
IEE
E P

ro
of

IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING 1

Deep Reinforcement Learning for Adaptive Caching
in Hierarchical Content Delivery Networks

Alireza Sadeghi , Student Member, IEEE, Gang Wang , Member, IEEE,

and Georgios B. Giannakis , Fellow, IEEE

Abstract—Caching is envisioned to play a critical role1

in next-generation content delivery infrastructure, cellular2

networks, and Internet architectures. By smartly storing the most3

popular contents at the storage-enabled network entities during4

off-peak demand instances, caching can benefit both network5

infrastructure as well as end users, during on-peak periods.6

In this context, distributing the limited storage capacity across7

network entities calls for decentralized caching schemes. Many8

practical caching systems involve a parent caching node con-9

nected to multiple leaf nodes to serve user file requests. To model10

the two-way interactive influence between caching decisions at the11

parent and leaf nodes, a reinforcement learning (RL) framework12

is put forth. To handle the large continuous state space, a scal-13

able deep RL approach is pursued. The novel approach relies14

on a hyper-deep Q-network to learn the Q-function, and thus15

the optimal caching policy, in an online fashion. Reinforcing the16

parent node with ability to learn-and-adapt to unknown poli-17

cies of leaf nodes as well as spatio-temporal dynamic evolution18

of file requests, results in remarkable caching performance, as19

corroborated through numerical tests.20

Index Terms—Caching, deep RL, deep Q-network, next-21

generation networks, function approximation.22

I. INTRODUCTION23

IN LIGHT of the tremendous growth of data traffic24

over both wireline and wireless communications, next-25

generation networks including future Internet architectures,26

content delivery infrastructure, and cellular networks stand27

in need of emerging technologies to meet the ever-increasing28

data demand. Recognized as an appealing solution is caching,29

which amounts to storing reusable contents in geographi-30

cally distributed storage-enabled network entities so that future31

requests for those contents can be served faster. The ratio-32

nale is that unfavorable shocks of peak traffic periods can be33

smoothed by proactively storing ‘anticipated’ highly popular34

contents at those storage devices and during off-peak peri-35

ods [1], [2]. Caching popular content is envisioned to achieve36

Manuscript received February 26, 2019; revised June 30, 2019; accepted
August 10, 2019. This work was supported in part by NSF grants 1711471,
1514056, and 1901134. The associate editor coordinating the review of this
article and approving it for publication was H. T. Dinh. (Corresponding
author: Gang Wang.)

The authors are with the Digital Technology Center, University
of Minnesota, Minneapolis, MN 55455 USA, and also with the
Department of Electrical and Computer Engineering, University of
Minnesota, Minneapolis, MN 55455 USA (e-mail: sadeghi@umn.edu;
gangwang@umn.edu; georgios@umn.edu).

Digital Object Identifier 10.1109/TCCN.2019.2936193

major savings in terms of energy, bandwidth, and cost, in 37

addition to user satisfaction [1]. 38

To fully unleash its potential, a content-agnostic caching 39

entity has to rely on available observations to learn what 40

and when to cache. Toward this goal, contemporary machine 41

learning and artificial intelligence tools hold the promise to 42

empower next-generation networks with ‘smart’ caching con- 43

trol units, that can learn, track, and adapt to unknown dynamic 44

environments, including space-time evolution of content popu- 45

larities and network topology, as well as entity-specific caching 46

policies. 47

Deep neural networks (DNNs) have lately boosted 48

the notion of “learning from data” with field-changing 49

performance improvements reported in diverse artificial intelli- 50

gence tasks [3]. DNNs can cope with the ‘curse of dimension- 51

ality’ by providing compact low-dimensional representations 52

of high-dimensional data [4]. Combining deep learning with 53

RL, deep (D) RL has created the first artificial agents to 54

achieve human-level performance across many challenging 55

domains [5], [6]. As another example, a DNN system was 56

built to operate Google’s data centers, and shown able to con- 57

sistently achieve a 40% reduction in energy consumption for 58

cooling [7]. This system provides a general-purpose frame- 59

work to understand complex dynamics, which has also been 60

applied to address other challenges including, e.g., dynamic 61

spectrum access [8], multiple access and handover con- 62

trol [9], [10], as well as resource allocation in fog-radio access 63

networks [11], [12] or software-defined networks [13], [14]. 64

A. Prior Art on Caching 65

Early approaches to caching include the least recently used 66

(LRU), least frequently used (LFU), first in first out (FIFO), 67

random replacement (RR) policies, and their variants. Albeit 68

simple, these schemes cannot deal with the dynamics of con- 69

tent popularities and network topologies. Recent efforts have 70

gradually shifted toward developing learning and optimization 71

based approaches that can ‘intelligently’ manage the cache 72

resources. For unknown but time-invariant content populari- 73

ties, multi-armed bandit online learning was pursued in [15]. 74

Yet, these methods are generally not amenable to online 75

implementation. To serve delay-sensitive requests, a learning 76

approach was developed in [16] using a pre-trained DNN to 77

handle a non-convex problem reformulation. 78

In realistic networks however, popularities exhibit dynam- 79

ics, which motivate well the so-termed dynamic caching. A 80

2332-7731 c© 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-1280-7592
https://orcid.org/0000-0002-7266-2412
https://orcid.org/0000-0002-0196-0260

IEE
E P

ro
of

2 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING

Poisson shot noise model was adopted to approximate the81

evolution of popularities in [17], for which an age-based82

caching solution was developed in [18]. RL based methods83

have been pursued in [19], [20], [21], [22]. Specifically, a84

Q-learning based caching scheme was developed in [19] to85

model global and local content popularities as Markovian86

processes. Considering Poisson shot noise popularity dynam-87

ics, a policy gradient RL based caching scheme was devised88

in [20]. Assuming stationary file popularities and service costs,89

a dual-decomposition based Q-learning approach was pursued90

in [21]. Albeit reasonable for discrete states, these approaches91

cannot deal with large continuous state-action spaces. To cope92

with such spaces, DRL approaches have been considered93

for content caching in, e.g., [6], [22], [23], [24], [25], [26].94

Encompassing finite-state time-varying Markov channels, a95

deep Q-network approach was devised in [22]. An actor-critic96

method with deep deterministic policy gradient updates was97

used in [23]. Boosted network performance using DRL was98

documented in several other applications, such as connected99

vehicular networks [24], and smart cities [25].100

The aforementioned works focus on devising caching poli-101

cies for a single caching entity. A more common setting102

in next-generation networks however, involves a network of103

interconnected caching nodes. It has been shown that con-104

sidering a network of connected caches jointly can further105

improve performance [27], [28]. For instance, leveraging106

network topology and the broadcast nature of links, the coded107

caching strategy in [27] further reduces data traffic over a108

network. This idea has been extended in [29] to an online109

setting, where popularities are modeled Markov processes.110

Collaborative and distributed online learning approaches have111

been pursued [28], [30], [31]. Indeed, today’s content delivery112

networks such as Akamai [32], have tree network structures.113

Accounting for the hierarchy of caches has become a common114

practice in recent works; see also [33], [34], [35]. Joint rout-115

ing and in-network content caching in a hierarchical cache116

network was formulated in [33], for which greedy schemes117

with provable performance guarantees can be found in [34].118

We identify the following challenges that need to be119

addressed when designing practical caching methods for next-120

generation networks.121

c1) Networked Caching: Caching decisions of a node, in122

a network of caches, influences decisions of all other123

nodes. Thus, a desired caching policy must adapt to the124

network topology and policies of neighboring nodes.125

c2) Complex Dynamics: Content popularities are random126

and exhibit unknown space-time, heterogeneous, and127

often non-stationary dynamics over the entire network.128

c3) Large Continuous State Space: Due to the shear size of129

available content, caching nodes, and possible realiza-130

tions of content requests, the decision space is huge.131

B. This Work132

Prompted by the recent interest in hierarchical caching, this133

paper focuses on a two-level network caching, where a par-134

ent node is connected to multiple leaf nodes to serve end-user135

file requests. Such a two-level network constitutes the build-136

ing block of the popular tree hierarchical cache networks in,137

Fig. 1. A network of caching nodes.

