
IET Control Theory & Applications

Research Article

Power scheduling for Kalman filtering over
lossy wireless sensor networks

ISSN 1751-8644
Received on 7th August 2016
Revised 19th October 2016
Accepted on 17th November 2016
E-First on 13th December 2016
doi: 10.1049/iet-cta.2016.1047
www.ietdl.org

Jie Chen1, Gang Wang1,2, Jian Sun1 
1School of Automation, Beijing Institute of Technology, Beijing 100081, People's Republic of China
2ECE Department, University of Minnesota, Minneapolis, MN 55455, USA

 E-mail: sunjian@bit.edu.cn

Abstract: With the goal of monitoring physical processes, a wireless sensor network (WSN) is often deployed along with a
fusion center to estimate the state of general linear stochastic systems. As WSNs comprise a large number of low-cost, battery-
driven sensor nodes with limited transmission bandwidth, conservation of transmission resources (power and bandwidth) is of
paramount importance. In this context, the present study considers power scheduling for Kalman filtering (KF) using scalar
messages exchanged over wireless sensor links, where random measurement packet drops are possible. Each sensor node
sequentially decides whether a high or low transmission power is needed to communicate its scalar observations based on a
rule that promotes power scheduling with minimal impact on the state estimator's mean-squared error. Assuming approximately
Gaussian state predictors, the minimum mean-squared error optimal power schedule is developed for KF that also accounts for
dropped data packets. Leveraging statistical convergence characteristics of the estimation error covariance matrix, both
sufficient and necessary conditions are established that guarantee the stability of the resultant KF estimator.

1 Introduction
With the advent of microsensor and wireless communication
technologies, wireless sensor networks (WSNs) have found diverse
applications, including surveillance, intelligent transportation
systems, health care, environmental tracking, disaster prevention
and recovery, as well as monitoring of electric power grids [1–4].
Typical WSN attributes are battery-driven sensors, limited
computational and communication capabilities under stringent
bandwidth constraints [3]. These limitations ineluctably bring
challenges to estimation and control tasks performed using WSNs.
Therefore, it is critical to investigate how to conserve transmission
power and bandwidth while achieving a prescribed estimation
performance.

Towards this end, recurring attention has been paid to state
estimation at the fusion center (FC) under stringent constraints on
communication resources (energy and bandwidth); see, for
example, [3–18] and references therein. To save transmission
power and bandwidth, various methods relying on measurement
quantisation/censoring, dimensionality reduction, multi-rate
transmission, and scheduling were pursued in [3–5, 8, 10–17, 19–
21].

In scheduling-based approaches, optimal policies were
introduced in [11] for a class of scalar linear stochastic systems to
minimise the terminal state estimation error variance over a fixed
time horizon T, in which only p < T measurements can be
transmitted to the FC. In practice, most commercially available
sensor nodes nowadays have multiple transmission-power levels
[8]. Clearly, high transmission power leads to reliable message
exchanges while low transmission power may cause data packets to
drop [12]. The results in [11] were recently extended to a special
class of high-order linear systems, where not only energy
constraints and data packet drops were taken into account, but also
sensors with limited or sufficient computational capacity were
considered [13]. Under certain conditions, the optimal schedulers
in [11] amount to distributing the p measurement transmissions
along the last p time instants over the horizon T. The
aforementioned optimal schedulers are deterministic, and are
obtained offline. Nevertheless, their state estimation error
covariance matrix increases drastically for unstable systems in the
first T − p time instants because no measurements are transmitted

to the FC for updating the covariance prediction; see also [12, 17]
for further generalisations.

To cope with this instability, online schedulers were developed
in [14–16]. Specifically, a so-termed send-on-delta strategy was
adopted in [14] to reduce sensor data traffic by transmitting sensor
data only if their values change more than a prescribed threshold.
However, neither this threshold was analytically selected to
improve the estimation performance, nor stability or performance
analyses were given for the resultant modified Kalman filtering
(KF). Innovation-based measurement schedulers were also
constructed in [15, 16] by quantifying the ‘importance’ of every
measurement using the normalised measurement innovations. The
key idea is that only ‘sufficiently important’ measurements are
transmitted to the FC for updating the predicted estimate and its
covariance, and when the transmission does not occur, the
available information based on a threshold selected by the
scheduler is utilised. Stability analyses of the KF with these
stochastic schedulers were reported in [15]. Yet, only necessary
conditions ensuring convergence of the expected state estimation
error covariance matrix were established for systems with
observation matrix having full row rank.

Inspired by these works and building on our precursor in [22],
this paper considerably broadens the scope of [3, 12, 15], where the
power scheduler depends on the time-horizon T and the state error
covariance increases during the first T − p time instants. In
comparison, the main contribution of this work is two-fold and can
be summarised as follows.

(a) We consider power scheduling for KF-based state estimation of
general linear stochastic systems. Data packet drops are accounted
for in developing an innovation-based power scheduler, and the
corresponding minimum mean-squared error (MMSE) state
estimator.
(b) We investigate statistical convergence of the state estimation
error covariance matrix, and establish both sufficient and necessary
conditions for convergence of the averaged estimation error
covariance.

Error estimator creatively devised in [15] are extended to the
case where different thresholds are assigned to different
components of a measurement vector. On the other hand, both the
sufficient condition and the necessary condition are derived for
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general linear dynamic systems by analysing convergence
properties of an axillary function.

In a nutshell, the present contribution generalises the results of
[3, 15, 23–25] of state estimation using WSNs both in the
estimation setup, as well as in analysing the estimator's stability.

Notation: Boldface symbols denote the multivariate quantities
such as vectors (lowercase) and matrices (uppercase);
Q(x) := (1/ 2π)∫ x

∞exp( − t2/2) dt is the tail probability of the
standardised normal probability density function (pdf);
x ∼ 𝒩(μ, Σ) or 𝒩(x; μ, Σ) stands for the normal pdf with mean μ
and covariance matrix Σ. For random vectors x and y, E[x] denotes
the expectation of x, and x |y is the conditional random vector
when y is given. Furthermore, ( ⋅ )T stands for transposition;
P > 0 ( ≥ 0) for the positive (semi-)definite matrix, and
diag{l1, l2, …, lm} for the diagonal matrix with diagonal elements
l1, l2, …, lm; In denotes the n × n identity matrix and 0 the all-zero
matrix of appropriate dimensions; and ⊗ is reserved for the
Kronecker product of two matrices. The mean-square stability of
the filter, defined as, supk ∈ N𝔼[Pk] < ∞, implies there always exists
a positive definite matrix P̄ such that Pk ≤ P̄ for all k ∈ N [23],
where the mathematical expectation is taken over both the random
power scheduling process and the random packet dropping process.
For positive (semi-)definite matrices P and Q, the matrix inequality
P ≥ Q means matrix P − Q is positive semi-definite; and likewise,
for P ≤ Q, P > Q and P < Q.

2 Problem statement and preliminaries
Consider a WSN with m sensor nodes {𝒮i}i = 1

m  deployed to estimate
the state xk ∈ ℝn, obeying the recursion

xk + 1 = Axk + ωk (1)

where k denotes time index, A ∈ ℝn × n the state transition matrix,
and ωk ∈ ℝn the process noise, assumed to be a zero-mean white
Gaussian with covariance matrix Q ≥ 0. The initial state x0 is also
assumed Gaussian distributed with mean x^ 0 and covariance matrix
P0 > 0.

