⊤
n pt + q⊤

t fnf
⊤
n qt

)

+ (λv − λv)
⊤ (2Rpt + 2Xqt + v01) (6)

s.to (5a), (5b) − (5d).

The dual problem is obtained by maximizing the dual func-
tion over the dual variables. Evaluating g(λ) requires solv-
ing infinitely many problems of the form shown in (6),
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Algorithm 1 Ergodic Energy Management (EEM) Algorithm

1. Input µ > 0, {sn, sn, Sn, S
u
n}n∈N , {vl,vu,vl,vu}.

2. Initialize λ0 at zero.
for t = 1, 2, . . . do

3. Collect (pc
t ,q

c
t ,p

g
t ,π0,t) at the utility operator.

4. Find (p̂g
t , q̂

g
t ) minimizing gt(λt−1) in (6).

5. Update λt using (7).
6. Communicate decisions (p̂g

t , q̂
g
t ) to smart inverters.

end for

and then averaging the optimal costs over the joint pdf of
{(pc

t ,q
c
t ,p

g
t ,π0,t)}t. Even if the joint pdf were known, eval-

uating the expectations E [gt(λ)] would be non-trivial. So
finding the dual function in closed form is formidably chal-
lenging. To practically maximize g(λ), the dual variables are
updated via the stochastic projected subgradient iterations

λt := [λt−1 + µδt]+ (7)

for some step size µ > 0, where δt :=
[
δ⊤s,t δ

⊤
S,t δ

⊤
v,t δ

⊤
v,t]

⊤

is a subgradient of gt(λ) evaluated at the last iterate λt−1.
The entries of δt can be found for all n and t as

[δs,t]n := (p̂gn,t)
2 + (q̂gn,t)

2 − s2n (8a)

[δS,t]n :=
[
f⊤n (p̂g

t − pc
t)
]2

+
[
f⊤n (q̂g

t − qc
t)
]2 − S2

n (8b)
δv,t := vl − 2R(p̂g

t − pc
t)− 2X(q̂g

t − qc
t)− v01 (8c)

δv,t := 2R(p̂g
t − pc

t) + 2X(q̂g
t − qc

t) + v01− vu (8d)

where (p̂g
t , q̂

g
t ) are the minimizers of the problem in (6) for

λ = λt−1. The Lagrange multipliers are updated at every
control interval, after predictions are collected.

Algorithm 1 summarizes the EEM scheme consisting of
the iterative application of two steps: the primal update dur-
ing which (6) is solved for the current values of the dual vari-
ables, and the dual subgradient update of (7). It is worth men-
tioning that the algorithm requires no knowledge of the input
data {(pc

t ,q
c
t ,p

g
t ,π0,t)}t distribution. Convergence claims

for this algorithm are inherited from [14]. Specifically, the
average constraints (5e), (5f), and (5g) are satisfied almost
surely, meaning that as t → ∞, time-averages of terms inside
the expectations evaluated at the iterates (p̂g

t , q̂
g
t ) satisfy the

constraints with probability 1. More importantly, the opera-
tional cost limt→∞

1
t

∑t
τ=1

{
π0,τ

[
(p̂g

τ −pc
τ )

⊤R(p̂g
τ −pc

τ )+
(q̂g

τ −qc
τ )

⊤R(q̂g
τ −qc

τ )−1⊤(p̂g
τ −pc

τ )
]
+πf1⊤[p̂g

τ −qc
τ ]+

}

is at most µH2/2 away from the optimal cost C in (5), where
H :=

∑N
n=1

(
s2n + S̄2

n

)
+ 2∥vu − vl∥22.

4. NUMERICAL TESTS

The developed scheme was tested on a 56-bus distribution
grid from Southern California Edison [15]. It is a lightly
loaded rural distribution system with peak spot load 3.825
MVA. Eight PVs each with nameplate capacity 1 MW were
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Fig. 2. Energy costs using real solar and load data.
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Fig. 3. Inverter overloading map using the EEM scheme.

installed at buses 9, 14, 25, 31, 40, 45, 52, and 56. Inverter
injection decisions were determined every 30 sec by: i) solv-
ing the deterministic energy management (DEM) scheme in
(4) for all t; and ii) the EEM algorithm. Squared voltage
regulation bounds were set to vl = 0.9801, vu = 1.0201,
vl = 0.9604, and vu = 1.0404 p.u. at all buses. The over-
loading capability for the inverter was set to s̄n = 1.1sn, and
a power factor of 0.8 for all loads was assumed. Prices were
set to πf = 15¢/kWh, and π0,t = 30¢/kWh at all times t.

Performance was evaluated in terms of the instantaneous
energy cost using real data from the Smart∗ project [16]. Data
preprocessing included subtracting the minimum daily value,
and normalizing the daily curves to 1; while consumption and
solar generation curves were scaled to the nominal capac-
ity of the corresponding buses. A single system realization
was simulated over the period 9:30 am to 1:30 pm. Figure 2
presents the instantaneous costs together with their running
averages for µ = 0.08, demonstrating the potential savings
from ergodic energy management. The actual energy costs
over the four hours is −$2449 and −$2288 for the EEM and
DEM schemes, respectively. Figure 3 illustrates the map of
inverter overloading max

{
(pgn,t)

2 + (qgn,t)
2 − s2n, 0

}/
s2n for

all buses n with inverters.
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