Fig. 2. A hierarchical tree network cache system.

e.g., [32]. To model the interaction between caching decisions 138

of parent and leaf nodes along with the space-time evolution 139

of file requests, a scalable DRL approach based on hyper deep 140

Q-networks (DQNs) is developed. As corroborated by exten- 141

sive numerical tests, the novel caching policy for the parent 142

node can adapt itself to local policies of leaf nodes and space- 143

time evolution of file requests. Moreover, our approach is 144

simple-to-implement, and performs close to the optimal policy. 145

II. MODELING AND PROBLEM STATEMENT 146

Consider a two-level network of interconnected caching 147

nodes, where a parent node is connected to N leaf nodes, 148

indexed by n ∈ N := {1, . . . ,N }. The parent node is con- 149

nected to the cloud through a (typically congested) back-haul 150

link; see Fig. 1. One could consider this network as a part of 151

a large hierarchical caching system, where the parent node is 152

connected to a higher level caching node instead of the cloud; 153

see Fig. 2. In a content delivery network for instance, edge 154

servers (a.k.a. points of presence or PoPs) are the leaf nodes, 155

and a fog server acts as the parent node. Likewise, (small) base 156

stations in a 5G cellular network are the leaf nodes, while a 157

serving gate way (S-GW) may be considered as the parent 158

node; see also [36, p. 110]. 159

All nodes in this network store files to serve file requests. 160

Every leaf node serves its locally connected end users, by 161

providing their requested files. If a requested content is locally 162

available at a leaf node, the content will be served immediately 163

at no cost. If it is not locally available due to limited caching 164

capacity, the content will be fetched from its parent node, at 165

a certain cost. Similarly, if the file is available at the parent 166

node, it will be served to the leaf at no cost; otherwise, the 167

file must be fetched from the cloud at a higher cost. 168

To mitigate the burden with local requests on the network, 169

each leaf node stores ‘anticipated’ locally popular files. In 170

IEE
E P

ro
of

SADEGHI et al.: DEEP RL FOR ADAPTIVE CACHING IN HIERARCHICAL CONTENT DELIVERY NETWORKS 3

addition, this paper considers that each parent node stores171

files to serve requests that are not locally served by leaf nodes.172

Since leaf nodes are closer to end users, they frequently receive173

file requests that exhibit rapid temporal evolution at a fast174

timescale. The parent node on the other hand, observes aggre-175

gate requests over a large number of users served by the N176

leaf nodes, which naturally exhibit smaller fluctuations and177

thus evolve at a slow timescale.178

This motivated us to pursue a two-timescale approach to179

managing such a network of caching nodes. To that end, let180

τ = 1, 2, . . . denote the slow time intervals, each of which is181

further divided into T fast time slots indexed by t = 1, . . . ,T ;182

see Fig. 3 for an illustration. Each fast time slot may be,183

e.g., 1-2 minutes depending on the dynamics of local requests,184

while each slow time interval is a period of say 4-5 minutes.185

We assume that the network state remains unchanged during186

each fast time slot t, but can change from t to t + 1.187

Consider a total of F files in the cloud, which are col-188

lected in the set F = {1, . . . ,F}. At the beginning of each189

slot t, every leaf node n selects a subset of files in F to190

prefetch and store for possible use in this slot. To deter-191

mine which files to store, every leaf node relies on a local192

caching policy function denoted by πn , to take (cache or no-193

cache) action aaan(t + 1, τ) = πn (sssn (t , τ)) at the beginning194

of slot t + 1, based on its state vector sssn at the end of195

slot t. We assume this action takes a negligible amount of196

time relative to the slot duration; and define the state vector197

sssn (t , τ) := rrrn (t , τ) := [r1n (t , τ) · · · rFn (t , τ)]� to collect the198

number of requests received at leaf node n for individual files199

over the duration of slot t on interval τ . Likewise, to serve file200

requests that have not been served by leaf nodes, the parent201

node takes action aaa0(τ) to store files at the beginning of every202

interval τ , according to a certain policy π0. Again, as aggrega-203

tion smooths out request fluctuations, the parent node observes204

slowly varying file requests, and can thus make caching deci-205

sions at a relatively slow timescale. In the next section, we206

present a two-timescale approach to managing such a network207

of caching nodes.208

III. TWO-TIMESCALE PROBLEM FORMULATION209

File transmission over any network link consumes resources,210

including, e.g., energy, time, and bandwidth. Hence, serving211

any requested file that is not locally stored at a node, incurs a212

cost. Among possible choices, the present paper considers the213

following cost for node n ∈ N , at slot t + 1 of interval τ214

cccn (πn (sssn (t , τ)),rrrn (t + 1, τ),aaa0(τ))215

:= rrrn (t + 1, τ)� (1− aaa0(τ))� (1− aaan (t + 1, τ))216

+ rrrn (t + 1, τ)� (1− aaan(t + 1, τ)) (1)217

where cccn (·) := [c1n (·) · · · cFn (·)]� concatenates the cost for218

serving individual files per node n; symbol � denotes entry-219

wise vector multiplication; entries of aaa0 and aaan are either 1220

(cache, hence no need to fetch), or, 0 (no-cache, hence fetch);221

and 1 stands for the all-one vector. Specifically, the second222

summand in (1) captures the cost of the leaf node fetching223

files for end users, while the first summand corresponds to224

that of the parent fetching files from the cloud.225

Fig. 3. Slow and fast time slots.

Fig. 4. Structure of slots and intervals.

We model user file requests as Markov processes with 226

unknown transition probabilities [19]. Per interval τ , a 227

reasonable caching scheme for leaf node n ∈ N 228

could entail minimizing the expected cumulative cost; 229

that is, 230

π∗
n,τ := argmin

πn∈Πn

E

[
T∑
t=1

1�cccn (πn (sssn (t , τ)),rrrn (t + 1, τ),aaa0(τ))