Each sensor indexed by i receives scalar observations {yk
i }

adhering to a linear measurement equation

yk
i = ci

Txk + νk
i (2)

where ci ∈ ℝn is the regression vector, and νk
i  is a temporally and

spatially white zero-mean Gaussian noise with variance ri.
Collecting all sensor observations leads to the vector-matrix
counterpart of (2), namely yk = Cxk + νk with
yk := [yk

1⋯yk
m]T, C := [c1⋯cm]T and νk := [νk

1⋯νk
m]T. It is further

posited that the random vectors ωk, νk, x0 are mutually independent,
and that the following standard assumption holds.

(As1) Pairs A, Q1/2  and (C, A) are controllable and
observable, respectively.

The FC is a designated node, performs the task of estimating xk
from noisy measurements yk transmitted by the sensors over
wireless sensor links, where packet drops are possible. Only
transmissions between the FC and the sensors are allowed,
implying no inter-sensor transmissions, and leading to lower
communication costs. The FC is assumed able to feed information
back to the sensors. As in [4], a round-robin, slotted-time sensor
schedule is envisioned: A sampling interval (time between k and
k + 1) is partitioned into m time slots (one per sensor) such that
sensor 𝒮i transmits at the ith time slot T i.

Clearly, a high transmission-power improves the reliability of
measurement exchanges, while a low transmission power may
cause packet drops during sensor-to-FC communications. This is

reasonable and it is motivated by two facts: most available sensors
have multiple transmission-power levels to choose from [8], and
higher transmission-power leads to a higher signal-to-noise ratio
(SNR) at the FC. In turn, higher SNR implies higher packet arrival
rate [26]. Therefore, once a communication failure occurs, the
entire packet of measurements will be dropped.

For simplicity, the present work considers that each sensor has
only two transmission-power levels [12, 13]. However, all results
derived can be easily generalised to multiple transmission-power
levels. Specifically, with a high transmission power Δ, the
measurement packet will be assumed successfully delivered to the
FC. If on the other hand a low transmission power δ is employed,
the measurement packet will be received correctly at the FC only
with probability β ∈ (0, 1). Although in a different estimation
setup, similar assumptions were adopted by Shi and Xie [13].

Per slot i per time instant k, binary random variable γk
i ∈ {0, 1},

represents whether transmission power δ or Δ is utilised for
transmitting yk

i  to the FC. Another binary random variable
βk

i ∈ {1, 0} indicates whether yk
i  is successfully received at the FC

or not. Throughout this paper, we postulate that the values of γk
i  and

βk
i  are known at the FC. This is reasonable if one employs the time-

stamp technique [25, 27]. For future reference, define the following
sets capturing all historical information up to time k, slot i,
including all received measurements, along with the power levels
transmitted and success or failure of reception
ℐk

i := γ1
1y1

1, (1 − γ1
1)β1

1y1
1, γ1

1, (1 − γ1
1)β1

1, γ1
2y1

2, (1 − γ1
2)β1

2y1
2, γ1

2,
(1 − γ1

2)β1
2, …, γk

i yk
i , (1 − γk

i )βk
i yk

i , γk
i , (1 − γk

i )βk
i , and

𝒢k
i := ℐk

i − 1, yk
i , i = 1, 2, …, m. To understand the two sets, let us

consider, for example, a system having two sensors with their
observations at time k denoted by {yk

1, yk
2}. Thus, every time

interval from t to t + 1 is spitted into two time slots i = 1 and i = 2.
At slot i = 2 of time k, the set ℐk

1 consisting of all information up
to slot 2 time k can be represented by ℐk

1 that up to slot 1 time k
plus the new information {γk

2yk
2, (1 − γk

2)βk
2yk

2, γk
2} arriving within the

new slot. It is not clear whether yk
2 is included in ℐk

2 depending on
whether yk

2 reaches successfully the estimator or not. The set 𝒢k
2 is

thus defined to include also yk
2. Then at slot 1 of k + 1, ℐk + 1

1  can be
written as ℐk

2 all information up to the last slot plus
{γk + 1

1 yk + 1
1 , (1 − γk + 1

1 )βk + 1
1 yk + 1

1 , γk + 1
1 } the new information reaching

within the new slot.
Thus per time instant k, let x^ k |k

i  denote the MMSE estimate of xk
at the FC based upon all available information at the end of slot i;
and, likewise Pk |k

i  its state estimation error covariance matrix; that
is

x^ k |k
i = 𝔼 xk ℐk

i (3)

Pk |k
i = 𝔼 (xk − x^ k |k

i )(xk − x^ k |k
i )T ℐk

i . (4)

Instrumental to the ensuing derivations are the so termed predicted
estimate and predicted estimation error covariance matrix

x^ k |k − 1 = 𝔼 xk ℐk − 1
m (5)

Pk |k − 1 = 𝔼 (xk − x^ k |k − 1
m )(xk − x^ k |k − 1

m )T ℐk − 1
m . (6)

The measurement innovation is well acknowledged to represent
new information of the current measurement that cannot be
predicted by past measurements. Intuitively speaking, a large
innovation means that the current measurement is quite different
than the predicted measurement and therefore contains useful
information to update the estimates. Thus, measurements with
sizable innovation magnitude are deemed as ‘informative’, and the
vice versa for measurements with small innovation magnitude. Our
innovation-based power scheduling policy compares the
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normalised measurement innovation magnitude with a given
threshold to quantify the ‘importance’ of every measurement, and
then uses a high (or low) transmission power to send the
‘important’ (or ‘less important’) measurement.

To be specific, let {ηi}i = 1
m  be given fixed thresholds for power

scheduling (one per sensor), which can be determined based on the
specific requirement on the power saving per sensor. At slot i of
time instant k, assuming that the FC has broadcast the estimate x^ k |k

i − 1

and its estimation error covariance Pk |k
i − 1 to sensor 𝒮i, then sensor 𝒮i

uses them to compute a normalised innovation of the current local
observation yk

i  as

ϵk
i := yk

i − ci
Tx^ k |k

i − 1 / ci
TPk |k

i − 1ci + ri . (7)

If |ϵk
i | is greater than the given threshold ηk

i , yk
i  is deemed

informative enough and will be transmitted to the FC with high
power Δ, and thus γk

i = 1; otherwise, δ will be used and γk
i = 0. The

FC will correspondingly resort to different rules to update
(x^ k |k

i − 1, Pk |k
i − 1) to obtain (x^ k |k

i , Pk |k
i ), which is further elaborated in the

next section. Information broadcast from the FC can reach
successfully all sensors since the FC has enough power and
wireless sensors also consume much less power for receiving than
sending packets [28].

3 Kalman filtering with power scheduling
Algorithms for power scheduling and estimation steps that are
amenable to WSN implementation are elaborated in this section.
Then the developed power scheduler and the corresponding MMSE
estimator are, respectively, tabulated as Algorithms 1 and 2).
 
