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Abstract—The unique features of current and upcoming5
energy systems, namely high penetration of uncertain re-6
newables, unpredictable customer participation, and pur-7
poseful manipulation of meter readings, all highlight the8
need for fast and robust power system state estimation9
(PSSE). In the absence of noise, PSSE is equivalent to10
solving a system of quadratic equations, which, also re-11
lated to power flow analysis, is NP-hard in general. Assum-12
ing the availability of all power flow and voltage magnitude13
measurements, this paper first suggests a simple algebraic14
technique to transform the power flows into rank-one mea-15
surements, for which the �1 -based misfit is minimized. To16
uniquely cope with the nonconvexity and nonsmoothness17
of �1 -based PSSE, a deterministic proximal-linear solver is18
developed based on composite optimization, whose gener-19
alization using stochastic gradients is discussed too. This20
paper also develops conditions on the �1 -based loss func-21
tion such that exact recovery and quadratic convergence of22
the proposed scheme are guaranteed. Simulated tests using23
several IEEE benchmark test systems under different set-24
tings corroborate our theoretical findings, as well as the fast25
convergence and robustness of the proposed approaches.26

Index Terms—Bad data analysis, composite optimization,27
least-absolute-value (LAV) estimator, proximal-linear algo-28
rithm, supervisory control and data acquisition (SCADA)29
measurement.30

I. INTRODUCTION31

THE North American power grid is praised as the great-32

est engineering achievement of the 20th century [1]. To33

maintain grid efficiency, reliability, and sustainability, system34
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operators constantly monitor the operating conditions of elec- 35

tricity networks [2], [3]. In the 1960s, power system engineers 36

tried to compute voltages at critical buses based on meter read- 37

ings manually collected from geometrically distributed current 38

and potential transformers. Due to timing, model mismatches, 39

and metering errors, however, the exact (ac) power flow equa- 40

tions were never infeasible. 41

With the development of supervisory control and data acqui- 42

sition (SCADA) systems, a wealth of improved data metered 43

from across the network became available. In the seminal work 44

of Schweppe et al. [4], the modern statistical foundation for 45

power system state estimation (PSSE) was laid. Given a col- 46

lection of SCADA data along with corresponding measurement 47

matrices, the goal of PSSE is to compute the complex voltages 48

(or, the voltage magnitudes and angles if polar coordinates are 49

used) at all network buses. Since then, substantial contributions 50

have been devoted to PSSE. Interested readers can refer to [3] 51

for a review of recent developments on PSSE. 52

Based on the weighted least-squares (WLS) estimation cri- 53

terion, the Gauss–Newton solver is arguably the “workhorse” 54

for PSSE, and it is also employed in practice [2]. Yet, the non- 55

convex nature of WLS poses challenges on the Gauss–Newton 56

method, including sensitivity to initialization and outliers, as 57

well as no convergence guarantee [5]. To address these chal- 58

lenges, semidefinite programming (SDP) relaxation approaches 59

have been pursued [6]–[8]. However, SDP incurs computational 60

complexity that does not scale well with problem dimension, 61

discouraging its use in practical settings. 62

With utilities increasingly shifting toward smart grid tech- 63

nology and other upgrades with inherent cyber vulnerabilities, 64

correlative threats from adversarial cyberattacks on the North 65

American power grid continue to grow in frequency and form 66

[9]. These introduce new yet critical challenges to PSSE, partic- 67

ularly to the WLS-based SE solvers, concerning data integrity 68

and uninformed model changes [10]–[14]. Such concerns moti- 69

vate well the development of accurate and robust approaches to 70

endow PSSE with resilience to anomalous (i.e., bad) data and 71

model inaccuracies. 72

A. Related Work 73

In this context, robust PSSE has recently received renewed 74

interest. To cope with the malicious data, the largest normalized 75

residual (LNR) test was incorporated while performing PSSE 76

[10]. The least-median-squares and least-trimmed-squares 77
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based alternatives were pursued [15]. Unfortunately, the afore-78

mentioned robust PSSE proposals incur unfavorable computa-79

tional complexities and/or stringent storage requirements, which80

limit their practical uses in real-world power networks.81

On the other hand, the �1-based criterion has been well known82

in optimization and statistics for its robustness to outliers [16],83

[2, Ch. 6]. In addition to being robust, the �1-based estimator is84

also statistically optimal in the maximum likelihood sense, when85

the independent additive noise follows a Laplacian distribution.86

In the PSSE literature, the �1-based criterion was advocated for87

bad data identification and rejection in [17]. Research focus has88

shifted toward devising efficient and user-friendly algorithms to89

handle the nonconvexity and nonsmoothness issues of �1-loss90

function; see, e.g., [18] and [19].91

B. This Paper92

This paper revisits the �1-based robust PSSE with a focus on93

development of efficient algorithms and theory on exact state94

recovery in the noiseless case. Leveraging recent advances in95

solving rank-one quadratic equations (i.e., phase retrieval) [20],96

[21], we first suggest a simple algebraic procedure to transform97

the power flows into rank-one measurements, namely with cor-98

responding transformed measurement matrices being rank one.99

Subsequently, we develop two efficient and easy-to-implement100

algorithms to optimize the �1-loss of the obtained rank-one mea-101

surements. With appropriate conditions on the �1-loss function,102

we establish exact recovery as well as quadratic convergence103

for our approach. Simulated tests using three IEEE benchmark104

systems showcase the robustness and computational efficiency105

of our proposed scheme relative to competing Gauss–Newton106

method.107

The rest of this paper is organized as follows. System mod-108

eling and problem formulation are given in Section II. The109

procedure to obtain rank-one measurements is presented in110

Section III, followed by two algorithms in Section IV. Exact111

state recovery and convergence are established in Section V.112

Numerical tests are provided in Section VI, and this paper is113

concluded in Section VII.114

Notation: Matrices (column vectors) are denoted by upper-115

(lower-) case boldface letters; e.g., A (a). Sets are denoted116

using calligraphic letters. Symbol T (H) represents (Hermitian)117

transpose, and (·) complex conjugate, whereas �(·) (�(·)) takes118

the real (imaginary) part of a complex number.119

II. SYSTEM MODELING AND PROBLEM FORMULATION120

A. System Modeling121

Consider an electric power grid modeled as a graph G =122

(N , L), whose nodesN := {1, 2, . . . , N} correspond to buses123

and whose edgesL := {(n, n′)} ⊆ N ×N correspond to lines.124

Throughout this paper, all analysis pertains to the per unit125

(p.u.) system. The complex voltage per bus n ∈ N can be126

given in rectangular coordinates as vn = �(vn ) + j�(vn ). For127

brevity, all nodal voltages are stacked up to form the vector128

v := [v1 · · · vN ]T ∈ CN . In the ac-based SE literature, a sub-129

set of following system variables can be measured by SCADA 130

[2, Ch. 2]: 131

1) |vn |: the voltage magnitude at bus n; 132

2) Pnn ′ (Qnn ′ ): the active (reactive) power flow from buses 133

n to n′ at the sending terminal; 134

3) Pn (Qn ): the active (reactive) power injection into bus n. 135

Compliant with the ac power flow model [2], these system 136

variables can be expressed as quadratic functions of v. This 137

justifies why the voltage vector v is referred to as the system 138

state. To this end, observe that the squared voltage magnitudes 139

Vn := |vn |2 = [�(vn )]2 + [�(vn )]2 can be written as 140

Vn = vHHV
n v, with HV

n := hnhT
n (1)

for all n ∈ N , where we have introduced the measurement 141

vector hn := en with en being the nth canonical vector in 142

RN . To express power injections as functions of v, introduce 143

the bus admittance matrix Y = G + jB ∈ CN , where G and 144

B ∈ RN ×N are the real and imaginary parts of Y [2], respec- 145

tively. In rectangular coordinates, the active and reactive powers 146

Pn and Qn injected into bus n can be expressed as 147

Pn = �(vn )
N∑

n ′=1

[
�(vn ′)Gnn ′ − �(vn )Bnn ′

]