]
231

(2) 232

where Πn represents the set of all feasible policies for 233

node n. Although solving (2) is in general challenging, effi- 234

cient near-optimal solutions have been introduced in several 235

recent contributions; see, e.g., [15], [19], [20], and refer- 236

ences therein. In particular, a RL based approach using tabular 237

Q-learning was pursued in our precursor [19], which can 238

be employed here to tackle this fast timescale optimization. 239

The remainder of this paper will thus be on designing the 240

caching policy π0 for the parent node, that can learn, track, 241

and adapt to the leaf node policies as well as user file 242

requests. 243

At the beginning of every interval τ + 1, the parent node 244

takes action to refresh its cache; see Fig. 4. To design a 245

caching policy that can account for both leaf node poli- 246

cies and file popularity dynamics, the parent collects local 247

information from all leaf nodes. At the end of interval τ , each 248

leaf node n ∈ N first obtains the time-average state vector 249

s̄ssn (τ) := (1/T)
∑T

t=1 sssn (t , τ), and subsequently forms and 250

forwards the per-node vector s̄ssn (τ)� (1 − πn (s̄ssn (τ))) to its 251

parent node. This vector has nonzero entries the average num- 252

ber of file requests received during interval τ , and zero entries 253

if πn stores the corresponding files. Using the latter, the parent 254

node forms its ‘weighted’ state vector as 255

sss0(τ) :=

N∑

n=1

wn s̄ssn (τ)� (1− πn (s̄ssn (τ))) (3) 256

where the weights {wn ≥ 0} control the influence of leaf 257

nodes n ∈ N on the parent node’s policy. Similarly, having 258

received at the end of interval τ + 1 the slot-averaged costs 259

c̄ccn

(
π0(sss0(τ)); {aaan(t , τ + 1),rrrn(t , τ + 1)}Tt=1

)
260

=
1

T

T∑

t=1

cccn (aaan (t , τ + 1),rrrn (t , τ + 1),aaa0(τ + 1)) (4) 261

IEE
E P

ro
of

4 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING

from all leaf nodes, the parent node determines its cost262

ccc0(sss0(τ), π0(sss0(τ)))263

=

N∑
n=1

wn c̄ccn

(
πππ0(sss0(τ)); {aaan (t , τ + 1),rrrn (t , τ + 1)}Tt=1

))
.264

(5)265

Having observed {sss0(τ ′),aaa0(τ ′),ccc0(sss0(τ ′ − 1),aaa0(τ
′)}ττ ′=1,266

the objective is to take a well-thought-out action aaa0(τ+1) for267

next interval. This is tantamount to finding an optimal policy268

function π∗0 to take a caching action aaa0(τ + 1) = π∗0(sss0(τ)).269

Since the requests {rrrn (t , τ)}n,t are Markovian and present270

actions {aaan (t , τ)}n,t also affect future costs, the optimal271

RL policy for the parent node will minimize the expected272

cumulative cost over all leaf nodes in the long term, namely273

π∗:=0 argmin
π0∈Π0

E

[∞∑

τ=1

γτ−11�ccc0(sss0(τ), π0(sss0(τ)))
]

(6)274

where Π0 represents the set of all feasible policies; expecta-275

tion is over {rrrn (t , τ)}n,t , as well as (possibly random) parent276

aaa0(τ) and leaf actions {aaan (t , τ)}n,t ; and the discount factor277

γ ∈ [0, 1) trades off emphasis of current versus future costs.278

It is evident from (6) that the decision taken at a given state279

sss0(τ), namely aaa0(τ+1) = π(sss0(τ)), influences the next state280

sss0(τ+1) through πn,τ (·) in (3), as well as the cost ccc0(·) in (5).281

Therefore, problem (6) is a discounted infinite time horizon282

Markov decision process (MDP). Finding the optimal policy283

of an MDP is NP-hard [37]. To cope with this complexity of284

solving (6), an adaptive RL approach is pursued next.285

IV. ADAPTIVE RL-BASED CACHING286

RL deals with action-taking policy function estimation in an287

environment with dynamically evolving states, so as to min-288

imize a long-term cumulative cost. By interacting with the289

environment (through successive actions and observed states290

and costs), RL seeks a policy function (of states) to draw291

actions from, in order to minimize the average cumulative cost292

as in (6) [38]. To proceed, we start by giving some basics on293

Markov decision processes (MDPs) [38, p. 310].294

A. MDP Formulation295

MDPs provide a well-appreciated model for decision mak-296

ing tasks. It is represented by a tuple 〈S,A, C,P�, where S297

denotes a set of possible states, A a set of feasible actions, C298

a set of costs, and P the set of state transition probabilities.299

In our problem of interest, at the end of each interval τ , the300

parent node is in state sss0(τ) ∈ S and takes a caching decision301

aaa0(τ + 1) ∈ A for the next interval τ + 1, according to its302

local caching policy aaa0(τ+1) = π0(sss0(τ)). Upon proceeding303

to interval τ+1, every leaf node n serves its locally connected304

users. Let vector rrrn (t , τ + 1) collect the number of received305

requests at node n during slot t across files. We model the306

temporal evolution of this vector with Markov dynamics as307

rrrn (t + 1, τ + 1) = �rrrn (t , τ + 1) + ΔΔΔn (t , τ + 1)�+, where308

ΔΔΔn (t , τ + 1) is a multivariate Gaussian random noise; �·�309

and (·)+ denote the entry-wise floor and max{·, 0} operators.310

In this context, the incurred cost ccc0(sss0(τ), π0(sss0(τ))) ∈ C311

(see (5)), is a random vector with an unknown distribution. 312

As requests {rrrn} are random, caching decisions {aaan} are 313

also random. In addition, decision aaa0 of the parent node influ- 314

ences those of leaf nodes via (2), as well as the next state of 315

the parent node in (3). That is, the current decision of parent 316

node probabilistically influences its next state. To formalize 317

this, we use Paaa
ssssss′ ∈ P to denote the unknown state transition 318

probability from state sss to sss ′ upon taking action aaa 319

Paaa
ssssss′ = Pr

{
sss(τ + 1) = sss ′ | sss(τ) = sss, aaa = π(sss)

}
(7) 320

where the subscript 0 referring to the parent node is dropped 321

for brevity. As aaa0 probabilistically influences the next state as 322

well as the incurred cost, our problem is indeed an MDP. The 323

rest of this paper targets finding an optimal policy solving (6). 324

B. RL Based Caching 325

Towards developing an RL solver for (6), define the so- 326

termed value function to indicate the quality of policy π0, 327

starting from initial state sss0(0) as 328

Vπ0(sss0(0)) := E

[∞∑

τ=1

γτ−11�ccc0(sss0(τ), π0(sss0(τ)))
]

(8) 329

which represents the average cost of following policy π0 330

to make caching decisions starting from sss0(0). Upon find- 331

ing Vπ0(·) for all π0 ∈ Π0, one can readily obtain π∗0 that 332

minimizes Vπ0(sss0(0)) over all possible initial states sss0(0). 333

For brevity, the time index and the subscript 0 referring to 334

the parent node will be dropped whenever it is clear from the 335

context. To find Vπ(·), one can rely on the Bellman equation, 336

which basically relates the value of a policy at one state to val- 337

ues of the remaining states [38, p. 46]. Leveraging (8) and (7), 338

the Bellman equation for value function Vπ(·) is given by 339

Vπ(sss) = E

[

1�ccc(sss , π(sss)) + γ
∑

sss′
P
π(sss)
ssssss′ Vπ(sss

′)
]

(9) 340

where the average immediate cost can be found as 341

E

[
1�ccc(sss , π(sss))

]
=

∑

sss′
P
π(sss)
ssssss′ 1�ccc

(
sss, π(sss)|sss ′). 342

If Paaa
ssssss′ were known ∀aaa ∈ A, ∀sss,sss ′ ∈ S , finding Vπ(·) 343

would be equivalent to solving the system of linear equa- 344

tions (9). Indeed, if one could afford the complexity of 345

evaluating Vπ(·) for all π ∈ Π0, the optimal policy π∗ is the 346

one that minimizes the value function for all states. However, 347

the large (possibly infinite) number of policies in practice 348

discourages such an approach. An alternative is to employ 349

the so-termed policy iteration algorithm [38, p. 64] outlined 350

next. Define first the state-action value function, also called 351

Q-function for policy π 352

Qπ(sss,aaa) := E

[
1�ccc(sss,aaa)