Algorithm 1 (Scheduling and transmission per sensor i): Sensor 𝒮i
at time k
Require: x^ k |k

i − 1 and Pk |k
i − 1

Ensure: y~k
i

S1: Compute y~k
i := yk

i − ci
Tx^ k |k

i − 1 and σk
i := ci

TPk |k
i − 1ci+ri

S2: Compute ϵk
i := y~k

i /σk
i

S3: Using prescribed ηi, find

γk
i = 1 if |ϵk

i | > ηi

0 otherwise
S4: If γk

i = 1 then

𝒮i: Transmit y~k
i  to FC with power Δ

else

𝒮i: Transmit y~k
i  to FC with power δ

 
Algorithm 2 (Reception and estimation at the FC): Require: x^ 0 |0
and P0 |0

S1: for k = 0 to ∞ do
S2: Compute

x^ k |k − 1 = Ax^ k − 1|k − 1

Pk |k − 1 = APk − 1|k − 1AT + Q
S3: for i = 1 to m do
S4: Receive yk

i  and {γk
i , βk

i } from sensor i
S5: Compute

l(βk
i ) := βk

i + (1 − βk
i ) 2

π ×
ηiexp( − ηi

2/2)
1 − 2Q(ηi)

s(γk
i , βk

i ) := γk
i + (1 − γk

i )βk
i

t(γk
i , βk

i ) := γk
i + (1 − γk

i )l(βk
i )

kk
i := Pk |k

i − 1ci/(ci
TPk |k

i − 1ci + ri)
x^ k |k

i = x^ k |k
i − 1 + s(γk

i , βk
i )kk

i (yk
i − ci

Tx^ k |k
i − 1)

Pk |k
i = Pk |k

i − 1 − t(γk
i , βk

i )kk
i ci

TPk |k
i − 1

S6: end for
S7: x^ k |k = x^ k |k

m , Pk |k = Pk |k
m

S8: end for

 
Remark 1: Channel propagation effects between the sensor and the
FC have not been considered here. As pointed out in [8], most of
the existing works in distributed estimation assumed error-free
reception between the FC and the sensors. Nonetheless, focusing
on the sensor-to-FC transmissions of yk

i  per time slot, suppose that
the corresponding channel has gain gk

i . Postulating that the fading
is relatively slow, the phase of the complex channel can be
estimated and thus compensated for at the receiver side, so that gk

i

stands for the real-valued envelop of the complex channel gain
[29]. Further, suppose that the channel gain remains invariant over
the time slot to send yk

i . Then the FC receives a scaled version of yk
i

corrupted with the additional noise which is independent of the
measurement noise. For simplicity, let the channel noise nk

i  be zero-
mean Gaussian white with variance σni

2  and, {nk
i }, {nk

j} be
uncorrelated for i ≠ j.

In light of the round-robin, time-slotted transmission policy and
(2), one further arrives at zk

i = gk
i ci

Txk + gk
i νk

i + nk
i . Upon defining

ν̄k
i = gk

i νk
i + nk

i , it follows that

zk
i = gk

i ci
Txk + ν̄k

i . (8)

If the gain gk
i  is invariant over time instant k, then by letting

c̄k
i = gk

i ci, this model reduces to (2); see also [29], where KF with
faded observations was reported along with stability analysis.
Hence results in this paper can be generalised to account for fading
effects along the line of [29].

 
Proposition 1: If the conditional pdf of xk given ℐk − 1

i − 1  is
approximately Gaussian, i.e. the pdf
f xk |ℐk

i − 1 = 𝒩 xk; x^ k |k
i − 1, Pk |k

i − 1 , then x^ k |k
i  in Algorithm 2 yields the

MMSE estimator.
 
Remark 2: Since the pdf f xk |ℐk

i − 1  is in general non-Gaussian,
computationally expensive numerical integrations and memory
intensive propagation of the posterior pdf are required for
computing the exact MMSE estimate. This motivates
approximating this pdf with a Gaussian one, which is a customary
simplification adopted in non-linear filtering [30] and the KF with
quantised innovations [3]; see, also, [10, 15] and references therein.

 
Proof of Proposition 1:: Suppose we already have an MMSE

estimator x^ k |k
i − 1, that is, x^ k |k

i − 1 = 𝔼 xk |ℐk
i − 1  and

Pk |k
i − 1 = 𝔼 (xk − x^ k |k

i − 1)(xk − x^ k |k
i − 1)T |ℐk

i − 1 . We prove the proposition
by conditioning on whether the measurement is received by the FC.
Specifically, when the new measurement yk

i  is present at the FC,
that is, the case γk

i = 1 or the case γk
i = 0 and βk

i = 1, one can easily
verify that

x^ k |k
i = E xk ℐk

i − 1, yk
i = x^ k |k

i − 1 + kk
i yk

i − ci
Tx^ k |k

i − 1
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and likewise,

Pk |k
i = E (xk − x^ k |k

i )(xk − x^ k |k
i )T ℐk

i − 1, yk
i

= Pk |k
i − 1 − Pk |k

i − 1ci ci
TPk |k

i − 1ci + ri
−1ci

TPk |k
i − 1 .

When the estimator does not receive the new measurement yk
i ,

that is, γk
i = 0 and βk

i = 0, then it follows that

x^ k |k
i = 𝔼 xk ℐk

i − 1, γk
i = 0, βk

i = 0
= 𝔼 xk ℐk

i − 1, |ϵk
i | ≤ ηi

= ∫
−ηi

ηi

x^ k |k
i − 1+kk

i σk
i ϵ f

ϵk
i ϵ ℐk

i − 1, |ϵk
i | ≤ ηi dϵ .

(9)

Here, f x(x) is the pdf of the random variable x; similarly, f x |y(x | y)
is the pdf of a random variable x conditioned on variable y. Given
ℐk

i − 1, then ϵk
i  is Gaussian distributed with zero-mean and unit

covariance. Thus, the conditional pdf above follows directly from
conditional probability theory:

f
ϵk

i ϵ |ℐk
i − 1, |ϵk

i | ≤ ηi =
f

ϵk
i ϵ |ℐk

i − 1

ΔPi
, if |ϵk

i | ≤ ηi

0, otherwise
(10)

where △ Pi ≜ Pr |ϵk
i | ≤ ηi ℐk

i − 1 = 1 − 2Q(ηi). Therefore, (9)
becomes

x^ k |k
i = ∫

−ηi

ηi

x^ k |k
i − 1 + kk

i σk
i ϵ

f
ϵk

i ϵ |ℐk
i − 1

△ Pi
dϵ

= x^ k |k
i − 1∫

−ηi

ηi f
ϵk

i ϵ |ℐk
i − 1

△ Pi
dϵ +

kk
i σk

i

△ Pi
∫

−ηi

ηi

ϵ f
ϵk

i ϵ |ℐk
i − 1 dϵ

= x^ k |k
i − 1

(11)

where the first integration equals to 1 and the second becomes 0
because f

ϵk
i ϵ |ℐk

i − 1  is even over the origin-centred symmetric

integration interval.
The covariance Pk |k

i  for γk
i = 0 and βk

i = 0 case is then

Pk |k
i =

(a)
𝔼 xk − x^ k |k

i xk − x^ k |k
i T ℐk

i − 1, |ϵk
i | ≤ ηi

=
(b)

𝔼 xk − x^ k |k
i − 1 xk − x^ k |k

i − 1 T ℐk
i − 1, |ϵk

i | ≤ ηi

=
(c)

