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Abstract—Distribution systems will be critically challenged by
reverse power flows and voltage fluctuations due to the integra-
tion of distributed renewable generation, demand response, and
electric vehicles. Yet the same transformative changes coupled
with advances in microelectronics offer new opportunities for
reactive power management in distribution grids. In this context
and considering the increasing time-variability of distributed
generation and demand, a scheme for stochastic loss minimization
is developed here. Given uncertain active power injections, a
stochastic reactive control algorithm is devised. Leveraging the
recent convex relaxation of optimal power flow problems, it is
shown that the subgradient of the power losses can be obtained
as the Lagrange multiplier of the related second-order cone
program (SOCP). Numerical tests on a 47-bus test feeder with
high photovoltaic penetration corroborates the power efficiency
and voltage profile advantage of the novel stochastic method over
its deterministic alternative.

Index Terms—Voltage regulation, power loss minimization,
stochastic approximation, second-order cone programming, con-
vex relaxation, optimal power flow.

I. INTRODUCTION

Power distribution systems undergo a transformative
change. The integration of photovoltaic (PV) sources, de-
mand response programs, and plug-in hybrid electric vehicles
(PHEV), inflict high variability in grid operation. Active power
generation and load become highly variable leading to abrupt
bus voltage magnitude variations. Reactive power management
has been traditionally performed by utility-owned controllable
devices, such as tap-changing under load transformers and
shunt capacitors [16], [1], [22]. Operational costs, discrete
control actions, and slow response times are the factors lim-
iting the use of these devices alone for voltage regulation
in distribution system with renewables [12]. Compensating
for reactive power along with the control capabilities of
distribution generation (DG) units have been advocated as a
viable reactive control solution; see e.g., [24], [21]. Albeit
current standards call for unit power factor operation [15], the
power electronics grid interfaces (inverters) of rooftop PVs
can be commanded to provide reactive injections as well [20].

Reactive power compensation via DG units has been an
active research area lately. A multi-agent approach has been
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proposed in [2]. Voltage regulation was cast as a learning
problem in [25]. Control policies based on the approxi-
mate LinDistFlow model have been developed in [23], [24];
while [9] follows a successive convex approximation approach
for voltage regulation. Upon linearizing the power flow equa-
tions, a two-layer scheme is proposed in [20]. A consensus-
type algorithm is pursued in [5] after approximating power
losses as a quadratic function of reactive power injections.
Localized reactive power injection updates are reported in [27].

The previous schemes rely on linearizations of the actual
system model. Being an instance of the optimal power flow
problem (OPF), reactive power management is a non-convex
problem, but its convex relaxations have been successful;
see [18] for a review. In [10], [11], the OPF for radial
distribution grids is surrogated by a second-order cone pro-
gram (SOCP) building on the branch flow model advocated
in [3], [4]. Sufficient conditions guaranteeing that the convex
relaxation is exact, ensure that solving the relaxed problem
is equivalent to solving the original non-convex one [10],
[11], [26], [13]. A centralized approach for inverter VAR
control using the SOCP relaxation has been devised in [12],
while a distributed algorithm based on a semidefinite program
relaxation can be found in [17].

The approaches developed so far assume that active injec-
tions are precisely known by the distribution energy man-
agement system (D-EMS) and remain constant throughout
the reactive control interval. However, the D-EMS acquires
active injections via noisy measurements, uncertain forecasts,
or delayed state estimates. Further, in distribution grids with
renewables, active injections fluctuate rapidly unless the con-
trol interval is chosen really short. Although commercially
available DG solutions are equipped with sensing, control,
and communication functionalities (see [20] and references
therein); short control intervals come with higher computation
and communication demands. In this context, we propose a
stochastic framework for power loss minimization by viewing
active power injections as random. The average rather than the
instantaneous power loss is minimized over the controllable
reactive injections, while voltages are maintained withing
prescribed intervals. After showing that the subgradient of the
instantaneous power losses is provided by the Lagrange multi-
pliers of the related SOCP problem, a stochastic approximation
algorithm is derived. Numerical tests indicate that the novel
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scheme attains lower losses and a smoother voltage profile
over the instantaneous alternative.

Paper outline. After the branch flow model is presented in
Section II, the problem of stochastic reactive power compen-
sation is formulated in Section III. A stochastic approximation
algorithm is developed in Section IV, its performance advan-
tage over an instantaneous reactive control is corroborated in
Section V, and conclusions are drawn in Section VI.