]
+ γ

∑

sss′
Paaa
ssssss′Vπ

(
sss ′
)
. (10) 353

This function captures the expected immediate cost of starting 354

from state sss , taking the first action to be aaa , and subse- 355

quently following policy π to take future actions onwards. 356

The only difference between the value function in (8) and that 357

IEE
E P

ro
of

SADEGHI et al.: DEEP RL FOR ADAPTIVE CACHING IN HIERARCHICAL CONTENT DELIVERY NETWORKS 5

of Q-function in (10) is that the former takes the first action358

according to policy π, while the latter starts with aaa as the first359

action, which may not necessarily be taken when adhering360

to π. Having defined the Q-function, we are ready to present361

the policy iteration algorithm, in which every iteration i entails362

the following two steps:363

Policy Evaluation: Find Vπi (·) for the current policy πi by364

solving the system of linear equations in (9).365

Policy Improvement: Update the current policy greedily as366

πi+1(sss) = arg min
ααα∈A

Qπi (sss ,ααα).367

To perform policy evaluation, we rely on knowledge368

of P
πi (sss)
ssssss′ . However, this is impractical in our setup that369

involves dynamic evolution of file requests, and unknown370

caching policies for the leaf nodes. This calls for approaches371

that target directly the optimal policy π∗, without knowing372

Paaa
ssssss′ , ∀aaa,sss , sss ′. One such approach is Q-learning [38, p. 107].373

In the ensuing section, we first introduce a Q-learning based374

adaptive caching scheme, which is subsequently generalized375

in Section V by invoking a DQN.376

C. Q-Learning Based Adaptive Caching377

The Q-learning algorithm finds the optimal policy π∗ by378

estimating Qπ∗(·, ·) ‘on-the-fly.’ It turns out that π∗ is the379

greedy policy over the optimal Q-function [38, p. 64], that is380

π∗(sss) = arg min
ααα∈A

Qπ∗(sss,ααα), ∀sss ∈ S (11)381

where Qπ∗ is estimated using Bellman’s equation for the Q-382

function. This is possible because the V-function is linked with383

the Q-function under π∗ through (see [38, p. 51] for details)384

Vπ∗(sss) = min
ααα∈A

Qπ∗(sss ,ααα), ∀sss . (12)385

Substituting (12) into (10), Bellman’s equation for the Q-386

function under π∗ is expressed as387

Qπ∗(sss ,aaa) = E

[
1�ccc(sss ,aaa)

]
+ γ

∑

sss′
Paaa
ssssss′ min

ααα
Qπ∗(sss ′,ααα) (13)388

which plays a key role in many RL algorithms. Examples389

include Q-learning [39], and SARSA [38], where one relies390

on (13) to update estimates of the Q-function in a stochas-391

tic manner. In particular, the Q-learning algorithm follows an392

exploration-exploitation procedure to take some action aaa in393

a given state sss . Specifically, it chooses the action minimiz-394

ing the current estimate of Qπ∗(·, ·) denoted by Q̂τ (·, ·), with395

probability (w.p.) 1 − ετ , or, it takes a random action aaa ∈ A396

otherwise; that is,397

aaa =

{
argmin
ααα∈A

Q̂τ (sss ,ααα), w.p. 1− ετ

random aaa ∈ A, w.p.ετ .
398

After taking action aaa , moving to some new state sss ′, and incur-399

ring cost ccc, the Q-learning algorithm adopts the following loss400

function for the state-action pair (sss ,aaa)401

L(sss ,aaa) = 1

2

(

1�ccc(sss,aaa) + γ min
ααα∈A

Q̂τ (sss
′,ααα)− Q̂τ (sss ,aaa)

)2

.402

(14)403

Fig. 5. Deep Q-network.

The estimated Q-function for a single state-action pair is sub- 404

sequently updated, by following a gradient descent step to 405

minimize the loss in (14), which yields the update 406

Q̂τ+1(sss ,aaa) = Q̂τ (sss ,aaa)− β
∂L(sss ,aaa)
∂Q̂τ (sss ,aaa)

(15) 407

where β > 0 is some step size. Upon evaluating the gradient 408

and merging terms, the update in (15) boils down to 409

Q̂τ+1(sss ,aaa) = (1− β)Q̂τ (sss ,aaa) 410

+ β

[

1�ccc(sss ,aaa) + γ min
ααα∈A

Q̂τ (sss
′,ααα)

]

