GENERAL INSTRUCTION

- Authors: We cannot accept new source files as corrections for your paper. If possible, please annotate the PDF proof we have sent you with your corrections and upload it via the Author Gateway. Alternatively, you may send us your corrections in list format. You may also upload revised graphics via the Author Gateway.

Queries

Q1. Author: Please confirm or add details for any funding or financial support for the research of this article.
Q2. Author: Please provide the expansion of LS.
Q3. Author: We have renumbered the equations after equation (16) in order to maintain the sequential order, as per the IEEE style. Please check.
Q4. Author: Please provide the report number in Ref. [9].
Q5. Author: Please update Refs. [13], [21], [29], and [30].
Q6. Author: Please provide the year in Ref. [32].

Abstract

The unique features of current and upcoming energy systems, namely, high penetration of uncertain renewables, unpredictable customer participation, and purposeful manipulation of meter readings, all highlight the need for fast and robust power system state estimation (PSSE). In the absence of noise, PSSE is equivalent to solving a system of quadratic equations, which, also related to power flow analysis, is NP-hard in general. Assuming the availability of all power flow and voltage magnitude measurements, this paper first suggests a simple algebraic technique to transform the power flows into rank-one measurements, for which the ℓ_{1}-based misfit is minimized. To uniquely cope with the nonconvexity and nonsmoothness of ℓ_{1}-based PSSE, a deterministic proximal-linear solver is developed based on composite optimization, whose generalization using stochastic gradients is discussed too. This paper also develops conditions on the ℓ_{1}-based loss function such that exact recovery and quadratic convergence of the proposed scheme are guaranteed. Simulated tests using several IEEE benchmark test systems under different settings corroborate our theoretical findings, as well as the fast convergence and robustness of the proposed approaches.

Index Terms-Bad data analysis, composite optimization, least-absolute-value (LAV) estimator, proximal-linear algorithm, supervisory control and data acquisition-(SCADA) measurement.

THE North American power grid is praised as the greatest engineering achievement of the 20th century [1]. To maintain grid efficiency, reliability, and sustainability, system

Manuscript received September 17, 2018; revised September 18, 2018, November 10, 2018, and November 30, 2018; accepted December 5,2018 . Date of publication; date of current version. The work of G. Wang and G. B. Giannakis was supported by the NSF under Grant 1514056, Grant 1505970, and Grant 1711471. The work of H. Zhu was supported by the NSF under Grant 1802319. The work of J. Sun was supported in part by the NSFG under Grant U1509215 and Grant 61621063, and in part by the Program for Changjiang Scholars and Innovative Research Team in University (IRT1208). Recommended by Associate Editor Y. Hong. (Corresponding author: Jian Sun.)
G. Wang and G. B. Giannakis are with the Digital Technology Center and the Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455 USA (e-mail: gangwang@ umn.edu; georgios@umn.edu).
H. Zhu is with the Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712 USA (e-mail: haozhu@utexas.edu).
J. Sun is with the State Key Laboratory of Intelligent Control and Decision of Complex Systems and the School of Automation, Beijing Institute of Technology, Beijing 100081, China (e-mail: sunjian @ bit.edu.cn).

Digital Object Identifier 10.1109/TCNS.2019.2890954
operators constantly monitor the operating conditions of electricity networks [2], [3]. In the 1960s, power system engineers tried to compute voltages at critical buses based on meter readings manually collected from geometrically distributed current and potential transformers. Due to timing, model mismatches, and metering errors, however, the exact (ac) power flow equations were never infeasible.

With the development of supervisory control and data acquisition (SCADA) systems, a wealth of improved data metered from across the network became available. In the seminal work of Schweppe et al. [4], the modern statistical foundation for power system state estimation (PSSE) was laid. Given a collection of SCADA data along with corresponding measurement matrices, the goal of PSSE is to compute the complex voltages (or, the voltage magnitudes and angles if polar coordinates are used) at all network buses. Since then, substantial contributions have been devoted to PSSE. Interested readers can refer to [3] for a review of recent developments on PSSE.

Based on the weighted least-squares (WLS) estimation criterion, the Gauss-Newton solver is arguably the "workhorse" for PSSE, and it is also employed in practice [2]. Yet, the nonconvex nature of WLS poses challenges on the Gauss-Newton method, including sensitivity to initialization and outliers, as well as no convergence guarantee [5]. To address these challenges, semidefinite programming (SDP) relaxation approaches have been pursued [6]-[8]. However, SDP incurs computational complexity that does not scale well with problem dimension, discouraging its use in practical settings.

With utilities increasingly shifting toward smart grid technology and other upgrades with inherent cyber vulnerabilities, correlative threats from adversarial cyberattacks on the North American power grid continue to grow in frequency and form [9]. These introduce new yet critical challenges to PSSE, particularly to the WLS-based SE solvers, concerning data integrity and uninformed model changes [10]-[14]. Such concerns motivate well the development of accurate and robust approaches to endow PSSE with resilience to anomalous (i.e., bad) data and model inaccuracies.

A. Related Work

In this context, robust PSSE has recently received renewed interest. To cope with the malicious data, the largest normalized residual (LNR) test was incorporated while performing PSSE [10]. The least-median-squares and least-trimmed-squares
based alternatives were pursued [15]. Unfortunately, the aforementioned robust PSSE proposals incur unfavorable computational complexities and/or stringent storage requirements, which limit their practical uses in real-world power networks.

On the other hand, the ℓ_{1}-based criterion has been well known in optimization and statistics for its robustness to outliers [16], [2, Ch. 6]. In addition to being robust, the ℓ_{1}-based estimator is also statistically optimal in the maximum likelihood sense, when the independent additive noise follows a Laplacian distribution. In the PSSE literature, the ℓ_{1}-based criterion was advocated for bad data identification and rejection in [17]. Research focus has shifted toward devising efficient and user-friendly algorithms to handle the nonconvexity and nonsmoothness issues of ℓ_{1}-loss function; see, e.g., [18] and [19].

B. This Paper

This paper revisits the ℓ_{1}-based robust PSSE with a focus on development of efficient algorithms and theory on exact state recovery in the noiseless case. Leveraging recent advances in solving rank-one quadratic equations (i.e., phase retrieval) [20], [21], we first suggest a simple algebraic procedure to transform the power flows into rank-one measurements, namely with corresponding transformed measurement matrices being rank one. Subsequently, we develop two efficient and easy-to-implement algorithms to optimize the ℓ_{1}-loss of the obtained rank-one measurements. With appropriate conditions on the ℓ_{1}-loss function, we establish exact recovery as well as quadratic convergence for our approach. Simulated tests using three IEEE benchmark systems showcase the robustness and computational efficiency of our proposed scheme relative to competing Gauss-Newton method.

The rest of this paper is organized as follows. System modeling and problem formulation are given in Section II. The procedure to obtain rank-one measurements is presented in Section III, followed by two algorithms in Section IV. Exact state recovery and convergence are established in Section V. Numerical tests are provided in Section VI, and this paper is concluded in Section VII.

Notation: Matrices (column vectors) are denoted by upper-(lower-) case boldface letters; e.g., A (a). Sets are denoted using calligraphic letters. Symbol ${ }^{\mathcal{T}}\left({ }^{\mathcal{H}}\right)$ represents (Hermitian) transpose, and $\overline{(\cdot)}$ complex conjugate, whereas $\Re(\cdot)(\Im(\cdot))$ takes the real (imaginary) part of a complex number.

II. System Modeling and Problem Formulation

A. System Modeling

Consider an electric power grid modeled as a graph $\mathcal{G}=$ $(\mathcal{N}, \mathcal{L})$, whose nodes $\mathcal{N}:=\{1,2, \ldots, N\}$ correspond to buses and whose edges $\mathcal{L}:=\left\{\left(n, n^{\prime}\right)\right\} \subseteq \mathcal{N} \times \mathcal{N}$ correspond to lines. Throughout this paper, all analysis pertains to the per unit (p.u.) system. The complex voltage per bus $n \in \mathcal{N}$ can be given in rectangular coordinates as $v_{n}=\Re\left(v_{n}\right)+j \Im\left(v_{n}\right)$. For brevity, all nodal voltages are stacked up to form the vector $\mathbf{v}:=\left[v_{1} \cdots v_{N}\right]^{\mathcal{T}} \in \mathbb{C}^{N}$. In the ac-based SE literature, a sub-
set of following system variables can be measured by SCADA [2, Ch. 2]:

1) $\left|v_{n}\right|$: the voltage magnitude at bus n;
2) $P_{n n^{\prime}}\left(Q_{n n^{\prime}}\right)$: the active (reactive) power flow from buses n to n^{\prime} at the sending terminal;
3) $P_{n}\left(Q_{n}\right)$: the active (reactive) power injection into bus n.

Compliant with the ac power flow model [2], these system 136 variables can be expressed as quadratic functions of \mathbf{v}. This 137 justifies why the voltage vector \mathbf{v} is referred to as the system 138 state. To this end, observe that the squared voltage magnitudes $V_{n}:=\left|v_{n}\right|^{2}=\left[\Re\left(v_{n}\right)\right]^{2}+\left[\Im\left(v_{n}\right)\right]^{2}$ can be written as

$$
\begin{equation*}
V_{n}=\mathbf{v}^{\mathcal{H}} \mathbf{H}_{n}^{V} \mathbf{v}, \text { with } \mathbf{H}_{n}^{V}:=\mathbf{h}_{n} \mathbf{h}_{n}^{\mathcal{T}} \tag{1}
\end{equation*}
$$

for all $n \in \mathcal{N}$, where we have introduced the measurement 141 vector $\mathbf{h}_{n}:=\mathbf{e}_{n}$ with \mathbf{e}_{n} being the nth canonical vector in 142 \mathbb{R}^{N}. To express power injections as functions of \mathbf{v}, introduce 143 the bus admittance matrix $\mathbf{Y}=\mathbf{G}+j \mathbf{B} \in \mathbb{C}^{N}$, where \mathbf{G} and 144 $\mathbf{B} \in \mathbb{R}^{N \times N}$ are the real and imaginary parts of \mathbf{Y} [2], respec- 145 tively. In rectangular coordinates, the active and reactive powers 146 P_{n} and Q_{n} injected into bus n can be expressed as

$$
\begin{align*}
P_{n}= & \Re\left(v_{n}\right) \sum_{n^{\prime}=1}^{N}\left[\Re\left(v_{n^{\prime}}\right) G_{n n^{\prime}}-\Im\left(v_{n}\right) B_{n n^{\prime}}\right] \\
& +\Im\left(v_{n}\right) \sum_{n^{\prime}=1}^{N}\left[\Im\left(v_{n}\right) G_{n n^{\prime}}+\Re\left(v_{n}\right) B_{n n^{\prime}}\right] \tag{2}\\
Q_{n}= & \Im\left(v_{n}\right) \sum_{n^{\prime}=1}^{N}\left[\Re\left(v_{n}\right) G_{n n^{\prime}}-\Im\left(v_{n}\right) B_{n n^{\prime}}\right] \\
& -\Re\left(v_{n}\right) \sum_{n^{\prime}=1}^{N}\left[\Im\left(v_{n}\right) G_{n n^{\prime}}+\Re\left(v_{n}\right) B_{n n^{\prime}}\right] \tag{3}
\end{align*}
$$