II. SYSTEM MODELING

Consider a power distribution grid consisting of N+1 buses.
Due to its radial nature, the grid can be modeled as a tree graph
T := (N

o

,L), where N
o

:= {0, . . . , N} and |L| = N . The
tree is rooted at the substation bus indexed by i = 0. For
every bus i 2 N

o

, let v

i

be its squared voltage magnitude,
V
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e

j✓

i its complex voltage, and s

i

= p
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+ jq
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the
complex power injected into bus i. Since every non-root bus
i 2 N := {1, . . . , N} has a unique parent bus denoted by
⇡

i

, the line (⇡
i

, i) feeding bus i can be simply indexed by
i with i 2 L := {1, . . . , N}; see Fig. 1. If z
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= r
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denotes the impedance of line i, and I
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current flowing from ⇡
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to i with l
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being the squared current
magnitude, then Ohm’s law dictates that
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for all lines i 2 L. The complex power flow on line i can be
expressed as
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for every line i 2 L. The power flow received at the i-side of
line (⇡
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, i) can be shown to be S

i

� z
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. Finally, conservation
of energy implies that per bus i 2 N
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where C
i

:= {k 2 N : ⇡
k

= i} is the set of the children nodes
for bus i. Equations (1)-(3) constitute a complete AC model
for the grid. However, to derive efficient algorithms, the so
termed branch flow model will be utilized here instead [3], [4].
The branch flow model ignores voltage phases {✓

i

}
i2N

o

and
current phases {�

i

}
i2L by squaring (1) and (2). The obtained

model is described by the equations (i = 1, . . . , N)
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and recall that l

i

and v

i

are the squared amplitudes for the
line i’s current and bus i’s voltage, accordingly. Equations
(4)-(6) are accompanied with the initial conditions v0 = 1,
p0 =

P
k2C0

P

k

, and q0 =
P

k2C0
Q

k

.
Collect all nodal quantities related to non-root buses in

vectors p := [p1 · · · p

N

]0, q := [q1 · · · q

N

]0, and v :=

Fig. 1. Bus i and its unique parent ⇡i are connected via line i. Variables
(Si, Ii, zi) represent the complex power, current, and impedance on line i,
while (si, Vi) the complex power injection and voltage on bus i, respectively.

[v1 · · · v

N

]0, where the prime 0 denotes vector transposition.
Likewise, for line quantities define P := [P1 · · · P

N

]0,
Q := [Q1 · · · Q

N

]0, and l := [l1 · · · l

N

]0. Bus voltage
magnitudes are allowed to lie within a prespecified range, i.e.,
v

i

2 [v
i

, v

i

] for every i 2 N . Upon setting v := [v1 · · · v

N

]0

and v := [v1 · · · v

N

]0, voltage regulation constraints can be
compactly expessed as

v 2 V := {v : v � v � v} (8)

where � denotes an entry-wise vector inequality. Building on
the branch flow model of (4)-(8), our novel reactive control
scheme is formulated next.

III. PROBLEM STATEMENT

The active and reactive power injection at bus i can be
decomposed into its generation and consumption components,
that is p

i

= p

g

i

� p

c

i

and q

i

= q

g

i

� q

c

i

. For a load bus, there is
no generation (pg

i

= q

g

i

= 0), the consumed active power is
p

c

i

� 0, and its reactive power q

c

i

� 0 is typically related to
p

c

i

through a constant power factor. When it comes to a DG
bus (e.g., a house or an industrial facility equipped with PVs
or a wind turbine), both active and reactive powers could be
generated as well. For a bus hosting a shunt capacitor, p

i

= 0
and q

g

i

> 0.
The grid operation can be divided into short time periods

indexed by t, over which electrical quantities can be initially
assumed to remain constant. If (p

t

,q
t

) are the active and
reactive power injections in all but the root buses during the
control interval t, the related power loss is expressed as

f(p
t

,q
t

) :=
NX
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p
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=
NX

i=1

r

i

l

i,t

(9)

where the second equality follows readily from (4).
Given the active power injections p

t

and the correspond-
ing reactive load demands qc

t

, conventional reactive power
management aims at choosing qg

t

so that power losses are
minimized and voltages are maintained within V . Minimizing
power losses on a per time t basis would be the optimal
policy under two conditions: (p

t

,qc

t

) are precisely known
and remain constant over the operation interval t. Unfortu-
nately, such operating conditions will be hardly met in future
distribution grids: High penetration of renewables will incur
time-varying active and reactive power injections. Moreover,
in low-inertia microgrids, the lack of droop controllers would



further challenge voltage regulation. But even in a slow time-
varying setup where the actual (p

t

,qc

t

) are relatively constant
over the time period t, the D-EMS will only have available
noise-contaminated observations (e.g., either via direct mea-
surements or through the delayed output of the power system
state estimator).