. 411

Three remarks are worth making at this point. 412

Remark 1: As far as the fast-timescale caching strategy of 413

leaf nodes is concerned, multiple choices are possible, includ- 414

ing, e.g., LRU, LFU, FIFO, [40], the multi-armed bandit 415

scheme [15], and even RL ones [19], [20]. 416

Remark 2: The exploration-exploitation step for taking 417

actions guarantees continuously visiting state-action pairs, and 418

ensures convergence to the optimal Q-function [37]. Instead 419

of the ε-greedy exploration-exploitation step, one can employ 420

the upper confidence bound scheme [41]. Technically, any 421

exploration-exploitation scheme should be greedy in the limit 422

of infinite exploration (GLIE) [42, p. 840]. An example obey- 423

ing GLIE is the ε-greedy algorithm [42, p. 840] with ετ = 1/τ . 424

It converges to an optimal policy, albeit at a very slow rate. On 425

the other hand, using a constant ετ = ε approaches the optimal 426

Q∗(·, ·) faster, but its exact convergence is not guaranteed as 427

it is not GLIE. 428

Clearly, finding Qπ∗(sss ,aaa) entails estimating a function 429

defined over state and action spaces. In several applications 430

however, at least one of the two vector variables is either con- 431

tinuous or takes values from an alphabet of high cardinality. 432

Revisiting every state-action pair in such settings is impossi- 433

ble, due to the so-called curse of dimensionality – a typical 434

case in practice. To deal with it, function approximation tech- 435

niques offer as a promising solution [38]. These aim at finding 436

the original Q-function over all feasible state-action pairs, by 437

judicious generalization from a few observed pairs. Early func- 438

tion approximators for RL design good hand-crafted features 439

that can properly approximate Vπ∗(·), Qπ∗(·, ·), or, π∗(·) [5]. 440

Their applicability has only been limited to domains, where 441

such features can be discovered, or, to state spaces that are 442

low dimensional [38]. 443

IEE
E P

ro
of

6 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING

Deep learning approaches on the other hand, have recently444

demonstrated remarkable potential in applications such as445

object detection, speech recognition, and language transla-446

tion, to name a few. This is because DNNs are capable447

of extracting compact low-dimensional features from high-448

dimensional data. Wedding DNNs with RL results in ‘deep449

RL’ that can effectively deal with the curse of dimensional-450

ity, by eliminating the need of hand-crafting good features.451

These considerations have inspired the use of DNNs to esti-452

mate either the Q-function, value function, or, the policy. The453

most remarkable success in playing AI games adopted DNNs454

to estimate the Q-function, what is termed DQN in [5].455

Prompted by this success, the next leverages the power of456

function approximation through DNNs to develop an adaptive457

caching scheme for the parent node.458

V. ADAPTIVE DQN-BASED CACHING459

To find the optimal caching policy π∗ for the parent node,460

the success of function approximators for RL (e.g., [5]), moti-461

vated us to pursue a parametric approach to estimating Q(sss ,aaa)462

with a DNN (see (11)). This DNN has as input pairs of vec-463

tors (sss ,aaa), and as scalar output the corresponding estimated464

Q(sss ,aaa) values. Clearly, the joint state-action space of the465

sought Q-function has cardinality |A×S| = |A||S|. To reduce466

the search space, we shall take a parametric DQN approach [5]467

that we adapt to our setup, as elaborated next.468

Consider a deep feedforward NN with L fully connected lay-469

ers, with input the F × 1 state vector sss(τ) as in (3), and F × 1470

output cost vector ooo(τ+1) [5]. Note that input does not include471

the action vector aaa . Each hidden layer l ∈ {2, . . . ,L − 1}472

comprises nl neurons with rectified linear unit (ReLU) acti-473

vation functions h(z) := max(0, z) for z ∈ R; see, e.g., [43].474

Neurons of the L-th output layer use a softmax nonlinearity1
475

to yield for the f -th entry of ooo, an estimated long term cost476

of that would incur, if file f is not stored at the cache.477

If this cache memory can store up to M (< F) files at the478

parent node, the M largest entries of the DQN output ooo(τ+1)479

are chosen by the decision module in Fig. 5 to obtain the action480

vector aaa(τ + 1). We can think of our DQN as a ‘soft policy’481

function estimator, and ooo(τ+1) as a ‘predicted cost’ or a ‘soft482

action’ vector for interval τ + 1, whose ‘hard thresholding’483

yields aaa(τ + 1). It will turn out that excluding aaa from the484

DQN input and picking it up at the output lowers the search485

space from |A||S| to |S|.486

To train our reduced-complexity DQN amounts to finding a487

set of weights collected in the vector θ that parameterizes the488

input-output relationship ooo(τ + 1) = Q(sss(τ); θτ). To recur-489

sively update θτ to θτ+1, consider two successive intervals490

along with corresponding states sss(τ) and sss(τ +1); the action491

aaa(τ +1) taken at the beginning of interval τ +1; and, the cost492

ccc(τ+1) revealed at the end of interval τ+1. The instantaneous493

approximation of the optimal cost-to-go from interval τ +1 is494

given by ccc(τ + 1) + γQ(sss(τ + 1);θθθτ), where ccc(τ + 1) is the495

immediate cost, and Q(sss(τ + 1);θθθτ) represents the predicted496

cost-to-go from interval τ+2 that is provided by our DQN with497

1Softmax is a function that takes as input a vector z ∈ R
F , and normalizes

it into a probability distribution via σ(z)f = ezf /(
∑F

f=1 ezf), ∀f .

θτ , and discounted by γ. Since our DQN offers Q(sss(τ);θθθτ) 498

as the predicted cost for interval τ +1, the prediction error of 499

this cost as a function of θτ is given by 500

δδδ(θθθτ) :=

⎡

⎢
⎣

target cost-to-go from interval τ+1
︷ ︸︸ ︷
ccc(τ + 1) + γQ(sss(τ + 1);θθθτ) −Q(sss(τ);θθθτ)

⎤

⎥
⎦ 501

� (1− aaa(τ + 1)) (16) 502

and has non-zero entries for files not stored at interval τ + 1. 503

Using the so-termed experience EEE τ+1 := [sss(τ),aaa(τ + 504

1),ccc(τ + 1),sss(τ + 1)], and the �2-norm of δδδ(θθθτ) as criterion 505

L(θθθτ) = ‖δδδ(θθθτ)‖22 (17) 506

the sought parameter update minimizing (17) is given by the 507

stochastic gradient descent (SGD) iteration as 508

θτ+1 = θτ − βτ ∇L(θ)|θ=θτ
(18) 509

where βτ > 0 denotes the learning rate. 510

Since the dimensionality of θθθ can be much smaller than 511

|S||A|, the DQN is efficiently trained with few experi- 512

ences, and generalizes to unseen state vectors. Unfortunately, 513

DQN model inaccuracy can propagate in the cost prediction 514

error in (16) that can cause instability in (18), which can 515

lead to performance degradation, and even divergence [44]. 516

Moreover, (18) leverages solely a single most recent experi- 517

ence EEE τ+1. These limitations will be mitigated as elaborated 518

next. 519

A. Target Network and Experience Replay 520

NN function approximation, along with the loss (17) and 521

the update (18), often result in unstable RL algorithms [5]. 522

This is due to: i) correlated experiences used to update the 523

DQN parameters θθθ; and, ii) the influence of any change in 524

policy on subsequent experiences and vice versa. 525

Possible remedies include the so-called experience replay 526

and target network to update the DQN weights. In experi- 527

ence replay, the parent node stores all past experiences EEE τ 528

in E := {EEE1, . . . ,EEE τ}, and utilizes a batch of B uniformly 529

sampled experiences from this data set, namely {EEE iτ }Bi=1 ∼ 530

U (E). By sampling and replaying previously observed experi- 531

ences, experience replay can overcome the two challenges. On 532

the other hand, to obtain decorrelated target values in (16), a 533

second NN (called target network) with structure identical to 534

the DQN is invoked with parameter vector θTar. Interestingly, 535

θTar can be periodically replaced with θτ every C training 536

iterations of the DQN, which enables the target network to 537

smooth out fluctuations in updating the DQN [5]. 538

With a randomly sampled experience EEE iτ ∈ E , the 539

prediction error with the target cost-to-go estimated using the 540

target network (instead of the DQN) is 541

δδδTar(θθθ;EEE iτ) :=
[
ccc(iτ + 1) + γQ

(
sss(iτ + 1); θTar

)−Q(sss(iτ); θ)
]

542

� (1− aaa(iτ + 1)). (19) 543

Different from (16), the target values here are found through 544

the target network with weights θθθTar. In addition, the error 545

in (16) is found by using the most recent experience, while 546

IEE
E P

ro
of

SADEGHI et al.: DEEP RL FOR ADAPTIVE CACHING IN HIERARCHICAL CONTENT DELIVERY NETWORKS 7

Algorithm 1: Deep RL for Adaptive Caching

Initialize: sss(0), sssn(t , τ), ∀n , θθθτ , and θθθTar

1 for τ = 1, 2, . . . do
2 Take action aaa(τ) via exploration-exploitation

3 aaa(τ) =

{
Best files via Q(sss(τ − 1);θθθτ) w.p. 1− ετ
random aaa ∈ A w.p. ετ

4 for t = 1, . . . ,T do
5 for n = 1, . . . ,N do
6 Take action aaan using local policy

7 aaan(t , τ) =
{
πn(sss(t − 1, τ)) if t = 1
πn (sss(T , τ − 1)) if t = 1

8 Requests rrrn(t , τ) are revealed
9 Set sssn(t , τ) = rrrn (t , τ)

10 Incur cccn (·), see (1)
11 end
12 end
13 Leaf nodes
14 Set s̄ssn (τ) := (1/T)

∑T
t=1 sssn (t , τ)

15 Send s̄ssn (τ)� (1− πn (s̄ssn)) to parent node
16 Send c̄ccn(·) see (4), to parent node
17 Parent node
18 Set sss(τ) :=

∑N
n=1 wn s̄ssn(τ)� (1− πn(s̄ssn))

19 Find ccc(s(τ − 1),aaa(τ))
20 Save (sss(τ − 1),aaa(τ),ccc(s(τ − 1),aaa(τ)),sss(τ)) in E
21 Uniformly sample B experiences from E
22 Find ∇LTar(θ) for these samples, using (20)
23 Update θτ+1 = θτ − βτ∇LTar(θ)

24 If mod(τ,C) = 0, then update θθθTar = θθθτ
25 end

the experience here is randomly drawn from past experiences547

in E . As a result, the loss function becomes548

LTar(θθθ) = E

∥
∥
∥δδδTar(θθθ;EEE)

∥
∥
∥
2

2
(20)549

where the expectation is taken with respect to the uniformly550

sampled experience EEE . In practice however, only a batch of B551

samples is available and used to update θθθτ , so the expectation552

will be replaced with the sample mean. Finally, following a553

gradient descent step over the sampled experiences, we have554

θτ+1 = θτ − βτ∇LTar(θ)|θ=θτ .555

Both the experience replay and the target network help sta-556

bilize the DQN updates. Incorporating these remedies, Alg. 1557

tabulates our deep RL based adaptive caching scheme for the558

parent node.559

VI. NUMERICAL TESTS560

In this section, we present several numerical tests to assess561

the performance of our deep RL based caching schemes which562

is represented in Alg. 1.563

The first experiment considers a simple setup, consisting of564

a parent node that directly serves user file requests. A total of565

F = 50 files were assumed in the cloud, each having the same566

size, while M0 = 5 files can be stored in the cache, amounting567

to 10% of the total. The file popularities were drawn randomly568

Fig. 6. Convergence of DQN to the target network.