which can be compactly expressed as

$$
\begin{align*}
P_{n} & =\mathbf{v}^{\mathcal{H}} \mathbf{H}_{n}^{P} \mathbf{v}, \text { with } \mathbf{H}_{n}^{P}:=\frac{\mathbf{Y}_{n}^{\mathcal{H}}+\mathbf{Y}_{n}}{2} \tag{4a}\\
Q_{n} & =\mathbf{v}^{\mathcal{H}} \mathbf{H}_{n}^{Q} \mathbf{v}, \text { with } \mathbf{H}_{n}^{Q}:=\frac{\mathbf{Y}_{n}^{\mathcal{H}}-\mathbf{Y}_{n}}{2 j} \tag{4b}
\end{align*}
$$

with $\mathbf{Y}_{n}:=\mathbf{e}_{n} \mathbf{e}_{n}^{\mathcal{T}} \mathbf{Y}$ for all $n \in \mathcal{N}$.
With regards to power flows, Kirchhoff's current law dictates 150 that the complex current over the line $\left(n, n^{\prime}\right)$ at the "sending" 151 end is $i_{n n^{\prime}}=y_{n n^{\prime}}^{s} v_{n}+y_{n n^{\prime}}\left(v_{n}-v_{n}^{\prime}\right)$, where $y_{n n^{\prime}}^{s}$ is the shunt 152 admittance at bus n^{\prime} associated with the line $\left(n, n^{\prime}\right)$. The ac 153 power flow model, in conjunction with Ohm's law, further as- 154 serts that the complex power flowing over line $\left(n, n^{\prime}\right)$ at the "sending" end can be expressed as

$$
\begin{align*}
S_{n n^{\prime}} & =P_{n n^{\prime}}+j Q_{n n^{\prime}}=v_{n} \bar{i}_{n n^{\prime}} \\
& =\left|v_{n}\right|^{2}\left(\bar{y}_{n n^{\prime}}^{s}+\bar{y}_{n n^{\prime}}\right)-v_{n} \bar{v}_{n} \bar{y}_{n n^{\prime}} \tag{5}
\end{align*}
$$

It is worth pointing out that the complex power flow over line 157 $\left(n, n^{\prime}\right) \in \mathcal{L}$ at the "receiving" end is captured by that over line 158 $\left(n^{\prime}, n\right) \in \mathcal{L}$ at the "sending" end. Upon defining the following 159 matrices for all lines $\left(n, n^{\prime}\right) \in \mathcal{L}$:

$$
\begin{equation*}
\mathbf{Y}_{n n^{\prime}}:=\left(y_{n n^{\prime}}^{s}+y_{n n^{\prime}}\right) \mathbf{e}_{n} \mathbf{e}_{n}^{\mathcal{T}}-\bar{y}_{n n^{\prime}} \mathbf{e}_{n^{\prime}} \mathbf{e}_{n^{\prime}}^{\mathcal{T}} \tag{6}
\end{equation*}
$$

the active and reactive power flows at the "sending" terminal, namely the real and imaginary parts of $S_{n n^{\prime}}$ in (5) can be given in a compact representation as

$$
\begin{align*}
P_{n n^{\prime}} & =\mathbf{v}^{\mathcal{H}} \mathbf{H}_{n n^{\prime}}^{P} \mathbf{v}, \text { with } \mathbf{H}_{n n^{\prime}}^{P}:=\frac{\mathbf{Y}_{n n^{\prime}}^{\mathcal{H}}+\mathbf{Y}_{n n^{\prime}}}{2} \tag{7a}\\
Q_{n n^{\prime}} & =\mathbf{v}^{\mathcal{H}} \mathbf{H}_{n n^{\prime}}^{Q} \mathbf{v}, \text { with } \mathbf{H}_{n n^{\prime}}^{Q}:=\frac{\mathbf{Y}_{n n^{\prime}}^{\mathcal{H}}-\mathbf{Y}_{n n^{\prime}}}{2 j} \tag{7b}
\end{align*}
$$

Having expressed all SCADA measurements as functions of \mathbf{v}, the PSSE problem can be presented next.

B. Power System State Estimation

In practice, the SCADA system measures a subset of the system variables specified in (1), (4), and (7). Suppose now a total of M such variables are measured, which are stacked up to form the following $M \times 1$ measurement vector:

$$
\begin{align*}
\mathbf{z}:= & {\left[\left\{\check{V}_{n}\right\}_{n \in \mathcal{N}_{V}},\left\{\check{P}_{n}\right\}_{n \in \mathcal{N}_{P}},\left\{\check{Q}_{n}\right\}_{n \in \mathcal{N}_{Q}}\right.} \\
& \left.\left\{\check{P}_{n n^{\prime}}\right\}_{\left(n, n^{\prime}\right) \in \mathcal{L}_{P}},\left\{\check{Q}_{n n^{\prime}}\right\}_{\left(n, n^{\prime}\right) \in \mathcal{L}_{Q}}\right]^{\mathcal{T}} \in \mathbb{R}^{M} \tag{8}
\end{align*}
$$

171 where the check-marked terms represent possibly noisy observations of the corresponding error-free variables. The subsets $\mathcal{N}_{V}, \mathcal{N}_{P}, \mathcal{N}_{Q} \subseteq \mathcal{N}$, and $\mathcal{L}_{P}, \mathcal{L}_{Q} \subseteq \mathcal{L}$ specify the locations where meters are installed and the associated type of variables are measured. Succinctly, per m th measurement in \mathbf{z} can be equivalently rewritten as

$$
\begin{equation*}
z_{m}:=\mathbf{v}^{\mathcal{H}} \mathbf{H}_{m} \mathbf{v}+\epsilon_{m} \tag{9}
\end{equation*}
$$

for all $m \in\{1,2, \ldots, M\}$, where the terms $\epsilon_{m} \in \mathbb{R}$ capture the metering errors and modeling inaccuracies, and the Hermitian measurement matrices $\mathbf{H}_{m} \in \mathbb{C}^{N \times N}$ can correspond to any subset of the matrices defined in (1), (4), and (7). The critical goal of PSSE is to obtain $\mathbf{v} \in \mathbb{C}^{N}$ based on the available data $\left\{\left(z_{m} ; \mathbf{H}_{m}\right)\right\}_{m=1}^{M}$.

Without loss of generality, adopting the LS error objective, which coincides with the maximum likelihood criterion assuming additive white Gaussian noise, PSSE pursues problem ${ }^{1}$

$$
\begin{equation*}
\underset{\mathbf{x} \in \mathbb{C}^{N}}{\operatorname{minimize}} \ell(\mathbf{x}):=\frac{1}{2 M} \sum_{m=1}^{M}\left(z_{m}-\mathbf{x}^{\mathcal{H}} \mathbf{H}_{m} \mathbf{x}\right)^{2} \tag{10}
\end{equation*}
$$

Because of the quadratic terms inside the squares, the quartic function $\ell(x)$ is nonconvex, whose general instance is NP-hard [22]. Hence, it is computationally intractable to compute the LS or maximum likelihood estimate of \mathbf{v} in general.

C. Prior Contributions

Minimizing the nonlinear LS loss in (10), the Gauss-Newton method is the "workhorse" [2, Ch. 2]. Upon linearizing all quadratic terms $\mathbf{x}^{\mathcal{H}} \mathbf{H}_{m} \mathbf{x}$ around a given point using Taylor's expansion, the Gauss-Newton subsequently approximates the nonlinear LS fit in (10) using a linear one per iteration, and relies on its resultant minimizer to obtain the next iterate [3].

[^0]It typically converges in a few (≤ 10) iterations, very fast for 197 small- or medium-size problems. However, it is known that the 198 Gauss-Newton iterations for nonconvex LS are sensitive to the 199 initial point, and they may diverge in certain cases; see e.g., [5, 200 Ch. 5].

On the other hand, several numerical polynomial-time SE al- 202 gorithms have been pursued based on convex programming [6]. 203 By means of matrix lifting, such convex approaches start ex- 204 pressing all quadratic measurements $\mathbf{x}^{\mathcal{H}} \mathbf{H}_{m} \mathbf{x}$ as linear functions 205 $\operatorname{Tr}\left(\mathbf{H}_{m} \mathbf{X}\right)$ of the rank-one matrix variable $\mathbf{X}:=\mathbf{x x}^{\mathcal{H}} \succeq \mathbf{0} .206$ Upon discarding the nonconvex rank constraint, the nonlinear 207 LS in (10) boils down to (or can be converted into) a convex 208 SDP. In terms of computational efficiency, such convex schemes 209 entail solving for an $N \times N$ positive semidefinite matrix from 210 M SDP constraints, whose worst case computational complex- 211 ity is $\mathcal{O}\left(M^{4} N^{1 / 2} \log (1 / \epsilon)\right)$ for any given solution accuracy 212 $\epsilon>0$ [23, Sec. 6.6.2]. This complexity and the resultant storage 213 requirement evidently do not scale nicely to the increasingly 214 interconnected large power networks.

III. Rank-One Measurement Approach

Drawing from advances in nonconvex optimization, this sec- 217 tion presents a new framework for scalable, accurate, and ro- 218 bust PSSE. Specifically, our proposed approach reformulates 219 the rank-two power flows in (7) into rank-one quadratic mea- 220 surements (namely with corresponding measurement matrices 221 having rank one), followed by two efficient algorithms for min- 222 imizing the ℓ_{1}-based misfit of the transformed measurements. 223 In contrast to previous SE approaches that minimize the quar- 224 tic polynomial in (10), a novel quadratic objective functional 225 is obtained and subsequently minimized. With more compli- 226 cated algebraic manipulations, the power injections can also 227 be accounted for in our proposed framework. In the presence 228 of additive noise, near-optimal statistical performance of the 229 developed approach is numerically demonstrated.

A. Measurement Transformation

In this paper, we focus on the following types of measure- 232 ments: first, $\left\{\left|v_{m}\right|\right\}_{m=1}^{N}$ the voltage magnitudes at all buses, 233 and second, $\left\{P_{n n^{\prime}}\right\}_{(m, n) \in \mathcal{L}_{P}}$ and/or $\left\{Q_{n n^{\prime}}\right\}_{(m, n) \in \mathcal{L}_{Q}}$ the ac- 234 tive and/or reactive power flows on a selected subset of lines, 235 namely $\mathcal{L}_{P}, \mathcal{L}_{Q} \subseteq \mathcal{L}$. Consider first the noise-free case, where 236 all available measurements can be described as

$$
\begin{equation*}
z_{m}=\mathbf{v}^{\mathcal{H}} \mathbf{H}_{m} \mathbf{v} \quad \forall m=1, \ldots, M \tag{11}
\end{equation*}
$$

Without loss of generality, let the first N measurements be the 238 squared voltage magnitudes at the N buses, namely $z_{m}=\left|v_{m}\right|^{2} \quad 239$ for $m=1,2, \ldots, N$, and the remaining ones be the (active or 240 reactive) power flows. It is clear from (1) that the squared voltage 241 magnitude measurements are given by

$$
\begin{equation*}
z_{m}=\left|\mathbf{h}_{m}^{\mathcal{H}} \mathbf{v}\right|^{2} \quad \forall m=1, \ldots, N \tag{12}
\end{equation*}
$$

whose corresponding measurement matrices have rank one; that 243 is, $\left\{\mathbf{H}_{m}=\mathbf{h}_{m} \mathbf{h}_{m}^{\mathcal{H}}\right\}_{m=1}^{N}$.