+ �(vn )
N∑

n ′=1

[
�(vn )Gnn ′ + �(vn )Bnn ′

]
(2)

Qn = �(vn )
N∑

n ′=1

[
�(vn )Gnn ′ − �(vn )Bnn ′

]

−�(vn )
N∑

n ′=1

[
�(vn )Gnn ′ + �(vn )Bnn ′

]
(3)

which can be compactly expressed as 148

Pn = vHHP
n v, with HP

n :=
YH

n + Yn

2
(4a)

Qn = vHHQ
n v, with HQ

n :=
YH

n − Yn

2j
(4b)

with Yn := eneTn Y for all n ∈ N . 149

With regards to power flows, Kirchhoff’s current law dictates 150

that the complex current over the line (n, n′) at the “sending” 151

end is inn ′ = ys
nn ′vn + ynn ′(vn − v′

n ), where ys
nn ′ is the shunt 152

admittance at bus n′ associated with the line (n, n′). The ac 153

power flow model, in conjunction with Ohm’s law, further as- 154

serts that the complex power flowing over line (n, n′) at the 155

“sending” end can be expressed as 156

Snn ′ = Pnn ′ + jQnn ′ = vn inn ′

= |vn |2(ys
nn ′ + ynn ′) − vnvnynn ′ . (5)

It is worth pointing out that the complex power flow over line 157

(n, n′) ∈ L at the “receiving” end is captured by that over line 158

(n′, n) ∈ L at the “sending” end. Upon defining the following 159

matrices for all lines (n, n′) ∈ L: 160

Ynn ′ := (ys
nn ′ + ynn ′)eneTn − ynn ′en ′eTn ′ (6)
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the active and reactive power flows at the “sending” terminal,161

namely the real and imaginary parts of Snn ′ in (5) can be given162

in a compact representation as163

Pnn ′ = vHHP
nn ′v, with HP

nn ′ :=
YH

nn ′ + Ynn ′

2
(7a)

Qnn ′ = vHHQ
nn ′v, with HQ

nn ′ :=
YH

nn ′ − Ynn ′

2j
. (7b)

Having expressed all SCADA measurements as functions of164

v, the PSSE problem can be presented next.165

B. Power System State Estimation166

In practice, the SCADA system measures a subset of the167

system variables specified in (1), (4), and (7). Suppose now a168

total of M such variables are measured, which are stacked up169

to form the following M × 1 measurement vector:170

z :=
[
{V̌n}n∈NV

, {P̌n}n∈NP
, {Q̌n}n∈NQ

{P̌nn ′ }(n,n ′)∈LP
, {Q̌nn ′ }(n,n ′)∈LQ

]T ∈ RM (8)

where the check-marked terms represent possibly noisy obser-171

vations of the corresponding error-free variables. The subsets172

NV , NP , NQ ⊆ N , and LP , LQ ⊆ L specify the locations173

where meters are installed and the associated type of variables174

are measured. Succinctly, per mth measurement in z can be175

equivalently rewritten as176

zm := vHHmv + εm (9)

for all m ∈ {1, 2, . . . , M}, where the terms εm ∈ R capture177

the metering errors and modeling inaccuracies, and the Hermi-178

tian measurement matrices Hm ∈ CN ×N can correspond to any179

subset of the matrices defined in (1), (4), and (7). The critical180

goal of PSSE is to obtain v ∈ CN based on the available data181

{(zm ; Hm )}M
m=1 .182

Without loss of generality, adopting the LS error objective,183

which coincides with the maximum likelihood criterion assum-184

ing additive white Gaussian noise, PSSE pursues problem1185

minimize
x∈CN

�(x) :=
1

2M

M∑

m=1

(
zm − xHHmx

)2
. (10)

Because of the quadratic terms inside the squares, the quartic186

function �(x) is nonconvex, whose general instance is NP-hard187

[22]. Hence, it is computationally intractable to compute the LS188

or maximum likelihood estimate of v in general.
Q2

189

C. Prior Contributions190

Minimizing the nonlinear LS loss in (10), the Gauss–Newton191

method is the “workhorse” [2, Ch. 2]. Upon linearizing all192

quadratic terms xHHmx around a given point using Taylor’s193

expansion, the Gauss–Newton subsequently approximates the194

nonlinear LS fit in (10) using a linear one per iteration, and195

relies on its resultant minimizer to obtain the next iterate [3].196

1Throughout, v is fixed for the actual system state, whereas x is used for the
optimization variable and the state estimate.

It typically converges in a few (≤ 10) iterations, very fast for 197

small- or medium-size problems. However, it is known that the 198

Gauss–Newton iterations for nonconvex LS are sensitive to the 199

initial point, and they may diverge in certain cases; see e.g., [5, 200

Ch. 5]. 201

On the other hand, several numerical polynomial-time SE al- 202

gorithms have been pursued based on convex programming [6]. 203

By means of matrix lifting, such convex approaches start ex- 204

pressing all quadratic measurementsxHHmx as linear functions 205

Tr(HmX) of the rank-one matrix variable X := xxH � 0. 206

Upon discarding the nonconvex rank constraint, the nonlinear 207

LS in (10) boils down to (or can be converted into) a convex 208

SDP. In terms of computational efficiency, such convex schemes 209

entail solving for an N × N positive semidefinite matrix from 210

M SDP constraints, whose worst case computational complex- 211

ity is O(M 4N 1/2 log(1/ε)) for any given solution accuracy 212

ε > 0 [23, Sec. 6.6.2]. This complexity and the resultant storage 213

requirement evidently do not scale nicely to the increasingly 214

interconnected large power networks. 215

III. RANK-ONE MEASUREMENT APPROACH 216

Drawing from advances in nonconvex optimization, this sec- 217

tion presents a new framework for scalable, accurate, and ro- 218

bust PSSE. Specifically, our proposed approach reformulates 219

the rank-two power flows in (7) into rank-one quadratic mea- 220

surements (namely with corresponding measurement matrices 221

having rank one), followed by two efficient algorithms for min- 222

imizing the �1-based misfit of the transformed measurements. 223

In contrast to previous SE approaches that minimize the quar- 224

tic polynomial in (10), a novel quadratic objective functional 225

is obtained and subsequently minimized. With more compli- 226

cated algebraic manipulations, the power injections can also 227

be accounted for in our proposed framework. In the presence 228

of additive noise, near-optimal statistical performance of the 229

developed approach is numerically demonstrated. 230

A. Measurement Transformation 231

In this paper, we focus on the following types of measure- 232

ments: first, {|vm |}N
m=1 the voltage magnitudes at all buses, 233

and second, {Pnn ′ }(m,n)∈LP
and/or {Qnn ′ }(m,n)∈LQ

the ac- 234

tive and/or reactive power flows on a selected subset of lines, 235

namely LP , LQ ⊆ L. Consider first the noise-free case, where 236

all available measurements can be described as 237

zm = vHHmv ∀m = 1, . . . , M. (11)