Fig. 7. Impact of C on DQN convergence in a static setting.

from [0, 1], invariant across all simulated time instants, but 569

unknown to the caching entity. A fully connected feed-forward 570

NN of 3 layers was implemented for DQN with each layer 571

comprising 50 hidden neurons. For simplicity, we assume that 572

the dataset E can store a number R of most recent experiences, 573

which is also known as the replay memory. It was set to R = 574

10 in our test, along with mini-batch size B = 1 to update the 575

target network every C = 10 iterations. In addition, hyper- 576

parameter values γ = 0.8, learning rate βτ = 0.01, as well as 577

ετ = 0.4 were used throughout our numerical tests. 578

Figure 6 shows the convergence of the DQN parameter θθθτ 579

to that of the target network θθθTar. Since θθθTar is updated with 580

θθθτ per C iteration, the error ‖θτ − θTar‖2 vanishes period- 581

ically. While the error changes just in a few iterations after 582

the θθθTar update, it is constant in several iterations before the 583

next θθθTar update, suggesting that θθθτ is fixed across those iter- 584

ations. This motivates investigating the impact of C on θθθτ ’s 585

convergence. Figure 7 shows the convergence of θθθτ to θθθTar 586

for C = 20, 5, 3, 2. Starting with C = 20, vector θθθτ is not 587

updated in most iterations between two consecutive updates of 588

θθθTar. Clearly, the smaller C is, the faster the convergence for 589

θθθτ is achieved. Indeed, this is a direct result of having static 590

IEE
E P

ro
of

8 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING

Fig. 8. Hyper deep-Q network for scalable caching.

file popularity. Based on our numerical tests, having small C591

values is preferable in dynamic settings too.592

For the second experiment, a similar setup having solely593

the parent node, plus M0 = 5 and F = 50, was considered.594

Dynamic file popularities were generated with time evolutions595

modeled by Markov process described earlier in the paper, and596

again they are unknown to the caching node.597

We first consider that the parent node is connected to598

N = 5 leaf nodes, and every leaf node implements a local599

caching policy πn with capacity of storing Mn = 5 files.600

Every leaf node receives user file requests within each fast601

time slot, and each slow-timescale interval consists of T = 2602

slots. File popularity exhibits different Markovian dynam-603

ics locally at leaf nodes. Having no access to local policies604

{πn}, the parent node not only should learn file populari-605

ties along with their temporal evolutions, but also learn the606

caching policies of leaf nodes. To endow our approach with607

scalability to handle F � 1, we advocate the following608

hyper Q-network implementation. Files are first split into K609

smaller groups of sizes F1, . . . ,FK with Fk � F . This610

yields the representation sss�(τ) := [sss1
�
(τ), . . . , sssK

�
(τ)],611

where sssk ∈ R
Fk . By running K DQNs in parallel, every612

DQN-k now outputs the associated predicted costs of input613

files through oook (τ) ∈ R
F k

. Concatenating all these outputs,614

one obtains the predicted output cost vector of all files as615

ooo�(τ + 1) := [ooo1
�
(τ + 1), . . . ,oooK

�
(τ + 1)]; see Section V616

for discussion on finding action aaa from vector ooo, and also617

Fig. 8 for an illustration of our hyper Q-network.618

The ensuing numerical tests consider F = 1,000 files with619

K = 25 and {Fk = 20}, where only M0 = 50 can be620

stored. To further assess the performance, we adopt a non-621

causal optimal policy as a benchmark, which unrealistically622

assumes knowledge of future requests and stores the most fre-623

quently requested files. In fact, this is the best policy that624

one may ideally implement. Further, practically used cache625

schemes including, e.g., the LRU, LFU, and FIFO [45] are626

also simulated. A difference between LRU, LFU, FIFO, and627

our proposed approach is that they refresh the cache whenever628

Fig. 9. Instantaneous reduced cost for different policies.

Fig. 10. Instantaneous reduced cost for different policies.

a request is received, while our scheme refreshes the cache 629

only at the end of every time slot. 630

By drawing 100 samples2 randomly from all 2,000 time 631

intervals, the instantaneous reduced cost and the empirical 632

cumulative distribution function (CDF) obtained over these 633

100 random samples for different policies are plotted in Fig. 9 634

and Fig. 10, respectively. These plots further verify how 635

the DRL policy performs relative to the alternatives, and in 636

particular very close to the optimal policy. 637

LRU, LFU, and FIFO make caching decisions based on 638

instantaneous observations, and can refresh the cache many 639

times within each slot. Yet, our proposed policy as well as 640

the optimal one here learns from all historical observations 641

to cache, and refreshes the cache only once per slot. Because 642

of this difference, the former policies outperform the latter at 643

the very beginning of Fig. 9, but they do not adapt to the 644

underlying popularity evolution and are outperformed by our 645

learning-based approach after a number of slots. The merit of 646

our approach is further illustrated by the CDF of the reduced 647

cost depicted in Fig. 10. 648

2During these samples, DRL policy is enforced to exploit its learned
caching policy.

IEE
E P

ro
of

SADEGHI et al.: DEEP RL FOR ADAPTIVE CACHING IN HIERARCHICAL CONTENT DELIVERY NETWORKS 9

Fig. 11. Performance of all policies for N = 10 leaf nodes.

Fig. 12. Performance of all policies for N = 1,000 leaf nodes.