Now let us consider the power flow data pairs $\left(P_{n n^{\prime}} ; \mathbf{H}_{n n^{\prime}}^{P}\right) 245$ and $\left(Q_{n n^{\prime}} ; \mathbf{H}_{n n^{\prime}}^{Q}\right)$ in (7). Upon substituting $\mathbf{Y}_{n n^{\prime}}$ in (6) into (7), 246

247 one can rewrite for all lines $\left(n, n^{\prime}\right) \in \mathcal{L}_{P}$

$$
\begin{equation*}
\mathbf{H}_{n n^{\prime}}^{P}=\frac{1}{2}\left(\alpha_{n n^{\prime}}^{P} \mathbf{e}_{n} \mathbf{e}_{n}^{\mathcal{T}}-\beta_{n n^{\prime}}^{P} \mathbf{e}_{n} \mathbf{e}_{n^{\prime}}^{\mathcal{T}}-\bar{\beta}_{n n^{\prime}}^{P} \mathbf{e}_{n^{\prime}} \mathbf{e}_{n}^{\mathcal{T}}\right) \tag{13}
\end{equation*}
$$

248 and similarly for all lines $\left(n, n^{\prime}\right) \in \mathcal{L}_{Q}$

$$
\begin{equation*}
\mathbf{H}_{n n^{\prime}}^{Q}=\frac{1}{2}\left(\alpha_{n n^{\prime}}^{Q} \mathbf{e}_{n} \mathbf{e}_{n}^{\mathcal{T}}-\beta_{n n^{\prime}}^{Q} \mathbf{e}_{n} \mathbf{e}_{n^{\prime}}^{\mathcal{T}}-\bar{\beta}_{n n^{\prime}}^{Q} \mathbf{e}_{n^{\prime}} \mathbf{e}_{n}^{\mathcal{T}}\right) \tag{14}
\end{equation*}
$$

$$
\begin{array}{ll}
\alpha_{n n^{\prime}}^{P}:=2 \Re\left(y_{n n^{\prime}}^{s}+y_{n n^{\prime}}\right), & \\
\beta_{n n^{\prime}}^{P}:=y_{n n^{\prime}} \tag{15b}\\
\alpha_{n n^{\prime}}^{Q}:=-2 \Im\left(y_{n n^{\prime}}^{s}+y_{n n^{\prime}}\right), & \\
\beta_{n n^{\prime}}^{Q}:=j y_{n n^{\prime}}
\end{array}
$$

$$
\lambda\left(\lambda-\frac{\alpha_{n n^{\prime}}}{2}\right)-\frac{\left|\beta_{n n^{\prime}}\right|^{2}}{4}=0
$$

280 which is derived by setting the determinant of $\left(\lambda \mathbf{I}_{N}-\mathbf{H}_{n n^{\prime}}\right)$ to 281 zero. Its closed-form solutions are given by

$$
\begin{aligned}
& \lambda_{1}=\frac{\alpha_{n n^{\prime}}+\sqrt{\alpha_{n n^{\prime}}^{2}+4\left|\beta_{n n^{\prime}}\right|^{2}}}{4}>0 \\
& \lambda_{2}=\frac{\alpha_{n n^{\prime}}-\sqrt{\alpha_{n n^{\prime}}^{2}+4\left|\beta_{n n^{\prime}}\right|^{2}}}{4}<0
\end{aligned}
$$

Let $\mathbf{u}_{1}, \mathbf{u}_{2} \in \mathbb{C}^{N}$ be the unit eigenvectors of $\mathbf{H}_{n n^{\prime}}$ associ- 282 ated with the eigenvalues λ_{1}, λ_{2}, respectively. Hence, one can 283 write $\mathbf{H}_{n n^{\prime}}:=\lambda_{1} \mathbf{u}_{1} \mathbf{u}_{1}^{\mathcal{H}}+\lambda_{2} \mathbf{u}_{2} \mathbf{u}_{2}^{\mathcal{H}}$. To obtain a rank-one pos- 284 itive semidefinite matrix, the first attempt would be to com- 285 pensate for the negative eigenvalue λ_{2} and make it zero. This 286 is tantamount to adding $-\lambda_{2} \mathbf{u}_{2} \mathbf{u}_{2}^{\mathcal{H}}$ to $\mathbf{H}_{n n^{\prime}}$, and accordingly 287 adding $-\lambda_{2} \mathbf{v}^{\mathcal{H}}\left(\mathbf{u}_{2} \mathbf{u}_{2}^{\mathcal{H}}\right) \mathbf{v}$ to the measurement $z_{n n^{\prime}}$; that is 288

$$
\begin{align*}
\check{\mathbf{H}}_{n n^{\prime}} & :=\mathbf{H}_{n n^{\prime}}-\lambda_{2} \mathbf{u}_{2} \mathbf{u}_{2}^{\mathcal{H}} \tag{17a}\\
\check{z}_{n n^{\prime}} & :=z_{n n^{\prime}}-\lambda_{2} \mathbf{v}^{\mathcal{H}}\left(\mathbf{u}_{2} \mathbf{u}_{2}^{\mathcal{H}}\right) \mathbf{v} \tag{17b}
\end{align*}
$$

in which the transformed measurement matrix $\breve{\mathbf{H}}_{n n^{\prime}}$ is rank-one 289 and symmetric positive semidefinite, and $\check{z}_{n n^{\prime}}$ is the resultant 290 transformed measurement. To realize this however, entails, eval- 291 uating the term $\mathbf{v}^{\mathcal{H}}\left(\mathbf{u}_{2} \mathbf{u}_{2}^{\mathcal{H}}\right) \mathbf{v}$, which requires knowledge of the 292 true state vector \mathbf{v}. This procedure is thus not feasible, and one 293 has to develop a new twist to bypass this hurdle.

Recall from our working assumption that we have access to 295 all squared voltage magnitudes $\left\{\left|v_{n}\right|^{2}\right\}_{n=1}^{N}$. Based on this fact, 296 we show in the following that it is sufficient to add a matrix of 297 the form $\left(\delta_{n n^{\prime}} / 2\right) \mathbf{e}_{n^{\prime}} \mathbf{e}_{n^{\prime}}^{\mathcal{T}}$ to $\mathbf{H}_{n n^{\prime}}$ such that the resulting sum, 298 denoted by

$$
\begin{equation*}
\check{\mathbf{H}}_{n n^{\prime}}:=\mathbf{H}_{n n^{\prime}}+\left(\delta_{n n^{\prime}} / 2\right) \mathbf{e}_{n^{\prime}} \mathbf{e}_{n^{\prime}}^{\mathcal{T}} \tag{18}
\end{equation*}
$$

can be rendered rank-one. Here, $\delta_{n n^{\prime}}$ is an unknown coefficient 300 to be determined next. Toward this end, setting the determinant 301 of $\left(\lambda \mathbf{I}_{N}-\check{\mathbf{H}}_{n n^{\prime}}\right)$ to zero leads to

$$
\begin{equation*}
\left(\lambda-\frac{\alpha_{n n^{\prime}}}{2}\right)\left(\lambda-\frac{\delta_{n n^{\prime}}}{2}\right)-\frac{\left|\beta_{n n^{\prime}}\right|^{2}}{4}=0 . \tag{19}
\end{equation*}
$$

To yield a rank-one matrix $\check{\mathbf{H}}_{n n^{\prime}}$, it is sufficient for the 303 quadratic equation (19) to have exactly one nonzero solution. By 304 basic linear algebra, this is equivalent to having a zero constant 305 term in (19), giving rise to

$$
\alpha_{n n^{\prime}} \delta_{n n^{\prime}}-\left|\beta_{n n^{\prime}}\right|^{2}=0
$$

or alternatively

$$
\delta_{n n^{\prime}}:=\left|\beta_{n n^{\prime}}\right|^{2} / \alpha_{n n^{\prime}}
$$

It can be verified that the transformed measurement matrix

$$
\begin{equation*}
\check{\mathbf{H}}_{n n^{\prime}}:=\mathbf{H}_{n n^{\prime}}+\left(\left|\beta_{n n^{\prime}}\right|^{2} /\left(2 \alpha_{n n^{\prime}}\right)\right) \mathbf{e}_{n^{\prime}} \mathbf{e}_{n^{\prime}}^{\mathcal{T}} \tag{20}
\end{equation*}
$$

is rank-one. In addition, if $\alpha_{n n^{\prime}}>0$, then $\check{\mathbf{H}}_{n n^{\prime}}$ is positive 309 semidefinite. Therefore, one can write

$$
\begin{equation*}
\check{\mathbf{H}}_{n n^{\prime}}:=\mathbf{h}_{n n^{\prime}} \mathbf{h}_{n n^{\prime}}^{\mathcal{H}} \tag{21}
\end{equation*}
$$

with the equivalent measurement vector being

$$
\begin{equation*}
\mathbf{h}_{n n^{\prime}}:=\sqrt{\frac{\alpha_{n n^{\prime}}}{2}} \mathbf{e}_{n}+\frac{\bar{\beta}_{n n^{\prime}}}{\sqrt{2 \alpha_{n n^{\prime}}}} \mathbf{e}_{n^{\prime}} . \tag{22}
\end{equation*}
$$

The transformed measurement $\check{z}_{n n^{\prime}}$ corresponding to $\check{\mathbf{H}}_{n n^{\prime}}$ can 312 be given by

$$
\begin{align*}
\check{z}_{n n^{\prime}}:=\mathbf{v}^{\mathcal{H}} \check{\mathbf{H}}_{n n^{\prime}} \mathbf{v} & =\mathbf{v}^{\mathcal{H}} \mathbf{H}_{n n^{\prime}} \mathbf{v}+\mathbf{v}^{\mathcal{H}}\left(\delta_{n n^{\prime}} \mathbf{e}_{n^{\prime}} \mathbf{e}_{n^{\prime}}^{\mathcal{T}} / 2\right) \mathbf{v} \\
& =z_{n n^{\prime}}+\left(\left|\beta_{n n^{\prime}}\right|^{2} / 2 \alpha_{n n^{\prime}}\right)\left|v_{n^{\prime}}\right|^{2} \tag{23}
\end{align*}
$$

for which the required quantity $\left(\left|\beta_{n n^{\prime}}\right|^{2} / 2 \alpha_{n n^{\prime}}\right)\left|v_{n^{\prime}}\right|^{2}$ is available, or can be obtained as long as $\left|v_{n}\right|^{2}$ is available.