Without loss of generality, let the first N measurements be the 238

squared voltage magnitudes at the N buses, namely zm = |vm |2 239

for m = 1, 2, . . . , N , and the remaining ones be the (active or 240

reactive) power flows. It is clear from (1) that the squared voltage 241

magnitude measurements are given by 242

zm =
∣∣hH

mv
∣∣2 ∀m = 1, . . . , N (12)

whose corresponding measurement matrices have rank one; that 243

is, {Hm = hmhH
m}N

m=1 . 244

Now let us consider the power flow data pairs (Pnn ′ ;HP
nn ′) 245

and (Qnn ′ ;HQ
nn ′) in (7). Upon substituting Ynn ′ in (6) into (7), 246

gangwang
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one can rewrite for all lines (n, n′) ∈ LP247

HP
nn ′ =

1
2

(
αP

nn ′eneTn − βP
nn ′eneTn ′ − β̄P

nn ′en ′eTn
)

(13)

and similarly for all lines (n, n′) ∈ LQ248

HQ
nn ′ =

1
2

(
αQ

nn ′eneTn − βQ
nn ′eneTn ′ − β̄Q

nn ′en ′eTn
)

(14)

where the four coefficients are given by249

αP
nn ′ := 2�(ys

nn ′ + ynn ′), βP
nn ′ := ynn ′ (15a)

αQ
nn ′ := −2�(ys

nn ′ + ynn ′), βQ
nn ′ := jynn ′ . (15b)

It is worth pointing out that αP
nn ′ and αQ

nn ′ are both real,250

whereas βP
nn ′ and βQ

nn ′ are in general complex.251

It is self-evident from (13) and (14) that each of the active252

or reactive power flow measurement matrices {HP
nn ′ }(n,n ′)∈LP

253

or {HQ
nn ′ }(n,n ′)∈LQ

is of at most rank-two, with three nonzero254

matrix entries at the (n, n)-, (n, n′)-, and (n′, n)th positions255

depending on whether the involved coefficients are nonzero or256

not. Yet, these power flow matrices are generally indefinite.257

Upon neglecting the superscripts for notational brevity, both258

HP
nn ′ and HQ

nn ′ are in the following form:259

Hnn ′ =
1
2

(
αnn ′eneTn − βnn ′eneTn ′ − β̄nn ′en ′eTn

)
. (16)

We establish the following result for power flow data {zm}.260

Proposition 1 (Rank-one measurements): Suppose that261

the voltage magnitudes are measured at all buses. Then, one can262

construct equivalently a new measurement žm for each power263

flow zm so that its corresponding measurement matrix Ȟnn ′ is264

of rank one, and positive semidefinite.265

Proof: Depending on whether the coefficient αnn ′ or βnn ′266

is zero or not, we discuss separately the ensuing three cases:267

c1) αnn ′ 
= 0, βnn ′ 
= 0;268

c2) αnn ′ = 0, βnn ′ 
= 0;269

c3) αnn ′ 
= 0, βnn ′ = 0270

where the trivial case of αnn ′ = βnn ′ = 0 is excluded because271

all SCADA measurements are assumed nonzero. The goal of272

the following section is to transform all power flow measure-273

ment matrices into rank-one (symmetric) positive semidefinite274

matrices. The three cases are individually discussed next .Q3 275

Consider first the case c1). When both αnn ′ and βnn ′ are276

nonzero, the matrix Hnn ′ has exactly rank two with three277

nonzero entries. Its two nonzero eigenvalues can be obtained278

by solving the quadratic equation279

λ
(
λ − αnn ′

2

)
− |βnn ′ |2

4
= 0

which is derived by setting the determinant of (λIN − Hnn ′) to280

zero. Its closed-form solutions are given by281

λ1 =
αnn ′ +

√
α2

nn ′ + 4|βnn ′ |2
4

> 0

λ2 =
αnn ′ −

√
α2

nn ′ + 4|βnn ′ |2
4

< 0.

Let u1 , u2 ∈ CN be the unit eigenvectors of Hnn ′ associ- 282

ated with the eigenvalues λ1 , λ2 , respectively. Hence, one can 283

write Hnn ′ := λ1u1uH
1 + λ2u2uH

2 . To obtain a rank-one pos- 284

itive semidefinite matrix, the first attempt would be to com- 285

pensate for the negative eigenvalue λ2 and make it zero. This 286

is tantamount to adding −λ2u2uH
2 to Hnn ′ , and accordingly 287

adding −λ2vH(u2uH
2 )v to the measurement znn ′ ; that is 288

Ȟnn ′ := Hnn ′ − λ2u2uH
2 (17a)

žnn ′ := znn ′ − λ2vH(u2uH
2 )v (17b)

in which the transformed measurement matrix Ȟnn ′ is rank-one 289

and symmetric positive semidefinite, and žnn ′ is the resultant 290

transformed measurement. To realize this however, entails, eval- 291

uating the term vH(u2uH
2 )v, which requires knowledge of the 292

true state vector v. This procedure is thus not feasible, and one 293

has to develop a new twist to bypass this hurdle. 294

Recall from our working assumption that we have access to 295

all squared voltage magnitudes {|vn |2}N
n=1 . Based on this fact, 296

we show in the following that it is sufficient to add a matrix of 297

the form (δnn ′/2)en ′eTn ′ to Hnn ′ such that the resulting sum, 298

denoted by 299

Ȟnn ′ := Hnn ′ + (δnn ′/2)en ′eTn ′ (18)

can be rendered rank-one. Here, δnn ′ is an unknown coefficient 300

to be determined next. Toward this end, setting the determinant 301

of (λIN − Ȟnn ′) to zero leads to 302

(
λ − αnn ′

2

) (
λ − δnn ′

2

)
− |βnn ′ |2

4
= 0. (19)

To yield a rank-one matrix Ȟnn ′ , it is sufficient for the 303

quadratic equation (19) to have exactly one nonzero solution. By 304

basic linear algebra, this is equivalent to having a zero constant 305

term in (19), giving rise to 306

αnn ′δnn ′ − |βnn ′ |2 = 0

or alternatively 307

δnn ′ := |βnn ′ |2/αnn ′ .

It can be verified that the transformed measurement matrix 308

Ȟnn ′ := Hnn ′ + (|βnn ′ |2/(2αnn ′))en ′eTn ′ (20)

is rank-one. In addition, if αnn ′ > 0, then Ȟnn ′ is positive 309

semidefinite. Therefore, one can write 310

Ȟnn ′ := hnn ′hH
nn ′ (21)

with the equivalent measurement vector being 311

hnn ′ :=
√

αnn ′

2
en +

β̄nn ′√
2αnn ′

en ′ . (22)

The transformed measurement žnn ′ corresponding to Ȟnn ′ can 312

be given by 313

žnn ′ := vHȞnn ′v = vHHnn ′v + vH (
δnn ′en ′eTn ′/2

)
v

= znn ′ + (|βnn ′ |2/2αnn ′)|vn ′ |2 (23)
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for which the required quantity (|βnn ′ |2/2αnn ′)|vn ′ |2 is avail-314

able, or can be obtained as long as |vn |2 is available.315

If αnn ′ < 0, one can instead define316

Ȟnn ′ := −Hnn ′ + (|βnn ′ |2/(2αnn ′))en ′eTn ′ (24)

and write the equivalent measurement vector as317

hnn ′ :=

√
−αnn ′

2
en +

β̄nn ′√
−2αnn ′

en ′ (25)

for which the corresponding measurement becomes318

žnn ′ := vHȞnn ′v = −vHHnn ′v − vH (
δnn ′en ′eTn ′/2

)
v

= −znn ′ − (|βnn ′ |2/2αnn ′)|vn |2 . (26)

Likewise, the quantity −(|βnn ′ |2/2αnn ′)|vn |2 is also available319

under our working assumption.320

Let us now focus on the case c2). To transform Hnn ′ into a321

rank-one positive semidefinite matrix, it is sufficient to add a322

matrix of the form (γnn ′/2)eneTn + (δnn ′/2)en ′eTn ′ , to yield323

Ȟnn ′ := Hnn ′ + (γnn ′/2)eneTn + (δnn ′/2)en ′eTn ′ (27)

for some coefficients γnn ′ > 0 and δnn ′ > 0 to be determined.324

Similar to the discussion for case c1), to find γnn ′ and δnn ′ , one325

sets the determinant of (λIN − Ȟnn ′) to zero, leading to326

(
λ − γnn ′

2

)(
λ − δnn ′

2

)
− |βnn ′ |2

4
= 0.