In the last test, we increased the number of leaf nodes from649

10 in the previous experiment to N = 1,000. Figures 11 and 12650

showcase that the DRL performance approaches that of the651

optimal policy as the number of nodes increases. This is likely652

because the more leaf nodes, the smoother the popularity fluc-653

tuations, and therefore the easier it becomes for DRL to learn654

the optimal policy.655

VII. CONCLUSION656

Caching highly popular contents across distributed caching657

entities can substantially reduce the heavy burden of content658

delivery in modern data networks. This paper considered a659

network caching setup, comprising a parent node connected660

to several leaf nodes to serve end user file requests. Since the661

leaf nodes are closer to end users, they observe file requests in662

a fast timescale, and could thus serve requests, either through663

their locally stored files or by fetching files from the parent664

node. Observing aggregate requests from all leaf nodes, the665

parent node makes caching decisions in a slower-time scale.666

Such a two-timescale caching task was tackled in this paper667

using a RL approach. An efficient caching policy leveraging668

deep RL was introduced, and shown capable of learning-and-669

adapting to dynamic evolutions of file requests, and caching670

policies of leaf nodes. Simulated tests corroborated its impres- 671

sive performance. This work also opens up several directions 672

for future research, including multi-armed bandit online learn- 673

ing [46], and distributed deep RL using recurrent NNs [47] for 674

future spatio-temporal file request prediction. 675

REFERENCES 676

[1] G. S. Paschos, G. Iosifidis, M. Tao, D. Towsley, and G. Caire, “The 677

role of caching in future communication systems and networks,” IEEE 678

J. Sel. Areas Commun., vol. 36, no. 6, pp. 1111–1125, Jun. 2018. 679

[2] E. Bastug, M. Bennis, and M. Debbah, “Living on the edge: The role 680

of proactive caching in 5G wireless networks,” IEEE Commun. Mag., 681

vol. 52, no. 8, pp. 82–89, Aug. 2014. 682

[3] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learning. 683

Cambridge, MA, USA: MIT Press, 2016. 684

[4] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A 685

review and new perspectives,” IEEE Trans. Pattern Anal. Mach. Intell., 686

vol. 35, no. 8, pp. 1798–1828, Aug. 2013. 687

[5] V. Mnih et al., “Human-level control through deep reinforcement 688

learning,” Nature, vol. 518, no. 7540, p. 529, Feb. 2015. 689

[6] N. C. Luong et al., “Applications of deep reinforcement learning in 690

communications and networking: A survey,” IEEE Commun. Surveys 691

Tuts., to be published. 692

[7] J. Gao and R. Jamidar, “Machine learning applications for data center 693

optimization,” Menlo Park, CA, USA, Google, White Paper, Oct. 2014. 694

[8] O. Naparstek and K. Cohen, “Deep multi-user reinforcement learning for 695

dynamic spectrum access in multichannel wireless networks,” in Proc. 696

Glob. Commun. Conf., Singapore, Dec. 2017, pp. 1–7. 697

[9] Y. Yu, T. Wang, and S. C. Liew, “Deep-reinforcement learning multiple 698

access for heterogeneous wireless networks,” in Proc. Int. Conf. 699

Commun., Kansas City, MO, USA, May 2018, pp. 1–7. 700

[10] Z. Wang, L. Li, Y. Xu, H. Tian, and S. Cui, “Handover control in wireless 701