𝔼 xk − x^ k |k
i − 1 − kk

i σk
i ϵ + kk

i σk
i ϵ

× xk − x^ k |k
i − 1 − kk

i σk
i ϵ + kk

i σk
i ϵ T ℐk

i − 1, |ϵk
i | ≤ ηi

=
(d)

𝔼 In − kk
i ci

T xk − x^ k |k
i − 1 +kk

i νk
i + kk

i σk
i ϵ

In − kk
i ci

T xk − x^ k |k
i − 1 +kk

i νk
i + kk

i σk
i ϵ T

ℐk
i − 1, |ϵk

i | ≤ ηi

=
(e)

In − kk
i ci

T Pk |k
i − 1 In − kk

i ci
T T+kk

i ri(kk
i )T

+ σk
i 2kk

i 𝔼 ϵ ℐk
i − 1, |ϵk

i | ≤ ηi kk
i T

(12)

where (b) follows directly from x^ k |k
i = x^ k |k

i − 1 when the new
measurement component yk

i  is not received by the estimator, which
has been proved in (11); and (d) is because
σk

i ϵk
i = zk

i = yk
i − ci

Tx^ k |k
i − 1 = ci

T(xk − x^ k |k
i − 1) + νk

i  in Algorithm 2; and (e)

is because νk
i  is zero-mean Gaussian noise with covariance ri, or,

𝔼 kk
i νk

i kk
i νk

i T = kk
i ri kk

i T. Meanwhile, we have

𝔼 ϵ2 ℐk
i − 1, |ϵk

i | ≤ ηi = ∫
−ηi

ηi

ϵ2 f
ϵk

i ϵ |ℐk
i − 1, |ϵk

i | ≤ ηi dϵ

= 1
1 − 2Q(ηi)∫−ηi

ηi ϵ2

2π
exp( − ϵ2/2) dϵ

= 1 − 2
π

ηiexp −ηi
2/2

1 − 2Q(ηi)
.

(13)

Therefore, from (12) and (13) and
σk

i 2 = ci
TPk |k

i − 1ci + ri, kk
i = Pk |k

i − 1ci ci
TPk |k

i − 1ci + ri , one arrives at

Pk |k
i = In − kk

i ci
T Pk |k

i − 1 In − kk
i ci

T T + kk
i ri(kk

i )T

+ σk
i 2kk

i 1 − 2
π

ηiexp −ηi
2/2

1 − 2Q(ηi)
kk

i T

= Pk |k
i − 1 − Pk |k

i − 1ci ci
TPk |k

i − 1ci + ri
−1ci

TPk |k
i − 1

− 1 − 2
π

ηiexp −ηi
2/2

1 − 2Q(ηi)

× Pk |k
i − 1ci ci

TPk |k
i − 1ci + ri

−1ci
TPk |k

i − 1

= Pk |k
i − 1 − 2

π
ηiexp −ηi

2/2
1 − 2Q(ηi)

kk
i ci

TPk |k
i − 1 .

To write the discussed two scenarios in a more compact form,
we arrive at

Pk |k
i = γk

i + 1 − γk
i βk

i Pk |k
i − 1 − kk

i ciPk |k
i − 1

+ 1 − γk
i 1 − βk

i Pk |k
i − 1 − 2

π
ηiexp −ηi

2/2
1 − 2Q(ηi)

kk
i ci

TPk |k
i − 1

= γk
i + 1 − γk

i βk
i + 1 − γk

i 1 − βk
i Pk |k

i − 1

− γk
i + 1 − γk

i βk
i − 1 − γk

i 1 − βk
i

× 2
π

ηiexp −ηi
2/2

1 − 2Q(ηi)
kk

i ci
TPk |k

i − 1

= Pk |k
i − 1 − t γk

i , βk
i kk

i ci
TPk |k

i − 1

(14)

which completes the proof.    □
Under the assumption of Algorithm 2, the sequences {γk

1}0
∞,

{γk
2}0

∞, …, {γk
m}0

∞ are independent and identically distributed (i.i.d.)
processes with the approximately Gaussian pdf [15]. Further,
assume the sequences {βk

1}0
∞, {βk

2}0
∞, …, {βk

m}0
∞ are mutually

independent Bernoulli i.i.d. processes. Define
Nk = diag t(γk

1), t(γk
2), …, t(γk

m) . For i = 1, 2, …, m, let

μi = 𝔼[γk
i ] = 2Q(ηi) (15)

νi =
ηiexp(ηi

2/2)
π /2 1 − 2Q(ηi)

(16)

and 𝔼[βk
i ] = β; in addition,

𝔼 l(βk
i ) = 𝔼 βk

i + (1 − βk
i ) ×

ηiexp( − ηi
2/2)

π /2(1 − 2Q(ηi))
= β + 1 − β νi = ξi,

(17)

𝔼 t(γk
i , βk

i ) = 𝔼 γk
i + (1 − γk

i )l(βk
i ) = μi + 1 − μi ξi = λi (18)
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where, in fact, we have νi = 1 − (1/ 2π)∫ −ηi

ηi exp( − t2/2) dt ∈ [0, 1]
and ξi ∈ [0, 1]. Moreover, νi is one strictly decreasing function in
threshold ηi; this makes sense since the greater the threshold is, the
less information will be transmitted with high power. Then, one
can easily verify that 0 ≤ λi ≤ 1, and therefore, λi can be somewhat
physically interpreted as the normalised average information
received by the FC resulting from the power scheduling and
networked effect on transmitting yk

i  (and 1 − λi quantifies the
corresponding average information loss rate). All λis together will
govern the mean-square stability of estimation error covariance
matrix, which will be investigated in the ensuing section.
Therefore, we will refer to λi hereafter other than the specific
parameters ηi, β.

4 Statistical properties of error covariance matrix
iterations
In this section, we will focus on the statistical properties of the
error covariance matrix. Denote {γk

i } := {γk
1}0

∞, {γk
2}0

∞, …, {γk
m}0

∞

and {βk
i } := {βk

1}0
∞, {βk

2}0
∞, …, {βk

m}0
∞ . Before delving into main

results, some preliminaries will be given in the following.
Let 𝕊+

n = {S ∈ ℝn × n |S ≥ 0}. Define the function h:𝕊+
n → 𝕊+

n

and the function gλi
:𝕊+

n → 𝕊+
n as follows:

h(X) ≜ AXAT + Q (19)

gλi
(X) ≜ X − λiXci ci

TXci + ri
−1ci

TX (20)

gλi
∘ h(X) ≜ gλi

(h(X)) (21)

and here the notation ∘ denotes the function composition. Hereafter,
the composition notation will be ignored as gλi

∘ h(X) = gλi
h(X) if

no confusion raises. Therefore, the covariance update in the
proposed KF formulation in Algorithm 2 becomes

Pk |k − 1 = h(Pk − 1|k − 1)
Pk |k

1 = gλ1
(Pk |k

0 ) = gλ1
(Pk |k − 1)

Pk |k
i = gλi

(Pk |k
i − 1), 2 ≤ i ≤ m − 1,

Pk |k = Pk |k
m = gλm

(Pk |k
m − 1) .