Based on these data, a stochastic optimization approach is
pursued here. Active and reactive power injections (p

t

,qc

t

)
are modeled as random variables drawn independently across
time from a probability density function. The control task is
to minimize the average grid power loss E(p

t

,qc

t

)[f(pt

,q
t

)]
by properly setting the control variables qg . Recalling that
q
t

= qg � qc

t

, define for notational brevity

f

t

(qg) := f(p
t

,qg � qc

t

).

A stochastic power loss minimization approach entails finding

q̂g := arg min
qg2Q

E[f
t

(qg)] (10)

where Q is the feasible region for qg that is assumed to be
convex. An algorithm for solving (10) is presented next.

IV. POWER LOSS MINIMIZATION SCHEME

Assuming E[f
t

(qg)] to be convex, standard projected sub-
gradient descent can solve (10) by iteratively updating

q̂g

k+1 := [q̂g

k

� µ1gk

]Q (11)

where g
k

belongs to the subdifferential @E[f
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(qg

k

)] [6], the
operator [·]Q stands for the projection onto the feasible set Q,
and µ1 > 0 is a sufficiently small step size. When the feasible
set is a box, i.e., Q = [qg

,qg], the i-th entry of the projected
vector zQ := [z]Q is simply
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8
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Even if the joint probability density function of (p
t

,qc

t

) were
known, evaluating the expectation in (11) would be non-
trivial. To practically address these challenges, a stochastic
approximation approach is advocated next.

Under the stochastic approximation framework [19], q̂g is
updated as soon as a new datum (p

t

,qc

t

) becomes available. In
other words, the update index k coincides with the operation
time t. Even more critically though, the update at time t de-
pends only on a subgradient g

t

belonging to the subdifferential
@f

t

(q̂g) evaluated at q̂g

t

. Precisely, reactive power at DG units
can be updated as

q̂g

t+1 := [q̂g

t

� µ2gt

]Q . (13)

Implementing the reactive control scheme of (13) involves
finding g

t

2 @f

t

(q̂g

t

) and choosing the step size µ2 > 0.
To find a subgradient, recall that f

t

(q̂g

t

) is the loss dissipated
on distribution lines when injecting (p

t

, q̂g

t

�qc

t

) into the grid.
Provided that (p

t

, q̂g

t

�qc

t

) is feasible, function f

t

(q̂g

t

) depends
on the underlying current magnitudes [cf. (9)]. Given power in-
jections (p,q), if the substation can provide sufficient (p0, q0)

and voltages are maintained in the prescribed operation range,
meaning v 2 V; there exists a unique grid operating point
(p0, q0,p,q,v,P,Q, l) satisfying the nonlinear equations in
(4)-(7) [8]. If the equalities in (7) are relaxed to inequalities,
then (p0, q0,v,P,Q, l) lies in a convex set [10], [11], [12].
This convex set is represented by the linear equalities (4)-(6),
the set V , and the second-order cone constraints
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for all i 2 L. Under different technical conditions (for
example, see [10], [11], [26], [13]), the minimizer of the
convex optimization problem

f(p,q) = min
P,Q,l

p0,q0,v

LX

i=1

r

i

l

i

(14a)

s.to p

i

=
X

k2C
i

P

k

� (P
i

� r

i

l

i

), i 2 N (14b)

q

i

=
X

k2C
i

Q

k

� (Q
i

� x

i

l

i

), i 2 N (14c)

v

i

= v

⇡

i

+ (r2
i

+ x

2
i

)l
i

� 2(r
i

P

i

+ x

i

Q

i

),

i 2 N (14d)

l

i

� P

2
i

+Q

2
i

v

⇡

i

, i 2 L (14e)

v 2 V (14f)

satisfies the SOCP constraints in (14e) with equality. When
this occurs, the convex relaxation is said to be exact. In that
case, the (p0, q0,P,Q, l,v) minimizing (14) corresponds to
the underlying operating point, and thus f(p,q) is the actual
power loss. Henceforth, it will be assumed that:

(a1) (p,q) is feasible; and
(a2) the convex relaxation in (14) is exact.