The fact that Ȟnn ′ is rank-one implies that327

γnn ′δnn ′ − |βnn ′ |2 = 0.

Without loss of generality, one can take328

γnn ′ := 1, and δnn ′ := |βnn ′ |2

and Ȟnn ′ in (27) becomes rank-one and can be written as329

Ȟnn ′ := hnn ′hH
nn ′ (28)

with330

hnn ′ :=
1√
2
en − βnn ′√

2
en ′ . (29)

The transformed measurement associated with Ȟnn ′ can be331

found as follows:332

žnn ′ := vHHnn ′v

= vHHnn ′v + vH (
βnn ′eneTn /2 + δnn ′en ′en ′/2

)
v

= znn ′ + (1/2)|vn |2 + (|βnn ′ |2/2)|vn ′ |2 (30)

for which the required quantities |vn |2 and |βnn ′ |2 |vn ′ |2 can be333

computed when |vn |2 and |vn ′ |2 are available.334

Let us now turn to the last case c3). Since βnn ′ = β̄nn ′ = 0,335

one can write Hnn ′ = αnn ′eneTn /2, which is already rank-one.336

To make it positive semidefinite, it suffices to take the absolute337

value, and define338

Ȟnn ′ := hnn ′hH
nn ′ =

(√
|αnn ′ |

2
en

) (√
|αnn ′ |

2
en

)T

.

(31)

The transformed measurement is given by 339

žnn ′ = |znn ′ |. (32)

To summarize, for any active or reactive power flow data 340

(znn ′ ;Hnn ′), we have developed a strategy to obtain a new 341

measurement pair (žnn ′ ; Ȟnn ′), in which Ȟnn ′ becomes rank- 342

one and positive semidefinite. Specifically, this is accomplished 343

through steps in (21)–(32), by depending upon the values of 344

coefficients αnn ′ and βnn ′ , provided that the voltage magnitudes 345

at all buses are available. � 346

The assumption on full voltage measurements can be relaxed. 347

Indeed, it is possible to build up rank-one measurements via 348

linear combinations, so long as two of the following SCADA 349

quantities {|vn |, |vn ′ |, pnn ′ , pn ′n , qnn ′ , qn ′n} are measured on 350

every line (n, n′) ∈ L. In a nutshell, one can readily rewrite all 351

measurements as intensities of some known and deterministic 352

linear transforms of the state vector, namely 353

žm =
∣∣hH

mv
∣∣2 ∀m = 1, . . . , M (33)

where the measurement vectors hm ∈ CN are given in (1), (22), 354

(25), (29), and (31), whereas the corresponding transformed 355

measurements žm > 0 are defined in (1), (23), (26), (30), and 356

(32). Moreover, all vectors hm are highly sparse, each having 357

at most two nonzero entries independent of the system size N . 358

This feature can be carefully exploited to endow the iterative 359

PSSE solvers with computational efficiency and scalability. 360

IV. PROX-LINEAR SE SOLVERS 361

In general, given a set of (consistent) quadratic equations, 362

there may exist multiple solutions even after excluding triv- 363

ial ambiguities. In the context of phase retrieval, in which the 364

measurement matrices are rank-one positive semidefinite (i.e., 365

Hm = hmhH
m ), a number M ≥ 4N − 4 of random quadratic 366

equations suffice for uniqueness of the solution [24]. In the 367

power systems literature though, it remains an open question 368

that how many quadratic measurements as in (1), (4), and (7) 369

are required for the uniqueness of PSSE solution. For concrete- 370

ness, this contribution assumes that a large enough number of 371

measurements are available, and they collectively determine a 372

unique solution, namely the underlying true system state. 373

Leveraging the rank-one measurement model, this section 374

presents two algorithms for scalable and exact power system 375

state recovery based on nonconvex optimization. Specifically, 376

we focus on the �1-loss to fit the intensity measurements žm 377

in (33) instead of zm in (11). Despite the nonconvexity and 378

nonsmoothness of the resulting loss function, we first develop 379

a deterministic prox-linear algorithm. When the initialization is 380

sufficiently close to the underlying true voltage state vector, and 381

the loss function satisfies a certain local “stability condition,” 382

we show that our first deterministic approach recovers the true 383

voltage vector at a quadratic convergence rate. It entails solv- 384

ing a quadratic program per iteration, for which off-the-shelf 385

convex programming toolboxes are widely available, but the re- 386

sulting complexity does not scale well with the system size. To 387

endow the algorithm with scalability, a stochastic generalization 388

is pursued, which processes a single measurement per iteration. 389

gangwang
Highlight
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It is well known in statistics and power systems literature that390

�1-based loss functions yield median-based estimators, and they391

can cope with gross errors in the measurements žm in a relatively392

benign way [21]. This prompts us to consider the �1-loss [i.e.,393

least-absolute-value (LAV)] formulation394

minimize
x∈CN

�(x) :=
1
M

M∑

m=1

∣∣žm − |hH
mx|2

∣∣ . (34)

Evidently, this loss function is nonsmooth and nonconvex, which395

is not even locally convex near v. This can be understood from396

the scalar case �(x) = |1 − x2 |. As such, it is unclear how to397

efficiently minimize such functions.398

However, the function exhibits several appealing structural399

properties that we explore in the following to develop iterative400

algorithms to locally solve the problem (34) efficiently [21],401

[25], [26]. To this end, consider first expressing the loss func-402

tion as the composition �(x) := c(s(x)), of the convex func-403

tion c(·) := ‖ · ‖1 and the smooth one s(x) := 1
M (ž − |Hx|2),404

where ž := [ž1 · · · žM ]T , H := [h1 · · · hM ]H, and the mod-405

ulus operator | · | is understood elementwise when applied to406

a vector. Such a compositional structure lends itself nicely to407

iterative procedures that are referred to as proximal-linear (prox-408

linear) algorithms, which we are described in detail ahead.409

Consider a real-valued x ∈ RN for now. The (deterministic)410

prox-linear method for minimizing �(x) = c(s(x)) is to lin-411

earize s only, followed by successively minimizing a sequence412

of locally regularized models. Specifically, starting with some413

initialization x0 ∈ RN , the prox-linear method defines a local414

“linearization” of � around the current iterate xt ∈ RN as415

�xt
(x) := c

(
s(xt) + ∇T s(xt)(x − xt)