systems via asynchronous multiuser deep reinforcement learning,” IEEE 702

Internet Things J., vol. 5, no. 6, pp. 4296–4307, Dec. 2018. 703

[11] Y. Sun, M. Peng, and S. Mao, “Deep reinforcement learning-based mode 704

selection and resource management for green fog radio access networks,” 705

IEEE Internet Things J., vol. 6, no. 2, pp. 1960–1971, Apr. 2019. 706

[12] Y. Dong, M. Z. Hassan, J. Cheng, M. J. Hossain, and V. C. M. Leung, 707

“An edge computing empowered radio access network with UAV- 708

mounted FSO fronthaul and backhaul: Key challenges and approaches,” 709

IEEE Wireless Commun., vol. 25, no. 3, pp. 154–160, Jul. 2018. 710

[13] C. Yu, J. Lan, Z. Guo, and Y. Hu, “DROM: Optimizing the routing 711

in software-defined networks with deep reinforcement learning,” IEEE 712

Access, vol. 6, pp. 64533–64539, 2018. 713

[14] Z. Guo, W. Chen, Y.-F. Liu, Y. Xu, and Z.-L. Zhang, “Joint 714

switch upgrade and controller deployment in hybrid software-defined 715

networks,” IEEE J. Sel. Areas Commun., vol. 37, no. 5, pp. 1012–1028, 716

Mar. 2019. 717

[15] P. Blasco and D. Gündüz, “Learning-based optimization of cache content 718

in a small cell base station,” in Proc. IEEE Int. Conf. Commun., Sydney, 719

NSW, Australia, Jun. 2014, pp. 1897–1903. 720

[16] L. Lei, L. You, G. Dai, T. X. Vu, D. Yuan, and S. Chatzinotas, “A deep 721

learning approach for optimizing content delivering in cache-enabled 722

HetNet,” in Proc. Int. Symp. Wireless Commun. Syst., Bologna, Italy, 723

Aug. 2017, pp. 449–453. 724

[17] S. Traverso, M. Ahmed, M. Garetto, P. Giaccone, E. Leonardi, and 725

S. Niccolini, “Temporal locality in today’s content caching: Why it mat- 726

ters and how to model it,” ACM SIGCOMM Comput. Commun. Rev., 727

vol. 43, no. 5, pp. 5–12, Nov. 2013. 728

[18] M. Leconte, G. S. Paschos, L. Gkatzikis, M. Draief, S. Vassilaras, and 729

S. Chouvardas, “Placing dynamic content in caches with small popula- 730

tion,” in Proc. Int. Conf. Comput. Commun., San Francisco, CA, USA, 731

Apr. 2016, pp. 1–9. 732

[19] A. Sadeghi, F. Sheikholeslami, and G. B. Giannakis, “Optimal and 733

scalable caching for 5G using reinforcement learning of space-time 734

popularities,” IEEE J. Sel. Topics Signal Process., vol. 12, no. 1, 735

pp. 180–190, Feb. 2018. 736

[20] S. O. Somuyiwa, A. György, and D. Gündüz, “A reinforcement-learning 737

approach to proactive caching in wireless networks,” IEEE J. Sel. Areas 738

Commun., vol. 36, no. 6, pp. 1331–1344, Jun. 2018. 739

[21] A. Sadeghi, F. Sheikholeslami, A. G. Marques, and G. B. Giannakis, 740

“Reinforcement learning for adaptive caching with dynamic storage 741

pricing,” IEEE J. Sel. Areas Commun., to be published. 742

IEE
E P

ro
of

10 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING

[22] Y. He et al., “Deep-reinforcement-learning-based optimization for cache-743

enabled opportunistic interference alignment wireless networks,” IEEE744

Trans. Veh. Technol., vol. 66, no. 11, pp. 10433–10445, Nov. 2017.745

[23] C. Zhong, M. C. Gursoy, and S. Velipasalar, “A deep reinforcement746

learning-based framework for content caching,” in Proc. Conf. Inf. Sci.747

Syst., Princeton, NJ, USA, Mar. 2018, pp. 1–6.748

[24] Y. He, N. Zhao, and H. Yin, “Integrated networking, caching, and com-749

puting for connected vehicles: A deep reinforcement learning approach,”750

IEEE Trans. Veh. Technol., vol. 67, no. 1, pp. 44–55, Jan. 2018.751

[25] Y. He, F. R. Yu, N. Zhao, V. C. M. Leung, and H. Yin, “Software-defined752

networks with mobile edge computing and caching for smart cities: A753

big data deep reinforcement learning approach,” IEEE Commun. Mag.,754

vol. 55, no. 12, pp. 31–37, Dec. 2017.755

[26] H. Zhu, Y. Cao, W. Wang, T. Jiang, and S. Jin, “Deep reinforce-756

ment learning for mobile edge caching: Review, new features, and open757

issues,” IEEE Netw., vol. 32, no. 6, pp. 50–57, Nov./Dec. 2018.758

[27] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”759

IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.760

[28] S. C. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for761

content distribution networks,” in Proc. Int. Conf. Comput. Commun.,762

San Diego, CA, USA, Mar. 2010, pp. 1478–1486.763

[29] R. Pedarsani, M. A. Maddah-Ali, and U. Niesen, “Online coded764

caching,” IEEE/ACM Trans. Netw., vol. 24, no. 2, pp. 836–845,765

Apr. 2016.766

[30] J. Dai, Z. Hu, B. Li, J. Liu, and B. Li, “Collaborative hierarchical767

caching with dynamic request routing for massive content distribution,”768

in Proc. Int. Conf. Comput. Commun., Orlando, FL, USA, Mar. 2012,769

pp. 2444–2452.770

[31] W. Wang, D. Niyato, P. Wang and A. Leshem, “Decentralized caching771

for content delivery based on blockchain: A game theoretic perspective,”772

in Proc. IEEE Intl. Conf. Commun., Kansas City, MO, USA, May 2018,773

pp. 1–6.774

[32] E. Nygren, R. K. Sitaraman, and J. Sun, “The Akamai network: A plat-775

form for high-performance Internet applications,” ACM SIGOPS Oper.776

Syst. Rev., vol. 44, no. 3, pp. 2–19, 2010.777

[33] M. Dehghan et al., “On the complexity of optimal request routing and778

content caching in heterogeneous cache networks,” IEEE/ACM Trans.779

Netw., vol. 25, no. 3, pp. 1635–1648, Jun. 2017.780

[34] S. Shukla, O. Bhardwaj, A. A. Abouzeid, T. Salonidis, and T. He,781

“Proactive retention-aware caching with multi-path routing for wire-782

less edge networks,” IEEE J. Sel. Areas Commun., vol. 36, no. 6,783

pp. 1286–1299, Jun. 2018.784

[35] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture for785

mobile computing,” in Proc. IEEE Int. Conf. Comput. Commun., 2016,786

pp. 1–9.787

[36] E. Dahlman, S. Parkvall, and J. Skold, 4G: LTE/LTE-Advanced for788

Mobile Broadband. Amsterdam, The Netherlands: Academic, 2013.789

[37] C. H. Papadimitriou and J. N. Tsitsiklis, “The complexity of Markov790

decision processes,” Math. Oper. Res., vol. 12, no. 3, pp. 441–450, 1987.791

[38] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.792

Cambridge, MA, USA: MIT Press, 2018.793

[39] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8,794

nos. 3–4, pp. 279–292, May 1992.795

[40] R. Fagin, “Asymptotic miss ratios over independent references,” J.796

Comput. Syst. Sci., vol. 14, no. 2, pp. 222–250, 1977.797

[41] P. Auer, “Using confidence bounds for exploitation-exploration trade-798

offs,” J. Mach. Learn. Res., vol. 3, pp. 397–422, Nov. 2002.799

[42] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.800

Upper Saddle River, NJ, USA: Prentice-Hall, 2016.801

[43] G. Wang, G. B. Giannakis, and J. Chen, “Learning ReLU networks on802

linearly separable data: Algorithm, optimality, and generalization,” IEEE803

Trans. Signal Process., vol. 67, no. 9, pp. 2357–2370, May 2019.804

[44] D. Silver et al., “Mastering the game of go with deep neural networks805

and tree search,” Nature, vol. 529, no. 7587, p. 484, Jan. 2016.806

[45] A. Dan and D. F. Towsley, “An approximate analysis of the LRU and807

FIFO buffer replacement schemes,” ACM SIGMETRICS Perform. Eval.808

Rev., vol. 18, no. 1, pp. 143–152, 1990.809

[46] B. Li, T. Chen, and G. B. Giannakis, “Bandit online learning with810

unknown delays,” in Proc. Int. Conf. Artif. Intell. Stat., Naha, Japan,811

Apr. 2019, pp. 1–10.812

[47] A. Narayanan, S. Verma, E. Ramadan, P. Babaie, and Z.-L. Zhang,813

“DeepCache: A deep learning based framework for content caching,”814

in Proc. ACM Workshop Netw. Meets AI & ML, Budapest, Hungary,815

Aug. 2018, pp. 48–53.816

Alireza Sadeghi (S’16) received the B.Sc. 817

degree (Hons.) in electrical engineering from the 818

Iran University of Science and Technology, Tehran, 819

Iran, in 2012, and the M.Sc. degree in electrical 820

engineering from the University of Tehran in 821

2015. He is currently pursuing the Ph.D. degree 822

with the Department of Electrical and Computer 823

Engineering, University of Minnesota, Minneapolis, 824

MN, USA. In 2015, he was a Visiting Scholar with 825

the University of Padua, Padua, Italy. His research 826

interests include machine learning, optimization, 827

and signal processing with applications to networking. He was a recipient 828

of the ADC Fellowship awarded by the Digital Technology Center of the 829

University of Minnesota, and the Student Travel Awards from the IEEE 830

Communications Society and the National Science Foundation. 831

Gang Wang (M’18) received the B.Eng. degree 832

in electrical engineering and automation from the 833

Beijing Institute of Technology, Beijing, China, in 834

2011, and the Ph.D. degree in electrical and com- 835

puter engineering from the University of Minnesota, 836

Minneapolis, MN, USA, in 2018. 837

He is currently a Post-Doctoral Associate with the 838

Department of Electrical and Computer Engineering, 839

University of Minnesota. His research interests 840

focus on the areas of statistical signal processing, 841

optimization, and deep learning with applications to 842

data science and smart grids. He was a recipient of the National Scholarship 843

in 2013, the Guo Rui Scholarship in 2015, and the Innovation Scholarship 844

(First Place in 2017), all from China, as well as the Best Conference Papers 845

at the 2017 European Signal Processing Conference and 2019 IEEE Power 846

and Energy Society General Meeting. 847

Georgios B. Giannakis (F’97) received the Diploma 848

degree in electrical engineering from the National 849

Technical University of Athens, Greece, in 1981, 850

and the first M.Sc. degree in electrical engineer- 851

ing, the second M.Sc. degree in mathematics, and 852

the Ph.D. degree in electrical engineering from the 853

University of Southern California in 1983, 1986, and 854

1986, respectively. 855

From 1982 to 1986, he was with the University 856

of Southern California. He was a Faculty Member 857

with the University of Virginia from 1987 to 1998. 858

Since 1999, he has been a Professor with the University of Minnesota, where 859

he holds an ADC Endowed Chair, a University of Minnesota McKnight 860

Presidential Chair in ECE, and serves as the Director of the Digital Technology 861

Center. His general interests span the areas of statistical learning, commu- 862

nications, and networking—subjects on which he has published over 450 863

journal papers, 750 conference papers, 25 book chapters, 2 edited books, and 864

2 research monographs (H -index 142). He has co-invented 32 patents. Current 865

research focuses on data science and network science with applications to the 866

Internet of Things, social, brain, and power networks with renewables. He 867

was a (co-)recipient of nine best journal paper awards from the IEEE Signal 868

Processing (SP) and Communications Societies, including the G. Marconi 869

Prize Paper Award in Wireless Communications. He also received Technical 870

Achievement Awards from the SP Society in 2000, the EURASIP in 2005, the 871

Young Faculty Teaching Award, the G. W. Taylor Award for Distinguished 872

Research from the University of Minnesota, and the IEEE Fourier Technical 873

Field Award (inaugural recipient in 2015). He has served the IEEE in a num- 874

ber of posts, including that of a Distinguished Lecturer for the IEEE-SPS. He 875

is a fellow of EURASIP. 876

gangwang
Cross-Out

gangwang
Cross-Out

gangwang
Inserted Text
He is currently serving on the editorial board of \emph{Signal Processing}.

gangwang
Highlight
143

gangwang
Cross-Out