Assumptions (a1)-(a2) are verified during our numerical tests.
Since q = qg � qc

t

and qc

t

is fixed, finding a subgradient
of f

t

(qg

t

) boils down to finding a subgradient of f

t

(q). The
important observation here is that the function f

t

(q) can be
alternatively expressed as

f

t

(q) = min
z

c0
t

z (15a)

s.to z 2 Z
t

(15b)
Az = q (15c)

after identifying z := [p0 q0 P0 Q0 l0 v0]0 and c
t

:=
[00

2L+2 r0 00
N

]0, where 0
N

is the all-zeros vector of dimension
N and r is the L⇥1 vector of line resistances. The constraint
(15c) models the linear equalities in (14c), and all other
constraints of (14) are abstractly denoted by the convex set
Z

t

in (15b). Based on this alternative expression of f
t

(q), the
next two results proved in the Appendix can be obtained.

Lemma 1. Under (a2), function E[f
t

(qg)] is convex on Q.

Lemma 2. If the convex relaxation in (14) is exact and
strong duality holds, then the negative vector of the Lagrange



TABLE I
LINE DATA FOR THE 47-BUS DISTRIBUTION FEEDER

From To ri xi From To ri xi

Bus Bus [⌦] [⌦] Bus Bus [⌦] [⌦]
1 2 0.259 0.808 11 12 0.076 0.046
2 3 0.031 0.092 11 47 0.031 0.015
2 13 0 0 15 16 0.107 0.015
3 4 0.046 0.092 15 18 0.046 0.015
3 14 0.092 0.031 16 17 0 0
3 15 0.214 0.046 18 19 0 0
4 5 0.107 0.183 20 21 0.122 0.092
4 20 0.336 0.061 20 25 0.214 0.046
5 6 0.015 0.031 21 22 0.198 0.046
5 26 0.061 0.015 21 24 0 0
6 7 0.031 0.046 22 23 0 0
6 27 0.168 0.061 27 28 0.107 0.031
7 8 0.015 0.015 27 31 0.046 0.015
7 32 0.076 0.015 28 29 0.107 0.031
8 9 0.031 0.031 29 30 0.061 0.015
8 35 0.076 0.015 32 33 0.046 0.015
8 39 0.244 0.046 33 34 0.031 0
8 40 0.046 0.015 35 36 0.076 0.015
8 41 0.107 0.031 35 37 0.076 0.046
9 10 0.015 0.015 35 38 0.107 0.015
9 42 0.153 0.046 42 43 0.061 0.015
10 11 0.107 0.076 43 44 0.061 0.015
10 46 0.229 0.122 43 45 0.061 0.015

TABLE II
BUS DATA FOR THE 47-BUS DISTRIBUTION FEEDER

Load data Shunt capacitors
Bus Peak Bus Peak Bus Nameplate capacity

[MVA] [MVA] [MVAR]
1 30 31 0.07 1 6.0

11 0.67 32 0.13 3 1.20
12 0.45 33 0.27 37 1.80
14 0.89 34 0.20 47 1.80
16 0.07 36 0.27 PV generators
18 0.67 38 0.45 Bus Nameplate capacity
21 0.45 39 1.34 [MW]
22 2.23 40 0.13 13 1.50
25 0.45 41 0.67 17 0.40
26 0.20 42 0.13 19 1.50
28 0.13 44 0.45 23 1.00
29 0.13 45 0.20 24 2.00
30 0.20 46 0.45

Base information
Voltage base VB = 12.35KV
Power base PB = 1000KVA

multipliers corresponding to the linear constraints in (15c)
�� belongs to @f

t

(q).

Lemma 2 asserts that for the update in (13), it suffices to find
the Lagrange multipliers corresponding to (14e) while solving
(14) for p = pg

t

� pc

t

and q = q̂g

t

� qc

t

.

V. NUMERICAL TESTS

The merits of the novel stochastic reactive power compen-
sation scheme over its deterministic counterpart is evaluated
using the 47-bus distribution feeder shown in Fig. 2. This
circuit is a simplified model of an industrial distribution
feeder of South California Edison with high penetration of
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Fig. 3. Actual power losses for the noisy (pg
,pc

,qc) model.

renewables represented by 5 PV systems [12]. Line impedance
data are listed in Table I, while bus data including the peak
load demand, the nameplate capacity of PV generators and
shunt capacitors, as well as the system base information are
presented in Table II. All loads are assumed to operate at a
constant power factor of 0.8.