)
(35)

with ∇s(xt) ∈ RN ×M representing the Jacobian matrix of s416

evaluated at point xt ; and subsequently, it proceeds inductively417

to obtain iterates x1 , x2 , ...by minimizing the quadratically reg-418

ularized models [25], [26]419

xt+1 = arg min
x∈RN

{
�xt

(x) +
1

2μt
‖x − xt‖2

2

}
(36)

where μt > 0 is a step size that can be fixed a priori to some420

constant, or be determined “on-the-fly” through a line search421

[25], [26]. Furthermore, observing that the linearization �xt
(x)422

is convex in x, so problem (36) is convex in x as well. It has423

been shown in [26] that when c is L-Lipschitz and ∇s is κ-424

Lipschitz, choosing any step size 0 < μ < 1
κL guarantees that425

the algorithm (36) is a descent method; that is, the iterates {xk}426

monotonically decrease the function value of �(x); and finds an427

(approximate) stationary point of (34).428

Nevertheless, the PSSE problem (34) involves optimization429

over complex-valued variables in x ∈ CN . It can be checked430

that the functions � and s do not satisfy the Cauchy–Riemann431

(CR) equations; see e.g., [27, Th. 7.2] for the definition of CR432

equations. Hence, functions � and s are not holomorphic (i.e.,433

complex-differentiable) in x. As such, the “linearization,” or the434

first-order Taylor’s expansion of s(x) in x ∈ CN alone [cf. (35)]435

does not exist. To address this challenge, we invoke Wirtinger’s436

calculus to generalize prox-linear algorithms to optimization437

Algorithm 1: Deterministic Prox-linear SE Solver.

1: Input data {(zm , Hm )}M
m=1 , step size μ > 0,

initialization v0 ∈ CN , solution accuracy ε > 0, and set
t = 0.

2: Prepare the power flow data {(zm , Hm )}M
m=N +1

according to (1), (22)–(23), (25)–(26), (29)–(30), and
(31)–(32) to obtain {(žm , hm )}M

m=N +1 based on
{zm = |vm |2}N

m=1 .
3: Repeat
4: Evaluate am,t and bm,t in (38).
5: Solve (37) to yield xt+1 .
6: t = t + 1.
7: Until ‖xt − xt−1‖2 ≤ ε

√
N .

8: Return xt .

over complex-valued arguments in the sequel. Please refer to 438

[28] for basics of Wirtinger’s calculus. 439

A. Deterministic Prox-Linear SE Solver 440

Our first deterministic prox-linear approach to (34) is simply 441

stated: begin with initialization x0 := 1 ∈ RN , and proceed 442

by successively minimizing quadratically regularized functions 443

around the current iterate xt ∈ CN to yield the next iterate 444

xt+1 = arg min
x∈CN

1
M

M∑

m=1

∣∣bm,t − 2�
(
aH

m,tx
)∣∣+ 1

2μt
‖x − xt‖2

2

(37)

where the term bm,t − 2�(aH
m,tx) can be interpreted as the first- 445

order Taylor’s approximation of the nonholomophic function 446

žm − |hH
mx|2 at xt based upon the Wirtinger derivatives; see 447

Appendix A for the rigorous derivation. The coefficients am,t 448

and bm,t are given by 449

am,t :=
(
hH

mxt

)
hm (38a)

bm,t := žm +
∣∣hH

mxt

∣∣2 . (38b)

Observe that the problem (37) to be tackled per iteration of 450

our deterministic prox-linear SE solver is a convex quadratic 451

program, which can be efficiently solved with standard con- 452

vex programming methods. Under appropriate conditions, our 453

scheme converges quadratically fast to the true state vector 454

v, meaning that we have to solve only about log2 log2(1/ε) 455

such quadratic programs to obtain an estimate x of v satisfying 456

dist(x, v) ≤ ε‖v‖2 . As will be corroborated by our numerical 457

tests in Section VI, this boils down to 5 ∼ 8 convex quadratic 458

programs in practice. Moreover, our approach applies both in 459

the noiseless setting, and when a constant (random) portion of 460

the measurements are even adversarially corrupted. 461

For implementation, our deterministic prox-linear solver is 462

summarized in Algorithm 1. Regarding computational com- 463

plexity, preparing the data in Step 2 can be performed within 464

O(M) operations. Exploiting the sparsity of hm ’s, evaluating 465

the coefficients {(bm,t , am,t)}M
m=1 in Step 5 can also be done 466

with O(M) operations. The overall complexity of Algorithm 1 467
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is indeed dominated by solving the quadratic program of (37) in468

Step 6. With standard convex programming solvers, the resultant469

complexity is often O(MN 2). Iterative procedures depending470

on the alternating direction method of multipliers can reduce this471

number to O(MN log(1/ε)) [21], [29]. The latter complexity,472

however, may still become unfavorable for large-size power net-473

works. Furthermore, even though {hm}M
m=1 have at most two474

nonzero entries, this property cannot be fully exploited to speed475

up computations for solving the quadratic program of (37). To476

address these issues, we advocate a stochastic alternative of (37)477

ahead for solving problem (34).478

B. Stochastic Prox-Linear SE Solver479

The stochastic prox-linear method deals with a single mea-480

surement per iteration. Initialized with x0 , our (stochastic) prox-481

linear SE solver operates by first sampling uniformly a loss482

function via randomly picking mt ∈ {1, 2, . . . , M}, and re-483

lies on minimizing its quadratically regularized “linearization”484

around xt to yield xt+1 [30]; that is, define inductively for485

t = 0, 1, 2, . . . that486

xt+1 =arg min
x∈CN

∣∣bmt ,t − 2�
(
aH

mt ,t
x
)∣∣ +

1
2μt

‖x − xt‖2
2

(39)
where the coefficients bmt ,t and amt ,t are given in (38), with487

bmt ,t − 2�(aH
mt ,tx) being the first-order Taylor’s expansion of488

the mt th error function žm t
− |hH

mt
x|2 around xt . Evidently,489

problem (39) is again a quadratic program too. Compared with490

the first quadratic program in (36), fortunately, the solution to491

(39) can be found in simple closed form.492

To that end, we invoke an earlier result in [29, Prop. 3],493

which is included in Appendix B for completeness. Upon defin-494

ing w := x − xt , a := amt ,t , and b := bmt ,t − 2�(aH
mt ,t

xt)495

in Proposition 2, one can readily find the solution to (39) as496

follows:497

xt+1 = xt + projμt

(
bmt ,t − 2�

(
aH

mt ,t
xt

)

‖amt ,t‖
2
2

)
amt ,t .

Substituting amt
and bmt

of (38) into the last equality leads to498

our stochastic prox-linear SE solver499

xt+1 = xt + projμt

(
žm t

−
∣∣hH

mt
xt

∣∣2

4
∣∣hH

mt
xt

∣∣2 · ‖hmt
‖2

2

)
· 2

(
hH

mt
xt

)
hmt

.

(40)
We summarize our second (stochastic) prox-linear SE solver500

in Algorithm 2 for further reference. In terms of computational501

complexity, we report the exact number of complex scalar op-502

erations (e.g., additions, multiplications) needed per stochas-503

tic prox-linear SE iteration of (40) next. Relying on whether504

hmt
has 1 or 2 nonzero entries, the following statements hold505

true. If hmt
has 1 (2) nonzero entries, evaluating |hH

mt
xt |2 re-506

quires 2 (4) operations, and ‖hmt
‖2

2 requires 1 (3) operations,507

plus another 5 operations for the remaining, all summing to508

a total of 8 (12) operations. In other words, per iteration of509

Algorithm 2 (cf. Steps 4–6) must perform only 12 complex510

scalar operations or so. Interestingly, this per-iteration com-511

plexity of O(1) holds regardless of the power network under512

Algorithm 2: Stochastic Prox-linear SE Solver.