If $\alpha_{n n^{\prime}}<0$, one can instead define

$$
\begin{equation*}
\check{\mathbf{H}}_{n n^{\prime}}:=-\mathbf{H}_{n n^{\prime}}+\left(\left|\beta_{n n^{\prime}}\right|^{2} /\left(2 \alpha_{n n^{\prime}}\right)\right) \mathbf{e}_{n^{\prime}} \mathbf{e}_{n^{\prime}}^{\mathcal{T}} \tag{24}
\end{equation*}
$$

7 and write the equivalent measurement vector as

$$
\begin{equation*}
\mathbf{h}_{n n^{\prime}}:=\sqrt{\frac{-\alpha_{n n^{\prime}}}{2}} \mathbf{e}_{n}+\frac{\bar{\beta}_{n n^{\prime}}}{\sqrt{-2 \alpha_{n n^{\prime}}}} \mathbf{e}_{n^{\prime}} \tag{25}
\end{equation*}
$$

$$
\begin{align*}
\check{z}_{n n^{\prime}}:=\mathbf{v}^{\mathcal{H}} \check{\mathbf{H}}_{n n^{\prime}} \mathbf{v} & =-\mathbf{v}^{\mathcal{H}} \mathbf{H}_{n n^{\prime}} \mathbf{v}-\mathbf{v}^{\mathcal{H}}\left(\delta_{n n^{\prime}} \mathbf{e}_{n^{\prime}} \mathbf{e}_{n^{\prime}}^{\mathcal{T}} / 2\right) \mathbf{v} \\
& =-z_{n n^{\prime}}-\left(\left|\beta_{n n^{\prime}}\right|^{2} / 2 \alpha_{n n^{\prime}}\right)\left|v_{n}\right|^{2} \tag{26}
\end{align*}
$$

for some coefficients $\gamma_{n n^{\prime}}>0$ and $\delta_{n n^{\prime}}>0$ to be determined. Similar to the discussion for case c1), to find $\gamma_{n n^{\prime}}$ and $\delta_{n n^{\prime}}$, one sets the determinant of $\left(\lambda \mathbf{I}_{N}-\check{\mathbf{H}}_{n n^{\prime}}\right)$ to zero, leading to

$$
\left(\lambda-\frac{\gamma_{n n^{\prime}}}{2}\right)\left(\lambda-\frac{\delta_{n n^{\prime}}}{2}\right)-\frac{\left|\beta_{n n^{\prime}}\right|^{2}}{4}=0
$$

327 The fact that $\check{\mathbf{H}}_{n n^{\prime}}$ is rank-one implies that

$$
\gamma_{n n^{\prime}} \delta_{n n^{\prime}}-\left|\beta_{n n^{\prime}}\right|^{2}=0
$$

and $\check{\mathbf{H}}_{n n^{\prime}}$ in (27) becomes rank-one and can be written as

$$
\begin{equation*}
\check{\mathbf{H}}_{n n^{\prime}}:=\mathbf{h}_{n n^{\prime}} \mathbf{h}_{n n^{\prime}}^{\mathcal{H}} \tag{28}
\end{equation*}
$$

330 with

$$
\begin{equation*}
\mathbf{h}_{n n^{\prime}}:=\frac{1}{\sqrt{2}} \mathbf{e}_{n}-\frac{\beta_{n n^{\prime}}}{\sqrt{2}} \mathbf{e}_{n^{\prime}} \tag{29}
\end{equation*}
$$

331 The transformed measurement associated with $\check{\mathbf{H}}_{n n^{\prime}}$ can be 332 found as follows:

$$
\begin{align*}
\check{z}_{n n^{\prime}} & :=\mathbf{v}^{\mathcal{H}} \mathbf{H}_{n n^{\prime}} \mathbf{v} \\
& =\mathbf{v}^{\mathcal{H}} \mathbf{H}_{n n^{\prime}} \mathbf{v}+\mathbf{v}^{\mathcal{H}}\left(\beta_{n n^{\prime}} \mathbf{e}_{n} \mathbf{e}_{n}^{\mathcal{T}} / 2+\delta_{n n^{\prime}} \mathbf{e}_{n^{\prime}} \mathbf{e}_{n^{\prime}} / 2\right) \mathbf{v} \\
& =z_{n n^{\prime}}+(1 / 2)\left|v_{n}\right|^{2}+\left(\left|\beta_{n n^{\prime}}\right|^{2} / 2\right)\left|v_{n^{\prime}}\right|^{2} \tag{30}
\end{align*}
$$

333 for which the required quantities $\left|v_{n}\right|^{2}$ and $\left|\beta_{n n^{\prime}}\right|^{2}\left|v_{n^{\prime}}\right|^{2}$ can be
334

$$
\begin{equation*}
\check{\mathbf{H}}_{n n^{\prime}}:=\mathbf{h}_{n n^{\prime}} \mathbf{h}_{n n^{\prime}}^{\mathcal{H}}=\left(\sqrt{\frac{\left|\alpha_{n n^{\prime}}\right|}{2}} \mathbf{e}_{n}\right)\left(\sqrt{\frac{\left|\alpha_{n n^{\prime}}\right|}{2}} \mathbf{e}_{n}\right)^{\mathcal{T}} \tag{31}
\end{equation*}
$$

The transformed measurement is given by

$$
\begin{equation*}
\check{z}_{n n^{\prime}}=\left|z_{n n^{\prime}}\right| \tag{32}
\end{equation*}
$$

To summarize, for any active or reactive power flow data 340 $\left(z_{n n^{\prime}} ; \mathbf{H}_{n n^{\prime}}\right)$, we have developed a strategy to obtain a new 341 measurement pair $\left(\check{z}_{n n^{\prime}} ; \check{\mathbf{H}}_{n n^{\prime}}\right)$, in which $\check{\mathbf{H}}_{n n^{\prime}}$ becomes rank- 342 one and positive semidefinite. Specifically, this is accomplished 343 through steps in (21)-(32), by depending upon the values of 344 coefficients $\alpha_{n n^{\prime}}$ and $\beta_{n n^{\prime}}$, provided that the voltage magnitudes 345 at all buses are available.

The assumption on full voltage measurements can be relaxed. 347 Indeed, it is possible to build up rank-one measurements via 348 linear combinations, so long as two of the following SCADA 349 quantities $\left\{\left|v_{n}\right|,\left|v_{n^{\prime}}\right|, p_{n n^{\prime}}, p_{n^{\prime} n}, q_{n n^{\prime}}, q_{n^{\prime} n}\right\}$ are measured on 350 every line $\left(n, n^{\prime}\right) \in \mathcal{L}$. In a nutshell, one can readily rewrite all 351 measurements as intensities of some known and deterministic 352 linear transforms of the state vector, namely

$$
\begin{equation*}
\check{z}_{m}=\left|\mathbf{h}_{m}^{\mathcal{H}} \mathbf{v}\right|^{2} \quad \forall m=1, \ldots, M \tag{33}
\end{equation*}
$$

where the measurement vectors $\mathbf{h}_{m} \in \mathbb{C}^{N}$ are given in (1), (22), 354 (25), (29), and (31), whereas the corresponding transformed 355 measurements $\check{z}_{m}>0$ are defined in (1), (23), (26), (30), and 356 (32). Moreover, all vectors \mathbf{h}_{m} are highly sparse, each having 357 at most two nonzero entries independent of the system size N. 358 This feature can be carefully exploited to endow the iterative 359 PSSE solvers with computational efficiency and scalability.

IV. Prox-Linear SE Solvers

In general, given a set of (consistent) quadratic equations, 362 there may exist multiple solutions even after excluding triv- 363 ial ambiguities. In the context of phase retrieval, in which the 364 measurement matrices are rank-one positive semidefinite (i.e., 365 $\mathbf{H}_{m}=\mathbf{h}_{m} \mathbf{h}_{m}^{\mathcal{H}}$), a number $M \geq 4 N-4$ of random quadratic 366 equations suffice for uniqueness of the solution [24]. In the 367 power systems literature though, it remains an open question 368 that how many quadratic measurements as in (1), (4), and (7) 369 are required for the uniqueness of PSSE solution. For concrete- 370 ness, this contribution assumes that a large enough number of 371 measurements are available, and they collectively determine a 372 unique solution, namely the underlying true system state. 373

Leveraging the rank-one measurement model, this section 374 presents two algorithms for scalable and exact power system 375 state recovery based on nonconvex optimization. Specifically, 376 we focus on the ℓ_{1}-loss to fit the intensity measurements $\check{z}_{m} 377$ in (33) instead of z_{m} in (11). Despite the nonconvexity and 378 nonsmoothness of the resulting loss function, we first develop 379 a deterministic prox-linear algorithm. When the initialization is 380 sufficiently close to the underlying true voltage state vector, and 381 the loss function satisfies a certain local "stability condition," 382 we show that our first deterministic approach recovers the true 383 voltage vector at a quadratic convergence rate. It entails solv- 384 ing a quadratic program per iteration, for which off-the-shelf 385 convex programming toolboxes are widely available, but the re- 386 sulting complexity does not scale well with the system size. To 387 endow the algorithm with scalability, a stochastic generalization 388 is pursued, which processes a single measurement per iteration. 389

It is well known in statistics and power systems literature that ℓ_{1}-based loss functions yield median-based estimators, and they can cope with gross errors in the measurements \check{z}_{m} in a relatively benign way [21]. This prompts us to consider the ℓ_{1}-loss [i.e., least-absolute-value (LAV)] formulation

$$
\begin{equation*}
\underset{\mathbf{x} \in \mathbb{C}^{N}}{\operatorname{minimize}} \ell(\mathbf{x}):=\frac{1}{M} \sum_{m=1}^{M}\left|\check{z}_{m}-\left|\mathbf{h}_{m}^{\mathcal{H}} \mathbf{x}\right|^{2}\right| \tag{34}
\end{equation*}
$$

395

416 with $\nabla \mathbf{s}\left(\mathbf{x}_{t}\right) \in \mathbb{R}^{N \times M}$ representing the Jacobian matrix of \mathbf{s} 417 evaluated at point \mathbf{x}_{t}; and subsequently, it proceeds inductively 418 to obtain iterates $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots$ by minimizing the quadratically reg419
where $\mu_{t}>0$ is a step size that can be fixed a priori to some constant, or be determined "on-the-fly" through a line search [25], [26]. Furthermore, observing that the linearization $\ell_{x_{t}}(x)$ is convex in \mathbf{x}, so problem (36) is convex in \mathbf{x} as well. It has been shown in [26] that when c is L-Lipschitz and $\nabla \mathrm{s}$ is κ Lipschitz, choosing any step size $0<\mu<\frac{1}{k L}$ guarantees that the algorithm (36) is a descent method; that is, the iterates $\left\{\mathbf{x}_{k}\right\}$ monotonically decrease the function value of $\ell(\mathbf{x})$; and finds an (approximate) stationary point of (34).