A control period of 1 hour is considered and it is divided
in 60 grid operation intervals. For each interval, the D-EMS
collects active and reactive injections from load buses, as well
as active injections from DG buses. Without loss of generality
and to model higher renewable integration, shunt capacitors
are considered controllable DG units as well. The reactive
power injections from DG units are determined: (i) by solving
(14) on a per-minute basis (henceforth deterministic scheme);
and (ii) via the devised stochastic scheme. The step size µ2

was empirically set to 1. It is worth mentioning that all SOCP
relaxations were feasible and exact.

In our first experiment, injections (pg

,pc

,qc) are consid-
ered fixed throughout the 1-hour interval. At each minute
though, the D-EMS observes a noise-corrupted version of pg

as pg

t

= pg+⌘
t

, where the entries of ⌘
t

are independently and
uniformly drawn from [�0.05, 0.05]. Likewise, noisy readings
are collected for pc and qc. Even though q̂g

t

is decided upon
the aforementioned noise-corrupted injections, the power loss
experienced is apparently f(pg � pc

, q̂g

t

� qc).
Figure 3 depicts the actual power losses for the two re-

active control schemes, and verifies the efficiency gain of
the stochastic one. The corresponding voltage fluctuations are
depicted in Fig. 4, where it is corroborated that the proposed
algorithm yields smoother voltage profiles. Figure 5 shows the
actual power losses experienced by the two control schemes,
after they have been averaged over 30 independent noise
realizations. The deterministic scheme suffers an average value
of 35.35KW, whereas the stochastic one converges to an
average value of 35.26KW.



Fig. 2. Schematic diagram of a 47-bus distribution feeder with high penetration of photovoltaics. The 6 loads attached to the substation bus (indexed as bus
1 here) model additional feeders.
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Fig. 4. Voltage magnitude across buses No. 5, 12, 29, 34, 39, and 45, for
the noisy (pg

,pc
,qc) model.

Under a more realistic setup, problem parameters pg , pc,
and qc, are assumed to follow a random walk model. The
injection at minute t + 1 equals the value at minute t plus
a zero-mean white Gaussian noise having standard deviation
0.004. This scenario models inevitable sensing, computation,
and communication delays: reactive compensation q̂g

t

is based
on (pg

t

,pc

t

,qc

t

); yet the grid experiences losses f(pg

t+1 �
pc

t+1, q̂
g

t

�qc

t+1). The power losses averaged over 30 indepen-
dent realizations are shown in Figure 6 and demonstrate that
the stochastic algorithm indeed outperforms the deterministic
reactive power compensation scheme.
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Fig. 5. Actual power losses averaged over 30 independent realizations for
the noisy (pg
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,qc) model.

VI. CONCLUDING REMARKS

The problem of power loss minimization has been consid-
ered in this work. Uncertainty and variability in the distribution
system state as well as sensing, communication, and control
delays, call for stochastic solutions. Building on the recent
advances on the convex relaxations of the OPF task, a novel
stochastic approximation scheme was developed. Reactive
injections were updated according to the Lagrange multipli-
ers of the associated SOCP problem. Incorporating voltage
regulating transformers, choosing the step size, assessing the
effects of grid topology, and performing the updates more
efficiently, are some of our current research directions.
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APPENDIX

Proof of Lemma 1: It suffices to show that f

t

(qg) is
convex on Q for every t. The latter follows easily since under
(a2), the equality in (15a) holds and the function in the right-
hand side of (15a) is known to be convex (its epigraph is a
convex set [6, Sec. 5.6.1]).

Proof of Lemma 2: The exactness of (14) implies the
feasibility of (15) and the finiteness of the optimal value
f

t

(q). By dualizing only the linear constraint, the Lagrangian
function of (15) is

L(z;�) := c0
t

z+ �0(Az� q)

and the corresponding dual function is

g(�) = min
z2Z

t

L(z;�).

Let z1 and � be optimal primal and dual variables for f
t

(q),
respectively. Further, let z2 be the optimal primal variable for
f

t

(q+ v) for some v, which means that z2 2 Z
t

and Az2 =
q+ v. It holds that

c0
t

z1 = g(�)  c0
t

z2 + �0(Az2 � q) = c0
t

z2 + �0v (16)

where the first equality comes from strong duality; the inequal-
ity holds because g(�)  L(z;�) for every z 2 Z

t

, and hence
for z2; and the last equality holds because Az2 = q+ v. The
inequality in (16) implies that f

t

(q+ v) � f

t

(q) � �0v for
any v, proving that �� 2 @f

t

(q); see e.g., [6].
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