1: Input data {(zm , Hm )}M
m=1 , step size μ > 0,

initialization v0 ∈ CN , solution accuracy ε > 0, and set
t = 0.

2: Prepare the power flow data {(zm , Hm )}M
m=N +1

according to (1), (22)–(23), (25)–(26), (29)–(30), and
(31)–(32) to obtain {(žm , hm )}M

m=N +1 based on
{zm = |vm |2}N

m=1 .
3: Repeat
4: Draw mt ∈ {1, 2, . . . , M} uniformly at random.
5: Evaluate Evaluate amt ,t and bmt ,t in (38).
6: Update xt+1 via (40).
7: t = t + 1.
8: Until ‖xt − xt−1‖2 ≤ ε

√
N .

9: Return xt .

investigation, or more precisely, the system size N . It is self- 513

evident that this O(1) per-iteration complexity scales nicely to 514

large- and even massive-size power networks. 515

V. CONVERGENCE ANALYSIS AND EXACT RECOVERY 516

In this section, we begin our development by providing con- 517

vergence guarantees for the proposed prox-linear SE solvers. 518

For concreteness, we will focus on the deterministic prox-linear 519

Algorithm 1, whereas convergence can be also established for 520

Algorithm 2 in a probabilistic sense. Interested readers are re- 521

ferred to [30]. Under certain conditions on the loss function �, 522

exact recovery results are also established. 523

Recall our loss function c(s(x)) = 1
M ‖ž − |Hx|2‖1 , where 524

c(u) = ‖u‖1 : RM → R, and s(x) = 1
M (ž − |Hx|2) : CN → 525

RM . It is easy to verify for any u, v ∈ RN that it holds 526

|c(u) − c(v)| ≤
M∑

n=1

|um − vm | = ‖u − v‖1 ≤
√

M‖u − v‖2

where the last inequality arises from the equivalence of norms. 527

By definition, this asserts that c is
√

M -Lipschitz continuous. 528

Focusing now on the complex Jacobian ∇xs for any x and 529

y ∈ CN , we deduce 530

‖∇xs(x) −∇xs(y)‖2 =
1
M

∥∥HHH(x − y)
∥∥

2 ≤ L‖x − y‖2

with L := (2/M)λmax(HHH), which confirms that ∇xs is L- 531

Lipschitz continuous. 532

Appealing to the results in [26, Th. 5.3], one can conclude 533

that our deterministic prox-linear SE solver with constant step 534

size μ ≤ 1/(L
√

M) =
√

M/(2λmax(HHH)) converges to a 535

stationary point of �(x) in (34). 536

We provide in the sequel conditions on the function � such 537

that exact recovery of power system states by our prox-linear 538

SE solvers is guaranteed. Going beyond [21], which is limited 539

to optimization over real-valued variables, we introduce two 540

complimentary conditions on �(x) and its linearization �x(y) of 541

complex-valued variables x, y ∈ CN . 542
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If � is defined over real-valued vectors, namely �(x) : RN →543

R, we can readily have the following stability condition for es-544

tablishing fast convergence: for any given v ∈ RN , there exists545

a constant ρ > 0 such that �(x) − �(v) ≥ ρ‖x − v‖2 ‖x + v||2546

holds for all x ∈ RN , which is included in Appendix B for547

completeness. This condition, though crucial for establishing548

fast convergence, does not generalize to functions of complex-549

valued variables. It is obvious in the complex case that if550

v ∈ CN is an optimal solution to (34), then ejφv with any φ ∈551

[0, 2π) is also an optimal solution. This ambiguity thus prompts552

us to define the Euclidean distance of any estimate x ∈ CN to553

v ∈ CN as dist(x, v) := minφ∈[0,2π ) ‖x − ejφv‖2 . This def-554

inition can be thought of as enforcing zero-phase angle at the555

reference bus, a standard procedure in power flow problems556

to eliminate the phase ambiguity. Invoking a result for stable557

phase retrieval in [31, Th. 3.1], we define the following stability558

condition for functions �(x) : CN → R, which also applies to559

practical settings where the measurements may contain noise or560

be even adversarially corrupted.561

Condition 1: There exists some constant ρ > 0 such that562

the inequality holds for all x ∈ CN563

�(x) − �(v) ≥ ρ

√
‖x − v‖2

2 ‖x + v‖2
2 − 4|�(xHv)|2 . (41)

Evidently, when the measurements ž = |Hv|2 are noiseless,564

it holds that �(v) = 0. Similar to the real-valued case stud-565

ied in [21], our Condition 1 is instrumental in establishing566

fast convergence of the prox-linear algorithm for optimizing567

functions of complex-valued variables. Besides Condition 1,568

we require a condition on the linearization �x(y) : CN → R of569

�(x) = c(s(x)) around x defined by570

�x(y) := c
(
s(x) + 2�

(
∇H

x s(x)(y − x)
))

. (42)

Condition 2: There exists a constant L < +∞ such that the571

inequality holds for all x, y ∈ CN572

|�(y) − �x(y)| ≤ L

2
‖x − y‖2

2 . (43)

This condition basically requires that the locally linearized573

convex approximation �x(y) is quadratically close [cf. (43)] to574

the nonconvex function �(y). Indeed, the �1-based PSSE cost575

function � in (34) automatically satisfies Condition 2 globally.576

To show this, let us first express �x(y) according to the definition577

of (42)578

�x(y) =
1
M

M∑

m=1

∣∣|hH
mx|2 − žm + 2�

(
xHhmhH

m (y − x)
)∣∣ .

On the other hand, for any m ∈ {1, 2, . . . , M} and y ∈ CN ,579

the following holds true580

∣∣hH
my

∣∣2 =
∣∣hH

mx
∣∣2 + 2�

(
xHhmhH

m (y − x)
)

+
∣∣hH

m (y − x)
∣∣2 .

Subtracting žm from both sides, summing from m = 1 to M , 581

and leveraging the triangle inequality, we have that 582

�(y) =
1
M

M∑

m=1

∣∣|hH
my|2− žm

∣∣≤ �x(y)+
1
M

M∑

m=1

∣∣hH
m (y− x)

∣∣2

�(y) =
1
M

M∑

m=1

∣∣|hH
my|2− žm

∣∣≥�x(y)− 1
M

M∑

m=1

∣∣hH
m (y− x)

∣∣2 .