Define also

Pk |k − 1 = h(Pk − 1|k − 1) (22)

Pk |k = ℳm(Pk |k − 1) ≜ gλm
gλm − 1

…gλ1
(Pk |k − 1) . (23)

Denote the function φ:𝕊n → 𝕊n by the transformation from
Pk − 1|k − 1 to Pk |k, namely,

Pk |k = φ(Pk − 1|k − 1) ≜ Mmh(Pk − 1|k − 1) . (24)

To analyse the convergence of the estimation error covariance
matrix, we define the modified algebraic Riccati equation (MARE)
in the following way

φ(Pk) = gλm
gλm − 1

…gλ1
h(Pk) (25)

where we used the simplified notation Pk = Pk |k, k ≥ 0. Meanwhile,
as explained, the covariance matrices {Pk}0

∞ depend non-linearly
on the specific realisation of the stochastic processes {γk

i } and {βk
i },

hence the proposed KF is stochastic and cannot be determined
offline. As a result, only statistical properties with respect to the
covariance matrices of the proposed KF can therefore be
established.

Before we will formally study convergence properties of the
MARE in (25), let us introduce some supporting lemmas. The first
one delineates some basic properties of an auxiliary function,
which provide prerequisites of proving stability of MARE [24].

 
Lemma 1 [24]: Let the function ψλi

 for i = 1, …, m be

ψλi
(li, X) = (1 − λi)X + λi EiXEi

T + liriliT (26)

where Ei = In + lici
T, ri > 0, X, Y, Z ∈ 𝕊+

n. Then the following facts
hold:

1. With given liX = − Xci(ci
TXci + ri)

−1, gλi
(X) = ψλi

(liX, X)
2. gλi

(X) = minli ψ(li, X) ≤ ψ(li, X), ∀li
3. If X ≤ Y, then gλi

(X) ≤ gλi
(Y)

4. If λi ≥ λ j, then gλi
(X) ≤ gλ j

(X)
5. If τ ∈ [0, 1], then gλi

(τX + (1 − τ)Y) ≥ τgλi
(X) + (1 − τ)gλi

(Y).

 
Proof: The proofs are analogous to those of Lemma 1 in [24]

with appropriate notation adaptations.    □
Note that the relationship between the functions gλi

 and ψλi
 has

been established. In order to investigate the convergence properties
of the MARE in (25), the relationship between the composite
function gλm

gλm − 1
…gλ1

 and the auxiliary function ψλm
ψλm − 1

…ψλ1
will be detailed next.

Let us introduce the function
𝒯s l1, l2, …, ls, X = ψλs

ψλs − 1
…ψλ1

(l1, l2, …, ls, X), 1 ≤ s ≤ m. Then,
(see (27)) where, to make the expression more concrete, we
defined λ0 = 1 and E0 = In, r0 = 0, 𝒯−1 = X, 𝒯0(X) = X.

For ease of exposition, denote

η j, s
2 = ∏

i = j + 1

s
(1 − λi)λ j, 0 ≤ j ≤ s − 1

ηs, s
2 = λs .

(28)

More importantly, it is easy to exploit the fact that the sum of s + 1
coefficients η j, s

2 , 0 ≤ j ≤ s, is identically 1, i.e.

∑
j = 0

s
η j, s

2 = ∑
j = 0

s − 1
∏

i = j + 1

s
(1 − λi)λ j + ηs, s

2 = (1 − λs) + λs = 1.

𝒯s = ψλs
(ls, 𝒯s − 1)

= (1 − λs)𝒯s − 1 + λs Es𝒯s − 1Es
T + lsrslsT

= ∑
j = 1

s − 1
∏

i = j + 1

s
(1 − λi)λ j E j𝒯 j − 1E j

T + l jr jl j
T + ∏

i = 1

s
(1 − λi)X + λs Es𝒯s − 1Es

T + lsrslsT

= ∑
j = 0

s − 1
∏

i = j + 1

s
(1 − λi)λ j E j𝒯 j − 1E j

T + l jr jl j
T + λs Es𝒯s − 1Es

T + lsrslsT

(27)
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Alternatively, (27) can be given by

𝒯−1 = X, 𝒯0 = X,

𝒯s = ∑
j = 0

s
η j, s

2 E j𝒯 j − 1E j
T+l jr jl j

T , 1 ≤ s ≤ m . (29)

Therefore,

𝒯m = ∑
j = 0

m
η j, m

2 E j𝒯 j − 1E j
T + l jr jl j

T (30)

where η0, 0
2 = 1, E0 = In, r0 = 0 and X ≥ 0, and 𝒯 j is defined in (29)

with η j, m given by (28).
Likewise in Lemma 1, we study basic properties of the function

Tm(l1, l2, …, lm, X), which will be presented in form of lemmas in
the following.

 
Lemma 2: Consider the function Tm(l1, l2, …, lm, X) as stated by

(30) with E j = In + l jc j
T. Assume X, Y, Z ∈ 𝕊+

n. Then, the following
facts hold:

1. With given
l j
X = − 𝒯 j − 1

X c j c j
TT j − 1

X c j + r j
−1, j = 1, 2, …, m, Mm(X) = Tm

l1
X, l2

X, …, lmX, X
,

where 𝒯 j − 1
X = 𝒯 j − 1(l1

X, l2
X, …, l j − 1

X , X)
2. Mm(X) = minl1, l2, …, lm 𝒯m l1, l2, …, lm, X ≤ 𝒯m l1, l2, …, lm, X

, ∀l1, l2, …, lm ∈ ℝn × 1

3. If X ≤ Y, then Mm(X) ≤ Mm Y
4. If τ ∈ [0, 1], then

Mm(τX + (1 − τ)Y) ≥ τMm(X) + (1 − τ)Mm(Y)
5. ℳm(X) ≥ ∏ j = 1

m (1 − λ j)X
6. For a random variable X,

∏ j = 1
m (1 − λ j)𝔼[X] ≤ 𝔼[Mm(X)] ≤ ℳm(𝔼[X]).

To account for Pk + 1|k = h(Pk |k), the auxiliary function ϕm can be
given in the following way:

ϕ−1 = h(X), ϕ0 = h(X),

ϕs = ∑
j = 0

s
η j, s

2 E jϕ j − 1E j
T+l jr jl j

T , s = 1, 2, …, m−1,

ϕm = ∑
j = 0

m
η j, m

2 E jϕ j − 1E j
T + l jr jl j

T .

(31)

In the ensuing part, we will present some useful properties of
ϕm(X), where X ≥ 0. These properties allow us to find a lower and
upper bound for the steady state error covariance matrix
limk → ∞ 𝔼[Pk] which is independent of the initial condition P0.

 
Lemma 3: Consider the function ϕm(l1, l2, …, lm, X) as stated by

(31) with E j = In + l jc j
T. Assume X, Y, Z ∈ 𝕊+

n. Then, the following
facts hold:

1. With given l j
X = − ϕ j − 1

X c j c j
Tϕ j − 1

X c j + r j
−1

,
j = 1, 2, …, m, φ(X) = ϕm l1

X, l2
X, …, lmX, X , where

ϕ j − 1
X = ϕ j − 1(l1

X, l2
X, …, l j − 1

X , X)
2. φ(X) = minl1, l2, …, lm ϕm l1, l2, …, lm, X ≤ ϕm l1, l2, …, lm, X ,

∀l1, l2, …, lm ∈ ℝn × 1

3. If X ≤ Y, then φ(X) ≤ φ Y
4. If τ ∈ [0, 1], then φ τX + (1 − τ)Y ≥ τφ(X) + (1 − τ)φ(Y)
5. φ(X) ≥ ∏ j = 1

m (1 − λ j)AXAT + Q

6. If X̄ ≥ φ(X̄), then X̄ > 0
7. For a random variable X,

∏ j = 1
m (1 − λ j)A𝔼[X]AT + Q ≤ 𝔼 φ(X) ≤ φ 𝔼 X .