Nevertheless, the PSSE problem (34) involves optimization over complex-valued variables in $\mathrm{x} \in \mathbb{C}^{N}$. It can be checked that the functions ℓ and s do not satisfy the Cauchy-Riemann (CR) equations; see e.g., [27, Th. 7.2] for the definition of CR equations. Hence, functions ℓ and s are not holomorphic (i.e., complex-differentiable) in \mathbf{x}. As such, the "linearization," or the first-order Taylor's expansion of $\mathbf{s}(\mathrm{x})$ in $\mathbf{x} \in \mathbb{C}^{N}$ alone [cf. (35)] does not exist. To address this challenge, we invoke Wirtinger's calculus to generalize prox-linear algorithms to optimization

```
Algorithm 1: Deterministic Prox-linear SE Solver.
    1: Input data \(\left\{\left(z_{m}, \mathbf{H}_{m}\right)\right\}_{m=1}^{M}\), step size \(\mu>0\),
        initialization \(\mathbf{v}_{0} \in \mathbb{C}^{N}\), solution accuracy \(\epsilon>0\), and set
        \(t=0\).
    Prepare the power flow data \(\left\{\left(z_{m}, \mathbf{H}_{m}\right)\right\}_{m=N+1}^{M}\)
    according to (1), (22)-(23), (25)-(26), (29)-(30), and
    (31)-(32) to obtain \(\left\{\left(\check{z}_{m}, \mathbf{h}_{m}\right)\right\}_{m=N+1}^{M}\) based on
    \(\left\{z_{m}=\left|v_{m}\right|^{2}\right\}_{m=1}^{N}\).
    Repeat
        Evaluate \(\mathbf{a}_{m, t}\) and \(b_{m, t}\) in (38).
        Solve (37) to yield \(\mathbf{x}_{t+1}\)
        \(t=t+1\).
    Until \(\left\|\mathbf{x}_{t}-\mathbf{x}_{t-1}\right\|_{2} \leq \epsilon \sqrt{N}\)
    Return \(\mathbf{x}_{t}\).
```

over complex-valued arguments in the sequel. Please refer to 438 [28] for basics of Wirtinger's calculus.

A. Deterministic Prox-Linear SE Solver

Our first deterministic prox-linear approach to (34) is simply 441 stated: begin with initialization $\mathbf{x}_{0}:=\mathbf{1} \in \mathbb{R}^{N}$, and proceed 442 by successively minimizing quadratically regularized functions 443 around the current iterate $\mathbf{x}_{t} \in \mathbb{C}^{N}$ to yield the next iterate

$$
\begin{equation*}
\mathbf{x}_{t+1}=\arg \min _{\mathbf{x} \in \mathbb{C}^{N}} \frac{1}{M} \sum_{m=1}^{M}\left|b_{m, t}-2 \Re\left(\mathbf{a}_{m, t}^{\mathcal{H}} \mathbf{x}\right)\right|+\frac{1}{2 \mu_{t}}\left\|\mathbf{x}-\mathbf{x}_{t}\right\|_{2}^{2} \tag{37}
\end{equation*}
$$

where the term $b_{m, t}-2 \Re\left(\mathbf{a}_{m, t}^{\mathcal{H}} \mathbf{x}\right)$ can be interpreted as the first- 445 order Taylor's approximation of the nonholomophic function 446 $\check{z}_{m}-\left|\mathbf{h}_{m}^{\mathcal{H}} \mathbf{x}\right|^{2}$ at \mathbf{x}_{t} based upon the Wirtinger derivatives; see 447 Appendix A for the rigorous derivation. The coefficients $\mathbf{a}_{m, t} 448$ and $b_{m, t}$ are given by

$$
\begin{align*}
\mathbf{a}_{m, t} & :=\left(\mathbf{h}_{m}^{\mathcal{H}} \mathbf{x}_{t}\right) \mathbf{h}_{m} \tag{38a}\\
b_{m, t} & :=\check{z}_{m}+\left|\mathbf{h}_{m}^{\mathcal{H}} \mathbf{x}_{t}\right|^{2} . \tag{38b}
\end{align*}
$$

Observe that the problem (37) to be tackled per iteration of 450 our deterministic prox-linear SE solver is a convex quadratic 451 program, which can be efficiently solved with standard con- 452 vex programming methods. Under appropriate conditions, our 453 scheme converges quadratically fast to the true state vector 454 \mathbf{v}, meaning that we have to solve only about $\log _{2} \log _{2}(1 / \epsilon) 455$ such quadratic programs to obtain an estimate \mathbf{x} of \mathbf{v} satisfying 456 $\operatorname{dist}(\mathbf{x}, \mathbf{v}) \leq \epsilon\|\mathbf{v}\|_{2}$. As will be corroborated by our numerical 457 tests in Section VI, this boils down to $5 \sim 8$ convex quadratic 458 programs in practice. Moreover, our approach applies both in 459 the noiseless setting, and when a constant (random) portion of 460 the measurements are even adversarially corrupted.

For implementation, our deterministic prox-linear solver is 462 summarized in Algorithm 1. Regarding computational com- 463 plexity, preparing the data in Step 2 can be performed within 464 $\mathcal{O}(M)$ operations. Exploiting the sparsity of \mathbf{h}_{m} 's, evaluating 465 the coefficients $\left\{\left(b_{m, t}, \mathbf{a}_{m, t}\right)\right\}_{m=1}^{M}$ in Step 5 can also be done 466 with $\mathcal{O}(M)$ operations. The overall complexity of Algorithm 1467
is indeed dominated by solving the quadratic program of (37) in Step 6. With standard convex programming solvers, the resultant complexity is often $\mathcal{O}\left(M N^{2}\right)$. Iterative procedures depending on the alternating direction method of multipliers can reduce this number to $\mathcal{O}(M N \log (1 / \epsilon))$ [21], [29]. The latter complexity, however, may still become unfavorable for large-size power networks. Furthermore, even though $\left\{\mathbf{h}_{m}\right\}_{m=1}^{M}$ have at most two nonzero entries, this property cannot be fully exploited to speed up computations for solving the quadratic program of (37). To address these issues, we advocate a stochastic alternative of (37) ahead for solving problem (34).

B. Stochastic Prox-Linear SE Solver

The stochastic prox-linear method deals with a single measurement per iteration. Initialized with \mathbf{x}_{0}, our (stochastic) proxlinear SE solver operates by first sampling uniformly a loss function via randomly picking $m_{t} \in\{1,2, \ldots, M\}$, and relies on minimizing its quadratically regularized "linearization" around \mathbf{x}_{t} to yield \mathbf{x}_{t+1} [30]; that is, define inductively for $t=0,1,2, \ldots$ that

$$
\begin{equation*}
\mathbf{x}_{t+1}=\arg \min _{\mathbf{x} \in \mathbb{C}^{N}}\left|b_{m_{t}, t}-2 \Re\left(\mathbf{a}_{m_{t}, t}^{\mathcal{H}} \mathbf{x}\right)\right|+\frac{1}{2 \mu_{t}}\left\|\mathbf{x}-\mathbf{x}_{t}\right\|_{2}^{2} \tag{39}
\end{equation*}
$$

where the coefficients $b_{m_{t}, t}$ and $\mathbf{a}_{m_{t}, t}$ are given in (38), with $b_{m_{t}, t}-2 \Re\left(\mathbf{a}_{m_{t}, t}^{\mathcal{H}} \mathbf{x}\right)$ being the first-order Taylor's expansion of the m_{t} th error function $\check{z}_{m_{t}}-\left|\mathbf{h}_{m_{t}}^{\mathcal{H}} \mathbf{x}\right|^{2}$ around \mathbf{x}_{t}. Evidently, problem (39) is again a quadratic program too. Compared with the first quadratic program in (36), fortunately, the solution to (39) can be found in simple closed form.

To that end, we invoke an earlier result in [29, Prop. 3], which is included in Appendix B for completeness. Upon defining $\mathbf{w}:=\mathbf{x}-\mathbf{x}_{t}, \mathbf{a}:=\mathbf{a}_{m_{t}, t}$, and $b:=b_{m_{t}, t}-2 \Re\left(\mathbf{a}_{m_{t}, t}^{\mathcal{H}} \mathbf{x}_{t}\right)$ in Proposition 2, one can readily find the solution to (39) as follows:

$$
\mathbf{x}_{t+1}=\mathbf{x}_{t}+\operatorname{proj}_{\mu_{t}}\left(\frac{b_{m_{t}, t}-2 \Re\left(\mathbf{a}_{m_{t}, t}^{\mathcal{H}} \mathbf{x}_{t}\right)}{\left\|\mathbf{a}_{m_{t}, t}\right\|_{2}^{2}}\right) \mathbf{a}_{m_{t}, t}
$$

Substituting $\mathbf{a}_{m_{t}}$ and $b_{m_{t}}$ of (38) into the last equality leads to our stochastic prox-linear SE solver

$$
\begin{equation*}
\mathbf{x}_{t+1}=\mathbf{x}_{t}+\operatorname{proj}_{\mu_{t}}\left(\frac{\check{z}_{m_{t}}-\left|\mathbf{h}_{m_{t}}^{\mathcal{H}} \mathbf{x}_{t}\right|^{2}}{4\left|\mathbf{h}_{m_{t}}^{\mathcal{H}} \mathbf{x}_{t}\right|^{2} \cdot\left\|\mathbf{h}_{m_{t}}\right\|_{2}^{2}}\right) \cdot 2\left(\mathbf{h}_{m_{t}}^{\mathcal{H}} \mathbf{x}_{t}\right) \mathbf{h}_{m_{t}} \tag{40}
\end{equation*}
$$

We summarize our second (stochastic) prox-linear SE solver in Algorithm 2 for further reference. In terms of computational complexity, we report the exact number of complex scalar operations (e.g., additions, multiplications) needed per stochastic prox-linear SE iteration of (40) next. Relying on whether $\mathbf{h}_{m_{t}}$ has 1 or 2 nonzero entries, the following statements hold true. If $\mathbf{h}_{m_{t}}$ has 1 (2) nonzero entries, evaluating $\left|\mathbf{h}_{m_{t}}^{\mathcal{H}} \mathbf{x}_{t}\right|^{2}$ requires 2 (4) operations, and $\left\|\mathbf{h}_{m_{t}}\right\|_{2}^{2}$ requires 1 (3) operations, plus another 5 operations for the remaining, all summing to a total of 8 (12) operations. In other words, per iteration of Algorithm 2 (cf. Steps 4-6) must perform only 12 complex scalar operations or so. Interestingly, this per-iteration complexity of $\mathcal{O}(1)$ holds regardless of the power network under

```
Algorithm 2: Stochastic Prox-linear SE Solver.
    Input data \(\left\{\left(z_{m}, \mathbf{H}_{m}\right)\right\}_{m=1}^{M}\), step size \(\mu>0\),
    initialization \(\mathbf{v}_{0} \in \mathbb{C}^{N}\), solution accuracy \(\epsilon>0\), and set
    \(t=0\).
    Prepare the power flow data \(\left\{\left(z_{m}, \mathbf{H}_{m}\right)\right\}_{m=N+1}^{M}\)
    according to (1), (22)-(23), (25)-(26), (29)-(30), and
    (31)-(32) to obtain \(\left\{\left(\check{z}_{m}, \mathbf{h}_{m}\right)\right\}_{m=N+1}^{M}\) based on
    \(\left\{z_{m}=\left|v_{m}\right|^{2}\right\}_{m=1}^{N}\).
    Repeat
        Draw \(m_{t} \in\{1,2, \ldots, M\}\) uniformly at random.
        Evaluate Evaluate \(\mathbf{a}_{m_{t}, t}\) and \(b_{m_{t}, t}\) in (38).
        Update \(\mathbf{x}_{t+1}\) via (40).
        \(t=t+1\).
    Until \(\left\|\mathbf{x}_{t}-\mathbf{x}_{t-1}\right\|_{2} \leq \epsilon \sqrt{N}\)
    Return \(\mathbf{x}_{t}\).
```

investigation, or more precisely, the system size N. It is self- 513 evident that this $\mathcal{O}(1)$ per-iteration complexity scales nicely to 514 large- and even massive-size power networks.