Rewriting the last terms in matrix-vector form yields 583

|�(y) − �x(y)| ≤ (y − x)H
( 1
M

HHH
)
(y − x) ≤ L

2
‖y − x‖2

2

(44)
which proves that Condition 2 is satisfied globally by the �1-loss 584

in (34). Moreover, one can take L = λmax(HHH/M), namely 585

the largest eigenvalue of matrix HHH/M . 586

Under Conditions 1 and 2, we now devote to exact recov- 587

ery guarantees for the deterministic prox-linear SE solver in 588

Algorithm 1. The following result implies exact recovery of 589

power system states at a quadratic rate by our proposed prox- 590

linear SE solver in Algorithm 1 under suitable conditions. 591

Theorem 1: Let Conditions 1 and 2 hold. Assuming that 592

the quadratic program (37) is solved exactly per iteration of 593

Algorithm 1, the successive prox-linear SE iterates xt satisfy 594

dist(xt ,v)
‖v‖2

≤ ρ

L

(
L

ρ
· dist(x0 ,v)

‖v||2

)2t

. (45)

For readability, the proof of Theorem 1 is postponed to 595

Appendix C. Regarding Theorem 1, three observations come 596

in order. 597

Remark 1 (Exact recovery): If the initialization x0 of the 598

iterations is accurate enough, meaning that it satisfies the con- 599

dition dist(x0 , v) < (ρ/L)‖v‖2 , the prox-linear SE solver re- 600

covers exactly the true state vector v ∈ CN . In terms of initial- 601

izations, there are several approaches for this desideratum, three 602

of which are discussed next. Since power systems are typically 603

operating close to the flat voltage profile 1, it is reasonable to 604

initialize the algorithm with x0 = 1. Moreover, as the voltage 605

magnitudes at all buses are assumed available, one can use the 606

voltage magnitude vector x0 = |v| as the initializer. Alterna- 607

tively, it is also feasible to initialize with the estimate found by 608

solving the linearized dc power flow equations. 609

Remark 2 (Quadratic convergence rate): When dist(x0 , 610

v) < (ρ/L)‖v‖2 holds true, our prox-linear SE algorithm con- 611

verges quadratically fast to the globally optimal solution of 612

the nonconvex and nonsmooth optimization problem (34). Ex- 613

pressed differently, to obtain a solution xt of (at most) ε-relative 614

error, namely dist(xt , v)/‖v‖2 ≤ ε, we must only run Algo- 615

rithm 1 for about log2 log2(1/ε) iterations, or equivalently, solve 616

log2 log2(1/ε) convex quadratic programs as in (37). This, in 617

practice, amounts to about 5 ∼ 10 such quadratic programs. 618

Remark 3: Under the condition dist(x0 , v) < (ρ/L)‖v‖2 , 619

it is worth pointing out that Condition 1 can be replaced by a 620

condition requiring only the function �(x) to satisfy the inequal- 621

ity (49) locally for all x within the neighborhood of v defined 622

by dist(x, v) < (ρ/L)‖v‖2 . 623
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Fig. 1. Exact recovery performance of Algorithm 1 for the IEEE 14-bus
system (noiseless case).

VI. NUMERICAL TESTS624

In this section, we perform a number of numerical tests to625

evaluate our approach and compare with the “workhorse” LS-626

based Gauss–Newton method. Several power network bench-627

marks including the IEEE 14-, 118-, and 300-bus systems628

were simulated, following the MATLAB-based toolbox MAT-629

POWER [32], [33]. The Gauss–Newton iterations were im-630

plemented by using the embedded SE function “doSE.m”631

in MATPOWER. To carefully isolate the relative perfor-632

mance of the iterative algorithms, rather than initialization633

employed, all simulated schemes were initialized with the634

flat voltage vector (i.e., the all-one vector) in all reported635

experiments.636

A. Tests With Zero Noise637

The first experiment examines the exact recovery and conver-638

gence performance of Algorithm 1 from noiseless data on the639

IEEE 14-, 118-, and 300-bus test systems. The actual voltage640

magnitude (in p.u.) and angle (in radians) of each bus were uni-641

formly distributed over [0.9, 1.1], and over [−0.1π, 0.1π]. The642

voltage magnitude squares at all buses as well as the active power643

flows across all lines were measured. The quadratic programs644

in Step 5 of Algorithm 1 were solved by the standard convex645

programming solver SeDuMi [34] with a constant step size of646

μt = 1, 000. Algorithm 1 terminates either when a maximum647

number 20 of iterations are simulated, or when the normal-648

ized distance between two consecutive iterates becomes smaller649

than 10−10 , namely dist(xt , xt−1)/
√

N ≤ 10−10 . A total of650

100 Monte Carlo (MC) runs were carried out. Figs. 1–3 plot the651

normalized estimation errors dist(xt , v)/
√

N for the 100 MC652

realizations on the simulated three systems, whose correspond-653

ing L values are 0.9980, 3.0201, and 6.3102. Furthermore, Fig. 4654

depicts the convergence of the normalized estimation error of655

Algorithm 1 for the 100 runs on the 14-bus system. Evidently,656

Algorithm 1 achieves exact recovery over the 100 runs, and en-657

joys quadratic convergence in this noiseless setting, validating658

our theoretical findings in Theorem 1.659

Fig. 2. Exact recovery performance of Algorithm 1 for the IEEE
118-bus system (noiseless case).

Fig. 3. Exact recovery performance of Algorithm 1 for the IEEE
300-bus system (noiseless case).

Fig. 4. Quadratic convergence of Algorithm 1 in 100 runs for the IEEE
14-bus system (noiseless case).

B. Tests With Outlying Measurements 660

One of the claimed advantages of the �1-based loss function 661

in (34) is its robustness to outliers. In this test, we evaluate 662

the robustness of Algorithm 1 to measurements with outliers 663
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Fig. 5. Recovery performance for the IEEE 118-bus system with 1
outlying measurement (noiseless case).

in terms of the exact recovery. Concretely, the IEEE 118-bus664

system with its default voltage profile was simulated. The volt-665

age magnitudes at all buses along with the active and reactive666

power flows across all lines were measured. Considering the fact667

that the nodal voltage magnitudes in transmission networks are668

maintained close to one, we assume that only the power meters669

can be compromised. A total of 100 MC runs were performed.670

Per run, one power flow meter was randomly compromised,671

whose measurement was purposefully manipulated and ampli-672

fied to five times its original value.673

Both the Gauss–Newton and Algorithm 1 were simulated in674

this experiment, whose corresponding normalized estimation675

errors for the 100 MC realizations are presented in Fig. 5. It is676

self-evident from the plots that the Gauss–Newton method is not677

robust to outlying measurements, whereas our proposed prox-678

linear scheme in Algorithm 1 can identify and automatically679

reject the bad data, yielding exact recovery of the true states in680

most cases even under adversarial attacks.681

C. Tests With Additive Noise and Outliers682

The third experiment assesses the robust estimation perfor-683

mance of Algorithm 1 relative to Gauss–Newton, in a setting684

where both additive noises and outliers are present. The large685

IEEE 300-bus benchmark system with its default voltage pro-686

file was simulated. All active and reactive power flows as well687

as all voltage magnitudes were measured. Additive noise was688

independently generated from normal distributions having zero-689

mean and standard deviations 0.004 and 0.008 for the voltage690

magnitude and line flow measurements, respectively [18]. In ad-691

dition to additive noise, 5% of the entire measured power flows692

were corrupted uniformly at random with “outliers” drawn in-693

dependently from a Gaussian distribution with zero-mean and694

standard deviation 5. The normalized estimation errors obtained695

by the Gauss–Newton method and Algorithm 1 for 100 MC in-696

dependent realizations are reported in Fig. 6. Evidently, our697

developed algorithm consistently exhibits more robust estima-698

Fig. 6. Estimation performance for the IEEE 300-bus system under
additive noise and 5% outlying measurements.