 
Remark 3: Observe that if we substitute X = Pk |k into Fact (7)

in Lemma 3, it follows that
∏ j = 1

m (1 − λ j)A𝔼 Pk AT + Q ≤ 𝔼 φ(Pk) ≤ φ 𝔼 Pk . Since
𝔼 Pk + 1 |Pk = φ(Pk) and 𝔼 Pk + 1 = 𝔼 φ(Pk) , then
∏ j = 1

m (1 − λ j)A𝔼 Pk A′ + Q ≤ 𝔼 Pk + 1 ≤ φ 𝔼 Pk . That is, the
expected value of Pk + 1|k can be lower-bounded and upper-bounded
by ∏ j = 1

m (1 − λ j)A𝔼 Pk AT + Q and φ 𝔼 Pk  both as functions of
𝔼 Pk , respectively.

To facilitate the convergence analysis, let us define the linear
part of function ϕm(l1, l2, …, lm, X) in terms of variable X as another
auxiliary function, namely

ℒm(Y) = ∑
j = 0

m
η j, m

2 E jϕ j − 1E j
T (32)

where ϕ j − 1, j = 0, 1, …, m are defined in (31). Then, the following
lemma can be readily presented.

 
Lemma 4: Consider the function Lm(Y) as stated in (32). If

there exists a positive definite matrix Ȳ > 0 such that Ȳ > Lm(Ȳ),
then

1. ∀W ≥ 0, limk → ∞ Lm
k (W) = 0

2. Given U > 0, let the following sequence

Yk + 1 = Lm(Yk) + U

initialised at Y0 ≥ 0. Then, the sequence Yk is bounded.

 
Lemma 5: Consider the function ϕm(l1, l2, …, lm, X) defined in

(31). Assume there exist m gain matrices l̄1, l̄2, …, l̄m and a positive
definite matrix P̄ such that

P̄ > 0 and P̄ > ϕm(l̄1, l̄2, …, l̄m, P̄) .

Then, the sequence Pk = φk(P0) is bounded for any given P0. That
is, there exists a positive definite matrix MP0

> 0 depending on P0

such that

Pk ≤ MP0
, ∀k ≥ 0.

 
Lemma 6: Let Ys + 1 = f (Ys) and Zs + 1 = f (Zs). Suppose that the

function f (Y) is monotonically increase in Y. Then:

Y1 ≥ Y0 ⟹ Ys + 1 ≥ Ys, ∀s ≥ 0
Y1 ≤ Y0 ⟹ Ys + 1 ≤ Ys, ∀s ≥ 0
Y0 ≤ Z0 ⟹ Yk ≤ Zs, ∀s ≥ 0.

5 Sufficient and necessary convergence
conditions
After establishing these lemmas, we are ready to present our
sufficient and necessary conditions for the mean-squared stability
of the averaged estimation error covariance matrix.
 
Theorem 1 (Sufficient condition): Consider the function
ϕm = ∑ j = 0

m η j, m
2 E jϕ j − 1E j

T + l jr jl j
T  defined in (31), where {η j, m}

536 IET Control Theory Appl., 2017, Vol. 11 Iss. 4, pp. 531-540
© The Institution of Engineering and Technology 2016



are defined in (28). If there exist m matrices l~ j, j = 1, 2, …, m and a
positive definite matrix P~  such that

P~ > 0 and P~ > ϕm(L~ 1, L~ 2, …, L~ m, P~) . (33)

Then, the following facts are true:

1. The MARE converges for any initial condition P0 ≥ 0 and the
limit

lim
t → ∞ Pk = lim

k → ∞ ϕm
k (P0) = P̄

is independent of the initial condition P0.
2. P̄ is the unique positive definite fixed point of the MARE.

 
Proof:

i. To begin with, we verify the convergence of the MARE
sequence initialised at Q0 = 0 and therefore Qk = φk(0). Then
it directly follows that 0 = Q0 ≤ φ(0) = Q1, and in the light of
Fact (3) in Lemma 3, it gives that

Q1 = φ(Q0) ≤ φ(Q1) = Q2 .

From Lemmas 5 and 6, a monotonically non-decreasing
sequence of matrices follow directly from a simple inductive
argument and the sequence is also upper-bounded, that is,

0 = Q0 ≤ Q1 ≤ Q2 ≤ ⋯ ≤ MQ0
.

Here, one can easily verify that the monotonically non-
decreasing and upper-bounded sequence converges from the
Bolzano–Weierstrass theorem, that is, limk → ∞ Qk = P̄ where
P̄ ≥ 0 is a fixed point of the following modified Riccati
iteration

P̄ = φ P̄ . (34)

Then, we show that the modified Riccati iteration initialised at
S0 ≥ P̄ also converges to the same point P̄. By resorting to
(32), one obtains

P̄ = φ P̄ = Lm
P̄ P̄ + Q + Nm

P̄ > Lm
P̄ P̄

where Lm
P̄(Y) = ∑ j = 0

m η j, m
2 E j

P̄ϕ j − 1(E j
P̄)T. Therefore, Lm

P̄  satisfies
the condition of Lemma 4. Accordingly, we realise that

lim
k → ∞ Lm

P̄ k(Y) = 0, ∀Y ≥ 0 .

Assume that S0 ≥ P̄ and then,

S1 = φ S0 ≥ φ P̄ = P̄

where is due to the monotonic increase property of φ(X) and
(34). By induction,

Sk ≥ P̄, ∀k > 0.

Meanwhile, we have

0 ≤ Sk + 1 − P̄ = φ Sk − φ P̄
= ϕm l1

Sk, l2
Sk, …, lm

Sk, Sk − ϕm l1
P̄, l2

P̄, …, lmP̄ , P̄
≤ ϕm l1

P̄, l2
P̄, …, lmP̄ , Sk − ϕm l1

P̄, l2
P̄, …, lmP̄ , P̄

= ∑
j = 0

m
η j, m

2 E j
P̄ ϕ j

Sk − ϕ j
P̄ (E j

P̄)T

= Lm
P̄ Sk − P̄ .

Then, since limk → ∞ ℒm
P̄ Sk − P̄ = 0, it directly follows that

limk → ∞ (Sk + 1 − P̄) = 0. That is, we have shown Sk → P̄ as
k → ∞ when S0 ≥ P̄.

In the following, we are ready to justify that the modified
Riccati iteration Pk = φk(P0) converges to P̄ for all initial
conditions P0 ≥ 0. Let Q0 = 0 and also S0 = P̄ + P0. Then
consider the three Riccati iterations initialised at Q0, P0 and S0,
respectively. Clearly, Q0 ≤ P0 ≤ S0, and appealing to Lemma 6,
it gives that 0 ≤ Qk ≤ Pk ≤ Sk, ∀k ≥ 0. Given that both the
sequence Qk and the sequence Sk converge to P̄, consequently,
we have limk → ∞ Pk = P̄.

ii. Let us further postulate there exists another positive semi-
definite matrix P^ ≥ 0 such that P^ = φ P^ . Let us consider the
Riccati iteration initialised at P^ , and therefore, we can derive
the following sequence

P^ , P^ , P^ , … .