V. Convergence Analysis and Exact Recovery

In this section, we begin our development by providing con- 517 vergence guarantees for the proposed prox-linear SE solvers. 518 For concreteness, we will focus on the deterministic prox-linear 519 Algorithm 1, whereas convergence can be also established for 520 Algorithm 2 in a probabilistic sense. Interested readers are re- 521 ferred to [30]. Under certain conditions on the loss function ℓ, 522 exact recovery results are also established.

Recall our loss function $c(\mathbf{s}(\mathbf{x}))=\frac{1}{M}\left\|\check{\mathbf{z}}-|\mathbf{H x}|^{2}\right\|_{1}$, where 524 $c(\mathbf{u})=\|\mathbf{u}\|_{1}: \mathbb{R}^{M} \rightarrow \mathbb{R}$, and $\mathbf{s}(\mathbf{x})=\frac{1}{M}\left(\check{\mathbf{z}}-|\mathbf{H x}|^{2}\right): \mathbb{C}^{N} \rightarrow 525$ \mathbb{R}^{M}. It is easy to verify for any $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{N}$ that it holds 526
$|c(\mathbf{u})-c(\mathbf{v})| \leq \sum_{n=1}^{M}\left|u_{m}-v_{m}\right|=\|\mathbf{u}-\mathbf{v}\|_{1} \leq \sqrt{M}\|\mathbf{u}-\mathbf{v}\|_{2}$
where the last inequality arises from the equivalence of norms. 527 By definition, this asserts that c is \sqrt{M}-Lipschitz continuous. 528 Focusing now on the complex Jacobian $\nabla_{\mathrm{x}} \mathbf{s}$ for any x and 529 $\mathbf{y} \in \mathbb{C}^{N}$, we deduce

$$
\left\|\nabla_{\mathrm{x}} \mathbf{s}(\mathbf{x})-\nabla_{\mathrm{x}} \mathbf{s}(\mathbf{y})\right\|_{2}=\frac{1}{M}\left\|\mathbf{H}^{\mathcal{H}} \mathbf{H}(\mathbf{x}-\mathbf{y})\right\|_{2} \leq L\|\mathbf{x}-\mathbf{y}\|_{2}
$$

with $L:=(2 / M) \lambda_{\max }\left(\mathbf{H}^{\mathcal{H}} \mathbf{H}\right)$, which confirms that $\nabla_{\mathrm{x}} \mathbf{S}$ is L - 531 Lipschitz continuous.

Appealing to the results in [26, Th. 5.3], one can conclude 533 that our deterministic prox-linear SE solver with constant step 534 size $\mu \leq 1 /(L \sqrt{M})=\sqrt{M} /\left(2 \lambda_{\max }\left(\mathbf{H}^{\mathcal{H}} \mathbf{H}\right)\right)$ converges to a 535 stationary point of $\ell(\mathbf{x})$ in (34).

We provide in the sequel conditions on the function ℓ such 537 that exact recovery of power system states by our prox-linear 538 SE solvers is guaranteed. Going beyond [21], which is limited 539 to optimization over real-valued variables, we introduce two 540 complimentary conditions on $\ell(\mathbf{x})$ and its linearization $\ell_{\mathbf{x}}(\mathbf{y})$ of 541 complex-valued variables $\mathbf{x}, \mathbf{y} \in \mathbb{C}^{N}$.

$$
550
$$

$$
\begin{equation*}
\ell(\mathbf{x})-\ell(\mathbf{v}) \geq \rho \sqrt{\|\mathbf{x}-\mathbf{v}\|_{2}^{2}\|\mathbf{x}+\mathbf{v}\|_{2}^{2}-4\left|\Im\left(\mathbf{x}^{\mathcal{H}} \mathbf{v}\right)\right|^{2}} \tag{41}
\end{equation*}
$$

564 Evidently, when the measurements $\check{\mathbf{z}}=|\mathbf{H v}|^{2}$ are noiseless, 565 it holds that $\ell(\mathbf{v})=0$. Similar to the real-valued case stud566 ied in [21], our Condition 1 is instrumental in establishing 567 fast convergence of the prox-linear algorithm for optimizing 568 functions of complex-valued variables. Besides Condition 1, 569 we require a condition on the linearization $\ell_{\mathbf{x}}(\mathbf{y}): \mathbb{C}^{N} \rightarrow \mathbb{R}$ of $570 \ell(\mathbf{x})=c(\mathbf{s}(\mathbf{x}))$ around \mathbf{x} defined by

$$
\begin{equation*}
\ell_{\mathbf{x}}(\mathbf{y}):=c\left(\mathbf{s}(\mathbf{x})+2 \Re\left(\nabla_{\mathbf{x}}^{\mathcal{H}} \mathbf{s}(\mathbf{x})(\mathbf{y}-\mathbf{x})\right)\right) \tag{42}
\end{equation*}
$$

$571 \quad$ Condition 2: There exists a constant $L<+\infty$ such that the 572 inequality holds for all $\mathbf{x}, \mathbf{y} \in \mathbb{C}^{N}$

$$
\begin{equation*}
\left|\ell(\mathbf{y})-\ell_{\mathbf{x}}(\mathbf{y})\right| \leq \frac{L}{2}\|\mathbf{x}-\mathbf{y}\|_{2}^{2} \tag{43}
\end{equation*}
$$

573

This condition basically requires that the locally linearized convex approximation $\ell_{\mathrm{x}}(\mathbf{y})$ is quadratically close [cf. (43)] to the nonconvex function $\ell(\mathbf{y})$. Indeed, the ℓ_{1}-based PSSE cost function ℓ in (34) automatically satisfies Condition 2 globally. To show this, let us first express $\ell_{\mathbf{x}}(\mathbf{y})$ according to the definition of (42)

$$
\left.\ell_{\mathbf{x}}(\mathbf{y})=\left.\frac{1}{M} \sum_{m=1}^{M}| | \mathbf{h}_{m}^{\mathcal{H}} \mathbf{x}\right|^{2}-\check{z}_{m}+2 \Re\left(\mathbf{x}^{\mathcal{H}} \mathbf{h}_{m} \mathbf{h}_{m}^{\mathcal{H}}(\mathbf{y}-\mathbf{x})\right) \right\rvert\,
$$

579 On the other hand, for any $m \in\{1,2, \ldots, M\}$ and $\mathbf{y} \in \mathbb{C}^{N}$, 580 the following holds true
$\left|\mathbf{h}_{m}^{\mathcal{H}} \mathbf{y}\right|^{2}=\left|\mathbf{h}_{m}^{\mathcal{H}} \mathbf{x}\right|^{2}+2 \Re\left(\mathbf{x}^{\mathcal{H}} \mathbf{h}_{m} \mathbf{h}_{m}^{\mathcal{H}}(\mathbf{y}-\mathbf{x})\right)+\left|\mathbf{h}_{m}^{\mathcal{H}}(\mathbf{y}-\mathbf{x})\right|^{2}$.

Subtracting \check{z}_{m} from both sides, summing from $m=1$ to $M, 581$ and leveraging the triangle inequality, we have that

$$
\begin{aligned}
\ell(\mathbf{y}) & =\left.\frac{1}{M} \sum_{m=1}^{M}| | \mathbf{h}_{m}^{\mathcal{H}} \mathbf{y}\right|^{2}-\left.\check{z}_{m}\left|\leq \ell_{\mathbf{x}}(\mathbf{y})+\frac{1}{M} \sum_{m=1}^{M}\right| \mathbf{h}_{m}^{\mathcal{H}}(\mathbf{y}-\mathbf{x})\right|^{2} \\
\ell(\mathbf{y}) & =\left.\frac{1}{M} \sum_{m=1}^{M}| | \mathbf{h}_{m}^{\mathcal{H}} \mathbf{y}\right|^{2}-\left.\check{z}_{m}\left|\geq \ell_{\mathbf{x}}(\mathbf{y})-\frac{1}{M} \sum_{m=1}^{M}\right| \mathbf{h}_{m}^{\mathcal{H}}(\mathbf{y}-\mathbf{x})\right|^{2} .
\end{aligned}
$$

Rewriting the last terms in matrix-vector form yields
$\left|\ell(\mathbf{y})-\ell_{\mathbf{x}}(\mathbf{y})\right| \leq(\mathbf{y}-\mathbf{x})^{\mathcal{H}}\left(\frac{1}{M} \mathbf{H}^{\mathcal{H}} \mathbf{H}\right)(\mathbf{y}-\mathbf{x}) \leq \frac{L}{2}\|\mathbf{y}-\mathbf{x}\|_{2}^{2}$
which proves that Condition 2 is satisfied globally by the ℓ_{1}-loss 584 in (34). Moreover, one can take $L=\lambda_{\text {max }}\left(\mathbf{H}^{\mathcal{H}} \mathbf{H} / M\right)$, namely 585 the largest eigenvalue of matrix $\mathbf{H}^{\mathcal{H}} \mathbf{H} / M$.

Under Conditions 1 and 2, we now devote to exact recov- 587 ery guarantees for the deterministic prox-linear SE solver in 588 Algorithm 1. The following result implies exact recovery of 589 power system states at a quadratic rate by our proposed prox- 590 linear SE solver in Algorithm 1 under suitable conditions.

Theorem 1: Let Conditions 1 and 2 hold. Assuming that 592 the quadratic program (37) is solved exactly per iteration of 593 Algorithm 1, the successive prox-linear SE iterates \mathbf{x}_{t} satisfy

$$
\begin{equation*}
\frac{\operatorname{dist}\left(\mathbf{x}_{t}, \mathbf{v}\right)}{\|\mathbf{v}\|_{2}} \leq \frac{\rho}{L}\left(\frac{L}{\rho} \cdot \frac{\operatorname{dist}\left(\mathbf{x}_{0}, \mathbf{v}\right)}{\|\mathbf{v}\|_{2}}\right)^{2^{t}} \tag{45}
\end{equation*}
$$

For readability, the proof of Theorem 1 is postponed to 595 Appendix C. Regarding Theorem 1, three observations come 596 in order.