tion performance than LS-based Gauss–Newton against additive 699

noise and outlying measurements. 700

VII. CONCLUSION 701

Robust PSSE is approached by minimizing the �1-based loss 702

function from the vantage point of composite optimization. To 703

enable efficient algorithms and exact state recovery, the power 704

quantities were first transformed into rank-one measurements. 705

Building on advances in nonconvex and nonsmooth composite 706

optimization, two algorithms were put forth for minimizing the 707

�1-based loss of the transformed rank-one measurements. Our 708

algorithms require no tuning of parameters, except for a step 709

size. We also developed “stability conditions” on the �1-based 710

loss function such that exact state recovery and quadratic con- 711

vergence are guaranteed by our approach in the noiseless case. 712

Simulated tests using three IEEE benchmark networks under 713

different settings validate our theoretical findings, and show- 714

case the efficacy of our approach. 715

APPENDIX 716

A. Wirtinger’s Calculus 717

Introducing the complex conjugate coordinates [xT xT ]T ∈ 718

C2N , one can rewrite s(x) = s(x, x) ∈ CM . It is obvious now 719

that s(x, x) becomes holomorphic in x for a fixed x, and vice 720

versa. This leads to the partial Wirtinger derivatives [28] 721

∂sm

∂x
:=

∂sm (x,x)
∂x

∣∣∣∣
x=constant

=
[
∂sm

∂x1

∂sm

∂x2
· · · ∂sm

∂xN

]

∂sm

∂x
:=

∂sm (x,x)
∂x

∣∣∣∣
x=constant

=
[
∂sm

∂x1

∂sm

∂x2
· · · ∂sm

∂xN

]

where the partial derivative with respect to x (x) treats x (x) as a 722

constant in sm . The complex gradient of sm (x, x) with respect 723

to x or x can be defined by 724

∇xsm :=
(

∂sm

∂x

)H
, and ∇xsm :=

(
∂sm

∂x

)H
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yielding the complex gradient of sm in new coordinate system725

∇csm :=
[
∇T

x sm ∇T
x sm

]T
=

[
∂sm

∂x
∂sm

∂x

]H
.

Upon introducing the complex Jacobian726

∇cs := [∇cs1 ∇cs2 · · · ∇csM ] ∈ C2N ×M

we can define for given vectors x and Δx ∈ CN the following727

first-order Taylor’s expansion:728

s(x + Δx) ≈ s(x) + ∇H
c s(x)

[
Δx
Δx

]

= s(x) + 2�
(
∇Hsx(x)Δx

)
∈ RM ×N . (46)

B. Supporting Results729

Proposition 2 ([29, Prop. 3]): Given a ∈ CN and b ∈ R,730

the solution of731

minimize
w∈CN

∣∣b −�
(
aHw

)∣∣ +
1
2μ

‖w‖2
2 (47)

can be obtained as ŵ := projμ(b/‖a‖2
2) · a, where projμ(x) :732

R × R+ → R is the projection operator that returns the real733

number in interval [−τ, τ ] closest to any given x ∈ R.734

Condition 3 [21, Condition 1]: For any given v ∈ RN ,735

there exists a parameter ρ > 0 such that function �(x) satisfies736

the following for all x ∈ Rn :737

�(x) − �(v) ≥ ρ‖x − v‖2‖x + v‖2 . (48)

Concerning the lower bound in (41), we have the next result.738

Lemma 1: For any fixed v ∈ CN , the inequality holds for739

all x, v ∈ CN740

‖x − v‖2
2 ‖x + v‖2

2 − 4
∣∣�(xHv)

∣∣2 ≥ ‖v‖2
2 dist2(x,v).

(49)
Proof: The left-hand-side term of (49) can be rewritten as741

‖x − v‖2
2 ‖x + v‖2

2 − 4�2(xHv)

=
(
‖x‖2

2 + ‖v‖2
2 − 2�(xHv)

) (
‖x‖2

2 + ‖v‖2
2 + 2�(xHv)

)

− 4�2(xHv)

=
(
‖x‖2

2 + ‖v‖2
2
)2 − 4

[
�2(xHv) + �2(xHv)

]

=
(
‖x‖2

2 + ‖v‖2
2
)2 − 4|xHv|2

=
(
‖x‖2

2 + ‖v‖2
2 + 2|xHv|

) (
‖x‖2

2 + ‖v‖2
2 − 2|xHv|

)

≥ ‖v‖2
2
(
‖x‖2

2 + ‖v‖2
2 − 2|xHv|

)

= ‖v‖2
2 dist2(x,v).

Taking the square root from both sides of the inequality yields742

the statement of Lemma 1. �743

C. Proof of Theorem 1744

The proof is based on that of [21, Th. 1], but we here gen-745

eralize its results to function optimization over complex do-746

mains. Observe that the regularized function g(x) := �xt
(x) +747

L
2 ‖x − xt‖2

2 is L-strongly convex in x ∈ CN , and its min- 748

imum is attained at xt+1 [cf. (37)]. The standard optimal- 749

ity conditions for strongly convex minimization confirms that 750

g(xt+1) ≤ g(ej∠xH
t vv) − L

2 ‖ej∠xH
t vv − xt+1‖2

2 ; that is, 751

�xt
(xt+1) +

L

2
‖xt+1 − xt‖2

2 ≤ �xt
(ej∠xH

t vv)

+
L

2

∥∥∥ej∠xH
t vv − xt

∥∥∥
2

2
− L

2

∥∥∥ej∠xH
t vv − xt+1

∥∥∥
2

2
. (50)

Recalling now Condition 2, we have that 752

�(xt+1) ≤ �xt
(xt+1) +

L

2
‖xt+1 − xt‖2

2 (51a)

�xt
(ej∠xH

t vv) ≤ �(ej∠xH
t vv)+

L

2

∥∥∥ej∠xH
t vv−xt

∥∥∥
2

2
. (51b)

Substituting (51a) and (51b) into (50) gives rise to 753

�(xt+1) ≤ �xt
(ej∠xH

t vv) +
L

2

∥∥∥ej∠xH
t vv − xt

∥∥∥
2

2

− L

2

∥∥∥ej∠xH
t vv − xt+1

∥∥∥
2

2

≤ �(ej∠xH
t vv)+L

∥∥∥ej∠xH
t vv−xt

∥∥∥
2

2
−L

2

∥∥∥ej∠xH
t vv−xt+1

∥∥∥
2

2

which, in conjunction with �(ej∠xH
t vv) = �(v) in (34), yields 754

L
∥∥∥ej∠xH

t vv − xt

∥∥∥
2

2
≥ �(xt+1) − �(v)

+
L

2

∥∥∥ej∠xH
t vv − xt+1

∥∥∥
2

2
. (52)

Invoking further Condition 1 in (52), we have that 755

L
∥∥∥ej∠xH

t vv − xt

∥∥∥
2

2
≥ L

2

∥∥∥ej∠xH
t vv − xt+1

∥∥∥
2

2

+ ρ

√
‖xt+1 − v‖2

2 ‖xt+1 + v‖2
2 − 4

∣∣�(xH
t+1v)

∣∣2 (53)

in which the last term can be replaced with its lower bound 756

ρ‖v‖2 dist(xt+1 ,v) established in Lemma 1. Upon dropping 757

the nonnegative term L
2 ‖ej∠xH

t vv − xt+1‖2
2 , and recalling the 758

definition of dist(xt ,v), we immediately have 759

ρ‖v‖2 dist(xt+1 ,v) ≤ Ldist2(xt ,v)

dividing both sides of which by ρ‖v‖2
2 yields 760

dist(xt+1 ,v)
‖v‖2

≤ L

ρ
· dist2(xt ,v)

‖v‖2
2

=
ρ

L

(
L

ρ
· dist(xt ,v)

‖v‖2

)2

.

Applying the above-mentioned inequality successively from 761

the initialization x0 for t iterations through xt gives rise to (45), 762

concluding the proof. 763
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