Clearly, every Riccati iteration is shown to converge to the
same limit P̄. Therefore, we have P^ = P̄.

   □
In the sequel, a toy example of a scalar-state vector-observation

system is provided to justify the existence of sufficient condition in
Theorem 1.

Example: We consider the following scalar-state vector-
observation system [31]

xk + 1 = axk + ωk

yk = cxk + νk

where a = 1.2, c = [c1, c2]′ = [1, 1]′, noise covariances are q = 1
and R = diag{r1, r2} = diag{0.1, 1}. For simplicity, consider
λ1 = λ2 = 0.6, and let l1, l2 be, for instance, such that
l1 = − 1, − 2.8276 < l2 < 0.8276 or
l2 = − 1, − 2.8276 < l1 < 0.8276. Then one can always find p > 0
such that l1, l2, p satisfy condition (33) in Theorem 1. That is, the
expected estimation error covariance matrix will converge.

In the ensuing part, we will present one necessary condition for
ensuring mean-square stability of expected estimation error
covariance matrix which extends the result in [15] to general linear
systems with data packet drops.

 
Theorem 2 (Necessary condition): Consider system (1) and

Algorithm 2. Assume that A is unstable, that A, Q1/2  is
controllable and that (C, A) is observable. If E[Pk] ≤ MP0

, ∀k ≥ 0
holds for any initial condition P0 ≥ 0, then λ1, λ2, …, λm defined in
(18) should satisfy the following condition

∏
i = 1

m
(1 − λi) ≤ 1

maxi σi(A) 2 (35)

where σi(A), i = 1, 2, …, n, are all eigenvalues of square matrix A,
and MP0

> 0 depends on the initial condition P0 ≥ 0.
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Proof: The proof follows straightforwardly from Fact (7) in
Lemma 3.   □

6 Concluding remarks
In this paper we introduced a measurement-innovation based
power scheduler for wireless sensors in terms of optimally deciding
whether to use a high or low transmission-power to communicate
scalar observations to the FC where estimation is performed. The
high transmission-power is used to transmit the well-defined
‘informative’ measurements and the opposite for ‘non-informative’
ones. Further, the high power transmission power is assumed to
lead to reliable data transmission while the low transmission power
may cause data packet drops. Under this new setup, the MMSE
estimator was derived. Convergence analysis of the averaged
estimation error covariance matrix were provided, while sufficient
and necessary conditions guaranteeing its convergence were
established for general linear stochastic systems.
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9 Appendix
 
9.1 Proof of Lemma 2

(1) Fact (1) together with Fact (2) is equivalent to showing the
minimiser and the minimum value of matrix-valued function
Ts, ∀s = 1, 2, …, m, with respect to multiple vector-valued variables
l1, l2, …, ls ∈ ℝn × 1. For convenience of notation, denote
ℓ s = l1, l2, …, ls . We first make extensive use of differential of
general matrix-valued function F with respect to a matrix (vector)
argument X [32].
 
Definition 1: Let F be a differentiable m × n real matrix function of
a p × q matrix of real variables X. The Jacobian matrix of F at X is
given by the mn × pq matrix

DXF(X) = ∂ vecF(X)
∂ vecX T .

Then vectorising the differential dTs reads that

dvecTs = J1, s dvecl1 +J2, s dvecl2+ …+ Js, s dvecls

where the Jacobian matrix of Ts with respect to li is defined as
Ji, s = Ji, s, (l1, l2, …, ls) = DliTs, 1 ≤ j ≤ s. To make the results more
concrete, let us define:

G j, j ≜ In ⊗ In = I
n2

G j, t ≜ η j, t
2 I

n2 + ∑
i = j + 1

t
ηi, t

2 Ei ⊗ Ei G j, i − 1, j + 1 ≤ t ≤ s .

Therefore, after complicated and tedious matrix computations,
the Jacobian matrices become (see equation below) where
intentionally, ηs, s

2  was not replaced by 1 for the compactness of the
structure of J j, s.

Solving J j, s = 0 yields straightforwardly that
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E jT j − 1c j + l jr j = 0 ⟹ l j, s
∗ = − T j − 1c j c j

TT j − 1c j + r j
−1

≜ l j
X

where T j − 1 = T j − 1(l1
X, l2

X, …, l j − 1
X ) = T j − 1

X .
Then similarly, by solving Js, s = 0, it gives that

EsTs − 1ci + lsrs = 0 ⟹ ls, s
∗ = − Ts − 1cs cs

TTs − 1cs + rs
−1

≜ lsX

where Ts − 1 = Ts − 1(l1
X, l2

X, …, ls − 1
X ) = Ts − 1

X . It should be clearly
noted that l j, s

∗ = l j, t
∗ , ∀t ≥ s, and then plugging l1

X, l2
X, …, lmX into (30)

verifies that Mm(X) = Tm(l1
X, l2

X, …, lmX).
(2) We show this fact by mathematical induction. When m = 1, one
can easily verify that l1

X minimises T1(l1, X). Suppose now that it
holds for m = k; that is, the point (l1

X, l2
X, …, lkX) minimises

Tk(l1, l2, …, lk, X). Then for m = k + 1,

Tk + 1 =(1−λk + 1)Tk+ λk + 1(Ek + 1TkEk + 1
T + lk + 1rk + 1lk + 1

T )

and

DTk
Tk + 1 =(1− λk + 1)(In ⊗ In) + λk + 1(Ek + 1 ⊗ Ek + 1) > 0

so one necessary condition for point (l1
∗, l2

∗, …, lk∗, lk + 1
∗ ) minimising

Tk + 1 is that the point should also minimise Tk, or, l1
∗, l2

∗, …, lk∗
minimises 𝒯k. Therefore, l1

∗, l2
∗, …, lk∗ = l1

X, l2
X, …, lkX , or, Tk = Tk

X

when minimising Tk + 1. Given that lk + 1 is independent of Tk and,
Tk

X > 0, rk + 1 > 0, Tk + 1 is quadratic and convex in lk + 1, and
therefore, the minimiser for Tk + 1 can be found by letting

Dlk + 1
Tk + 1 = λk + 1 Ek + 1Tk

Xck + 1+lk + 1rk + 1 ⊗ In + In ⊗
Ek + 1Tk

Xck + 1 + lk + 1rk + 1 = 0

which leads to the unique solution
lk + 1
X = − Tk

Xck + 1 ck + 1
T Tk

Xck + 1 + rk + 1
−1

. So l1
X, …, lkX, lk + 1

X

minimises Tk + 1. This completes the proof.
(3) Observe that the function Tm is affine in the variable X. Let
X ≤ Y, and it yields that

Mm X = Tm l1
X, l2

X, …, lmX, X
≤(a) Tm l1

Y, l2
Y, …, lmY, X

≤(b) Tm l1
Y, l2

Y, …, lmY, Y
=(c) Mm Y

where (a) is because Lm
X minimises the function Tm with respect to

variables l1, l2, …, lm, then for any ℓ m ≠ ℓ m
X, say, ℓ m = ℓ m

Y, that is,
(a) holds true. (b) is due to Tm is affine in the variable X and (c)
follows from Fact (2).
(4) Let Z = τX + (1 − τ)Y, where τ ∈ [0, 1]. Notice that (see
equation below) Assume that Ms(Z) ≥ τMs(X) + (1 − τ)Ms(Y).
Then (see equation below) Therefore, the fact holds true.
(5) Note that (see equation below) where
η0, m

2 = ∏ j = 1
m (1 − λ j), E0 = In, r0 = 0, and

E j
XT j − 1(E j

X)T + l j
Xr j(l j

X)T ≥ 0, 1 ≤ j ≤ m.
(6) The first inequality follows directly from Fact (5) and linearity
of expectation, that is,

𝔼 Mm(X) ≥ ∏
j = 1

m
(1 − λ j)𝔼 X .