Remark 1 (Exact recovery): If the initialization x_{0} of the 598 iterations is accurate enough, meaning that it satisfies the con- 599 dition $\operatorname{dist}\left(\mathbf{x}_{0}, \mathbf{v}\right)<(\rho / L)\|\mathbf{v}\|_{2}$, the prox-linear SE solver re- 600 covers exactly the true state vector $\mathbf{v} \in \mathbb{C}^{N}$. In terms of initial- 601 izations, there are several approaches for this desideratum, three 602 of which are discussed next. Since power systems are typically 603 operating close to the flat voltage profile 1, it is reasonable to 604 initialize the algorithm with $\mathbf{x}_{0}=\mathbf{1}$. Moreover, as the voltage 605 magnitudes at all buses are assumed available, one can use the 606 voltage magnitude vector $\mathbf{x}_{0}=|\mathbf{v}|$ as the initializer. Alterna- 607 tively, it is also feasible to initialize with the estimate found by 608 solving the linearized dc power flow equations. 609
Remark 2 (Quadratic convergence rate): When $\operatorname{dist}\left(\mathrm{x}_{0}, 610\right.$ $\mathbf{v})<(\rho / L)\|\mathbf{v}\|_{2}$ holds true, our prox-linear SE algorithm con- 611 verges quadratically fast to the globally optimal solution of 612 the nonconvex and nonsmooth optimization problem (34). Ex- 613 pressed differently, to obtain a solution \mathbf{x}_{t} of (at most) ϵ-relative 614 error, namely $\operatorname{dist}\left(\mathbf{x}_{t}, \mathbf{v}\right) /\|\mathbf{v}\|_{2} \leq \epsilon$, we must only run Algo- 615 rithm 1 for about $\log _{2} \log _{2}(1 / \epsilon)$ iterations, or equivalently, solve 616 $\log _{2} \log _{2}(1 / \epsilon)$ convex quadratic programs as in (37). This, in 617 practice, amounts to about $5 \sim 10$ such quadratic programs. 618

Remark 3: Under the condition $\operatorname{dist}\left(\mathbf{x}_{0}, \mathbf{v}\right)<(\rho / L)\|\mathbf{v}\|_{2}, 619$ it is worth pointing out that Condition 1 can be replaced by a 620 condition requiring only the function $\ell(\mathbf{x})$ to satisfy the inequal- 621 ity (49) locally for all \mathbf{x} within the neighborhood of \mathbf{v} defined 622 by $\operatorname{dist}(\mathbf{x}, \mathbf{v})<(\rho / L)\|\mathbf{v}\|_{2}$.

Fig. 1. Exact recovery performance of Algorithm 1 for the IEEE 14-bus system (noiseless case).

VI. Numerical Tests

In this section, we perform a number of numerical tests to evaluate our approach and compare with the "workhorse" LSbased Gauss-Newton method. Several power network benchmarks including the IEEE $14-$ - 118 -, and 300 -bus systems were simulated, following the MATLAB-based toolbox MATPOWER [32], [33]. The Gauss-Newton iterations were implemented by using the embedded SE function "doSE.m" in MATPOWER. To carefully isolate the relative performance of the iterative algorithms, rather than initialization employed, all simulated schemes were initialized with the flat voltage vector (i.e., the all-one vector) in all reported experiments.

A. Tests With Zero Noise

The first experiment examines the exact recovery and convergence performance of Algorithm 1 from noiseless data on the IEEE $14-, 118$-, and 300 -bus test systems. The actual voltage magnitude (in p.u.) and angle (in radians) of each bus were uniformly distributed over $[0.9,1.1]$, and over $[-0.1 \pi, 0.1 \pi]$. The voltage magnitude squares at all buses as well as the active power flows across all lines were measured. The quadratic programs in Step 5 of Algorithm 1 were solved by the standard convex programming solver SeDuMi [34] with a constant step size of $\mu_{t}=1,000$. Algorithm 1 terminates either when a maximum number 20 of iterations are simulated, or when the normalized distance between two consecutive iterates becomes smaller than 10^{-10}, namely $\operatorname{dist}\left(\mathbf{x}_{t}, \mathbf{x}_{t-1}\right) / \sqrt{N} \leq 10^{-10}$. A total of 100 Monte Carlo (MC) runs were carried out. Figs. 1-3 plot the normalized estimation errors $\operatorname{dist}\left(\mathbf{x}_{t}, \mathbf{v}\right) / \sqrt{N}$ for the 100 MC realizations on the simulated three systems, whose corresponding L values are $0.9980,3.0201$, and 6.3102. Furthermore, Fig. 4 depicts the convergence of the normalized estimation error of Algorithm 1 for the 100 runs on the 14 -bus system. Evidently, Algorithm 1 achieves exact recovery over the 100 runs, and enjoys quadratic convergence in this noiseless setting, validating our theoretical findings in Theorem 1.

Fig. 2. Exact recovery performance of Algorithm 1 for the IEEE 118-bus system (noiseless case).

Fig. 3. Exact recovery performance of Algorithm 1 for the IEEE 300-bus system (noiseless case).

Fig. 4. Quadratic convergence of Algorithm 1 in 100 runs for the IEEE 14-bus system (noiseless case).

B. Tests With Outlying Measurements

One of the claimed advantages of the ℓ_{1}-based loss function 661 in (34) is its robustness to outliers. In this test, we evaluate 662 the robustness of Algorithm 1 to measurements with outliers 663

Fig. 5. Recovery performance for the IEEE 118-bus system with 1 outlying measurement (noiseless case).

664

in terms of the exact recovery. Concretely, the IEEE 118-bus system with its default voltage profile was simulated. The voltage magnitudes at all buses along with the active and reactive power flows across all lines were measured. Considering the fact that the nodal voltage magnitudes in transmission networks are maintained close to one, we assume that only the power meters can be compromised. A total of 100 MC runs were performed. Per run, one power flow meter was randomly compromised, whose measurement was purposefully manipulated and amplified to five times its original value.

Both the Gauss-Newton and Algorithm 1 were simulated in this experiment, whose corresponding normalized estimation errors for the 100 MC realizations are presented in Fig. 5. It is self-evident from the plots that the Gauss-Newton method is not robust to outlying measurements, whereas our proposed proxlinear scheme in Algorithm 1 can identify and automatically reject the bad data, yielding exact recovery of the true states in most cases even under adversarial attacks.

C. Tests With Additive Noise and Outliers

The third experiment assesses the robust estimation performance of Algorithm 1 relative to Gauss-Newton, in a setting where both additive noises and outliers are present. The large IEEE 300-bus benchmark system with its default voltage profile was simulated. All active and reactive power flows as well as all voltage magnitudes were measured. Additive noise was independently generated from normal distributions having zeromean and standard deviations 0.004 and 0.008 for the voltage magnitude and line flow measurements, respectively [18]. In addition to additive noise, 5% of the entire measured power flows were corrupted uniformly at random with "outliers" drawn independently from a Gaussian distribution with zero-mean and standard deviation 5. The normalized estimation errors obtained by the Gauss-Newton method and Algorithm 1 for 100 MC independent realizations are reported in Fig. 6. Evidently, our developed algorithm consistently exhibits more robust estima-

Fig. 6. Estimation performance for the IEEE 300-bus system under additive noise and 5\% outlying measurements.
tion performance than LS-based Gauss-Newton against additive 699 noise and outlying measurements.
VII. Conclusion

Robust PSSE is approached by minimizing the ℓ_{1}-based loss 702 function from the vantage point of composite optimization. To 703 enable efficient algorithms and exact state recovery, the power 704 quantities were first transformed into rank-one measurements. 705 Building on advances in nonconvex and nonsmooth composite 706 optimization, two algorithms were put forth for minimizing the 707 ℓ_{1}-based loss of the transformed rank-one measurements. Our 708 algorithms require no tuning of parameters, except for a step 709 size. We also developed "stability conditions" on the ℓ_{1}-based 710 loss function such that exact state recovery and quadratic con- 711 vergence are guaranteed by our approach in the noiseless case. 712 Simulated tests using three IEEE benchmark networks under 713 different settings validate our theoretical findings, and show- 714 case the efficacy of our approach.

ApPENDIX

A. Wirtinger's Calculus

Introducing the complex conjugate coordinates $\left[\mathbf{x}^{\mathcal{T}} \overline{\mathbf{x}}^{\mathcal{T}}\right]^{\mathcal{T}} \in 718$ $\mathbb{C}^{2 N}$, one can rewrite $\mathbf{s}(\mathbf{x})=\mathbf{s}(\mathbf{x}, \overline{\mathbf{x}}) \in \mathbb{C}^{M}$. It is obvious now 719 that $\mathbf{s}(\mathbf{x}, \overline{\mathbf{x}})$ becomes holomorphic in \mathbf{x} for a fixed $\overline{\mathbf{x}}$, and vice 720 versa. This leads to the partial Wirtinger derivatives [28]

$$
\begin{aligned}
& \frac{\partial s_{m}}{\partial \mathbf{x}}:=\left.\frac{\partial s_{m}(\mathbf{x}, \overline{\mathbf{x}})}{\partial \mathbf{x}}\right|_{\overline{\mathbf{x}}=\text { constant }}=\left[\frac{\partial s_{m}}{\partial x_{1}} \frac{\partial s_{m}}{\partial x_{2}} \cdots \frac{\partial s_{m}}{\partial x_{N}}\right] \\
& \frac{\partial s_{m}}{\partial \overline{\mathbf{x}}}:=\left.\frac{\partial s_{m}(\mathbf{x}, \overline{\mathbf{x}})}{\partial \overline{\mathbf{x}}}\right|_{\mathbf{x}=\text { constant }}=\left[\frac{\partial s_{m}}{\partial \bar{x}_{1}} \frac{\partial s_{m}}{\partial \bar{x}_{2}} \cdots \frac{\partial s_{m}}{\partial \bar{x}_{N}}\right]
\end{aligned}
$$

where the partial derivative with respect to $\mathbf{x}(\overline{\mathbf{x}})$ treats $\overline{\mathbf{x}}(\mathbf{x})$ as a 722 constant in s_{m}. The complex gradient of $s_{m}(\mathbf{x}, \overline{\mathbf{x}})$ with respect 723 to \mathbf{x} or $\overline{\mathbf{x}}$ can be defined by

$$
\nabla_{\mathbf{x}} s_{m}:=\left(\frac{\partial s_{m}}{\partial \mathbf{x}}\right)^{\mathcal{H}}, \text { and } \nabla_{\overline{\mathbf{x}}} s_{m}:=\left(\frac{\partial s_{m}}{\partial \overline{\mathbf{x}}}\right)^{\mathcal{H}}
$$

Upon introducing the complex Jacobian

$$
\nabla_{c} \mathbf{s}:=\left[\nabla_{c} s_{1} \nabla_{c} s_{2} \cdots \nabla_{c} s_{M}\right] \in \mathbb{C}^{2 N \times M}
$$

727 we can define for given vectors x and $\Delta \mathrm{x} \in \mathbb{C}^{N}$ the following 728 first-order Taylor's expansion:

$$
\begin{align*}
\mathbf{s}(\mathbf{x}+\Delta \mathbf{x}) & \approx \mathbf{s}(\mathbf{x})+\nabla_{c}^{\mathcal{H}} \mathbf{s}(\mathbf{x})\left[\frac{\Delta \mathbf{x}}{\Delta \mathbf{x}}\right] \\
& =\mathbf{s}(\mathbf{x})+2 \Re\left(\nabla^{\mathcal{H}} \mathbf{s}_{\mathbf{x}}(\mathbf{x}) \Delta \mathbf{x}\right) \in \mathbb{R}^{M \times N} \tag{46}
\end{align*}
$$

B. Supporting Results

Proposition 2 ([29, Prop. 3]): Given $\mathbf{a} \in \mathbb{C}^{N}$ and $b \in \mathbb{R}$, 731 the solution of

$$
\begin{equation*}
\underset{\mathbf{w} \in \mathbb{C}^{N}}{\operatorname{minimize}}\left|b-\Re\left(\mathbf{a}^{\mathcal{H}} \mathbf{w}\right)\right|+\frac{1}{2 \mu}\|\mathbf{w}\|_{2}^{2} \tag{47}
\end{equation*}
$$

732 can be obtained as $\hat{\mathbf{w}}:=\operatorname{proj}_{\mu}\left(b /\|\mathbf{a}\|_{2}^{2}\right) \cdot \mathbf{a}$, where $\operatorname{proj}_{\mu}(x)$: $733 \mathbb{R} \times \mathbb{R}_{+} \rightarrow \mathbb{R}$ is the projection operator that returns the real 734 number in interval $[-\tau, \tau]$ closest to any given $x \in \mathbb{R}$.