The second inequality is due to Fact (4) which implies the
concavity of the function Mm(X), and therefore in the light of
Jensen's inequality, it readily gives that

Mm 𝔼[X] ≥ 𝔼 Mm(X) .

9.2 Proof of Lemma 3

We only prove Fact (6) because the others can be derived directly
from Lemma 2.

(6) According to Fact (7) above, it gives that
X̄ ≥ φ X̄ ≥ ∏ j = 1

m (1 − λ j)AX̄AT + Q. Since A, Q(1/2)  is
controllable, then there must exist an X^ > 0 subject to the
Lyapunov equation X^ = ∏ j = 1

m (1 − λ j)AX^ AT + Q if
∏ j = 1

m (1 − λ j)A is asymptotically stable. Accordingly, it follows
that

X̄ − X^ > ∏
j = 1

m
(1 − λ j)A(X̄ − X^ )AT

J j, s = η j, s
2 I

n2 + ∑
k = j + 1

s
ηk, s

2 Ek ⊗ Ek G j, k

× E jT j − 1C j′ + l jr j ⊗ In + In ⊗ E jT j − 1C j′ + l jr j ,
1 ≤ j ≤ s − 1

Js, s = ηs, s
2 EsTs − 1Cs

T + lsrs ⊗ In

+In ⊗ EsTs − 1Cs
T + lsrs

M1(Z) = T1 l1
Z, Z

= η0, 1
2 Z + η1, 1

2 In + l1
Zc1

T Z In + l1
Zc1

T T

+τl1
Zr1 l1

Z T + (1 − τ)l1
Zr1(l1

Z)T

= τ η0, 1
2 X + η1, 1

2 (In + l1
Zc1

T)X(In + l1
Zc1

T)T + l1
Zr1(l1

Z)T

+(1 − τ) η0, 1
2 Y + η1, 1

2 (In+ l1
Zc1

T)Y(In + l1
Zc1

T)T + l1
Zr1(l1

Z)T

= τT1(l1
Z, X) + (1 − τ)T1(l1

Z, Y)
≥ τT1(l1

X, X) + (1 − τ)T1(l1
Y, Y)

= τM1(X) + (1 − τ)M1(Y) .
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implying there exists a Q^ > 0 such that

X̄ − X^ = ∏
j = 1

m
(1 − λ j)A(X̄ − X^ )AT + Q^ .

Thus, X̄ − X^ > 0, or X̄ > X^ > 0. This completes the proof.

9.3 Proof of Lemma 4

(1) Note that Lm(Y) is affine in Y and Lm(Y) ≥ 0, ∀Y ≥ 0, and
Lm(Y) ≥ Lm(Z), for Y ≥ Z. There exist constants 0 ≤ r < 1 and
t ≥ 0 such that Lm(Ȳ) ≤ rȲ < Ȳ and W ≤ tȲ, respectively. Then

0 ≤ Lm
k (W) ≤ tLm

k (Ȳ) ≤ trkȲ . (36)

Therefore, we have 0 ≤ limk → ∞ ℒm
k (W) ≤ limk → ∞ trkȲ → 0

given that 0 ≤ r < 1.
(2) Based on (36) above, for any initialisation Y0 ≥ 0 and any
U > 0, there always exist two constants tY0

≥ 0 and tU ≥ 0 such
that Y0 ≤ tY0

Ȳ and U ≤ tUȲ, which are independent of k.
Therefore, similar arguments in (36) lead to

Yk = Lm
k (Y0) + ∑

s = 0

k − 1
Lm

s (U) ≤ tY0
rkȲ + ∑

s = 0

k − 1
tUrsȲ

= tY0
rk + tU

1 − rk

1 − r Ȳ .

Thus, the result on boundedness of the sequence Yk holds true.

9.4 Proof of Lemma 5

Observe that ϕm(l1, l2, …, lm, Y) = Lm(Y) + Q + Nm, where
Nm := ∑ j = 0

m η j, m
2 E jN j − 1E j′ + l jr jl j

T ≥ 0 with N0 = 0, Q ≥ 0, and
r j ≥ 0, j = 0, 1, …, m. Therefore,

P̄ > ϕm(l̄1, l̄2, …, l̄m, P̄) = Lm(P̄) + Q + Nm ≥ Lm(P̄) .

That is, P̄ > Lm(P̄). Thus, Lm(Y) satisfies the condition of Lemma
4. Considering definition of φ(Pk), it yields that

Pk + 1 = φ(Pk) ≤ ϕm(l1, l2, …, lm, Pk)
= Lm(Pk) + Q + Nm

= Lm(Pk) + U

where U := Q + Nm ≥ 0. Then based on fact 2) in Lemma 4, the
sequence Pk is bounded for any k ≥ 0.

9.5 Proof of Lemma 6

The three statements can be similarly proved by mathematical
induction. Thus, due to page limitation, we here only prove the first
one. Since Y1 ≥ Y0, then the first statement is true for k = 0. Then
assume that Yt + 1 ≥ Yt holds, so Yt + 2 = f (Yt + 1) ≥ f (Yt) = Yt + 1

holds owing to the monotonicity of function f (Y).

Ms + 1(Z) = Ts + 1(l1
Z, l2

Z, …, ls + 1
Z , Z)

= (1 − λs + 1)Ms(Z) + λs + 1

× (In + ls + 1
Z cs + 1

T )Ms(Z)(In + ls + 1
Z cs + 1

T )T + ls + 1
Z rs + 1(ls + 1

Z )T

≥ (1 − λs + 1) τMs(X) + (1 − τ)Ms(Y)
+λs + 1 (In + ls + 1

Z cs + 1
T ) Ms(X)

+(1 − τ)Ms(Y) (In + ls + 1
Z cs + 1

T )T

+(τ + 1 − τ)ls + 1
Z rs + 1(ls + 1

Z )T

= τTs + 1(l1
X, l2

X, …, lsX, ls + 1
Z , X)

+(1 − τ)Ts + 1(l1
Y, L2

Y, …, lsY, ls + 1
Z , Y)

≥ τTs + 1(l1
X, l2

X, …, lsX, ls + 1
X , X)

+(1 − τ)Ts + 1(l1
Y, l2

Y, …, lsY, ls + 1
Y , Y)

≥ τMs + 1(X) + (1 − τ)Ms + 1(Y) .

Mm(X) = Tm l1
X, l2

X, …, lmX, X
= η0, m

2 E0XE0
T + l0r0l0

T

+ ∑
j = 1

m
η j, m

2 E j
XT j − 1(E j

X)T + l j
Xr j(l j

X)T

≥ ∏
j = 1

m
(1 − λ j)X
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