Condition 3 [21, Condition 1]: For any given $v \in \mathbb{R}^{N}$, 736 there exists a parameter $\rho>0$ such that function $\ell(\mathbf{x})$ satisfies 737 the following for all $\mathrm{x} \in \mathbb{R}^{n}$:

$$
\begin{equation*}
\ell(\mathbf{x})-\ell(\mathbf{v}) \geq \rho\|\mathbf{x}-\mathbf{v}\|_{2}\|\mathbf{x}+\mathbf{v}\|_{2} \tag{48}
\end{equation*}
$$

738 Concerning the lower bound in (41), we have the next result.
739 Lemma 1: For any fixed $\mathbf{v} \in \mathbb{C}^{N}$, the inequality holds for 740 all $\mathbf{x}, \mathbf{v} \in \mathbb{C}^{N}$

$$
\begin{equation*}
\|\mathbf{x}-\mathbf{v}\|_{2}^{2}\|\mathbf{x}+\mathbf{v}\|_{2}^{2}-4\left|\Im\left(\mathbf{x}^{\mathcal{H}} \mathbf{v}\right)\right|^{2} \geq\|\mathbf{v}\|_{2}^{2} \operatorname{dist}^{2}(\mathbf{x}, \mathbf{v}) \tag{49}
\end{equation*}
$$

741 Proof: The left-hand-side term of (49) can be rewritten as

$$
\begin{aligned}
\| \mathbf{x}= & \mathbf{v}\left\|_{2}^{2}\right\| \mathbf{x}+\mathbf{v} \|_{2}^{2}-4 \Im^{2}\left(\mathbf{x}^{\mathcal{H}} \mathbf{v}\right) \\
= & \left(\|\mathbf{x}\|_{2}^{2}+\|\mathbf{v}\|_{2}^{2}-2 \Re\left(\mathbf{x}^{\mathcal{H}} \mathbf{v}\right)\right)\left(\|\mathbf{x}\|_{2}^{2}+\|\mathbf{v}\|_{2}^{2}+2 \Re\left(\mathbf{x}^{\mathcal{H}} \mathbf{v}\right)\right) \\
& -4 \Im^{2}\left(\mathbf{x}^{\mathcal{H}} \mathbf{v}\right) \\
= & \left(\|\mathbf{x}\|_{2}^{2}+\|\mathbf{v}\|_{2}^{2}\right)^{2}-4\left[\Re^{2}\left(\mathbf{x}^{\mathcal{H}} \mathbf{v}\right)+\Im^{2}\left(\mathbf{x}^{\mathcal{H}} \mathbf{v}\right)\right] \\
= & \left(\|\mathbf{x}\|_{2}^{2}+\|\mathbf{v}\|_{2}^{2}\right)^{2}-4\left|\mathbf{x}^{\mathcal{H}} \mathbf{v}\right|^{2} \\
= & \left(\|\mathbf{x}\|_{2}^{2}+\|\mathbf{v}\|_{2}^{2}+2\left|\mathbf{x}^{\mathcal{H}} \mathbf{v}\right|\right)\left(\|\mathbf{x}\|_{2}^{2}+\|\mathbf{v}\|_{2}^{2}-2\left|\mathbf{x}^{\mathcal{H}} \mathbf{v}\right|\right) \\
\geq & \|\mathbf{v}\|_{2}^{2}\left(\|\mathbf{x}\|_{2}^{2}+\|\mathbf{v}\|_{2}^{2}-2\left|\mathbf{x}^{\mathcal{H}} \mathbf{v}\right|\right) \\
= & \|\mathbf{v}\|_{2}^{2} \operatorname{dist}^{2}(\mathbf{x}, \mathbf{v})
\end{aligned}
$$

742 Taking the square root from both sides of the inequality yields 743 the statement of Lemma 1.

C. Proof of Theorem 1

The proof is based on that of [21, Th. 1], but we here gen746 eralize its results to function optimization over complex do747 mains. Observe that the regularized function $g(\mathbf{x}):=\ell_{\mathbf{x}_{t}}(\mathbf{x})+$
$\frac{L}{2}\left\|\mathbf{x}-\mathbf{x}_{t}\right\|_{2}^{2}$ is L-strongly convex in $\mathbf{x} \in \mathbb{C}^{N}$, and its minimum is attained at \mathbf{x}_{t+1} [cf. (37)]. The standard optimal- 749 ity conditions for strongly convex minimization confirms that $g\left(\mathbf{x}_{t+1}\right) \leq g\left(\mathrm{e}^{j \angle \mathbf{x}_{t}^{\mathcal{H}} \mathbf{v}} \mathbf{v}\right)-\frac{L}{2}\left\|\mathrm{e}^{j \angle \mathbf{x}_{t}^{\mathcal{H}} \mathbf{v}} \mathbf{v}-\mathbf{x}_{t+1}\right\|_{2}^{2} ;$ that is,

$$
\begin{align*}
& \ell_{\mathbf{x}_{t}}\left(\mathbf{x}_{t+1}\right)+\frac{L}{2}\left\|\mathbf{x}_{t+1}-\mathbf{x}_{t}\right\|_{2}^{2} \leq \ell_{\mathbf{x}_{t}}\left(\mathrm{e}^{j \angle \mathbf{x}_{t}^{\mathcal{H}} \mathbf{v}} \mathbf{v}\right) \\
& \quad+\frac{L}{2}\left\|\mathrm{e}^{j \angle \mathbf{x}_{t}^{\mathcal{H}} \mathbf{v}} \mathbf{v}-\mathbf{x}_{t}\right\|_{2}^{2}-\frac{L}{2}\left\|\mathrm{e}^{j \angle \mathbf{x}_{t}^{\mathcal{H}} \mathbf{v}} \mathbf{v}-\mathbf{x}_{t+1}\right\|_{2}^{2} . \tag{50}
\end{align*}
$$

Recalling now Condition 2, we have that

$$
\begin{align*}
\ell\left(\mathbf{x}_{t+1}\right) & \leq \ell_{\mathbf{x}_{t}}\left(\mathbf{x}_{t+1}\right)+\frac{L}{2}\left\|\mathbf{x}_{t+1}-\mathbf{x}_{t}\right\|_{2}^{2} \tag{51a}\\
\ell_{\mathbf{x}_{t}}\left(\mathrm{e}^{j \angle \mathbf{x}_{t}^{\mathcal{H}} \mathbf{v}} \mathbf{v}\right) & \leq \ell\left(\mathrm{e}^{j \angle \mathbf{x}_{t}^{\mathcal{H}} \mathbf{v}} \mathbf{v}\right)+\frac{L}{2}\left\|\mathrm{e}^{j \angle \mathbf{x}_{t}^{\mu} \mathbf{v}} \mathbf{v}-\mathbf{x}_{t}\right\|_{2}^{2} . \tag{51b}
\end{align*}
$$

Substituting (51a) and (51b) into (50) gives rise to

$$
\begin{aligned}
& \ell\left(\mathbf{x}_{t+1}\right) \leq \ell_{\mathbf{x}_{t}}\left(\mathrm{e}^{j \angle \mathbf{x}_{t}^{\mathcal{H}} \mathbf{v}} \mathbf{v}\right)+\frac{L}{2}\left\|\mathrm{e}^{j \angle \mathbf{x}_{t}^{\mu} \mathbf{v}} \mathbf{v}-\mathbf{x}_{t}\right\|_{2}^{2} \\
& \quad-\frac{L}{2}\left\|\mathrm{e}^{j \angle \mathbf{x}_{t}^{\mu} \mathbf{v}} \mathbf{v}-\mathbf{x}_{t+1}\right\|_{2}^{2} \\
& \leq \ell\left(\mathrm{e}^{j \angle \mathbf{x}_{t}^{\mathcal{H}} \mathbf{v}} \mathbf{v}\right)+L\left\|\mathrm{e}^{j \angle \mathbf{x}_{t}^{\mu} \mathbf{v}} \mathbf{v}-\mathbf{x}_{t}\right\|_{2}^{2}-\frac{L}{2}\left\|\mathrm{e}^{j \angle \mathbf{x}_{t}^{H} \mathbf{v}} \mathbf{v}-\mathbf{x}_{t+1}\right\|_{2}^{2}
\end{aligned}
$$

which, in conjunction with $\ell\left(\mathrm{e}^{j \angle \mathbf{x}_{t}^{\mu} \mathbf{v}} \mathbf{v}\right)=\ell(\mathbf{v})$ in (34), yields

$$
\begin{align*}
L\left\|\mathrm{e}^{j \angle \mathbf{x}_{t}^{\psi} \mathbf{v}} \mathbf{v}-\mathbf{x}_{t}\right\|_{2}^{2} \geq & \ell\left(\mathbf{x}_{t+1}\right)-\ell(\mathbf{v}) \\
& +\frac{L}{2}\left\|\mathrm{e}^{j \angle \mathbf{x}_{t}^{\mu} \mathbf{v}} \mathbf{v}-\mathbf{x}_{t+1}\right\|_{2}^{2} . \tag{52}
\end{align*}
$$

Invoking further Condition 1 in (52), we have that

$$
\begin{align*}
& L\left\|\mathrm{e}^{j \angle \mathbf{x}_{t}^{\mathcal{H}} \mathbf{v}} \mathbf{v}-\mathbf{x}_{t}\right\|_{2}^{2} \geq \frac{L}{2}\left\|\mathrm{e}^{j \angle \mathbf{x}_{t}^{\mathcal{H}} \mathbf{v}} \mathbf{v}-\mathbf{x}_{t+1}\right\|_{2}^{2} \\
& \quad+\rho \sqrt{\left\|\mathbf{x}_{t+1}-\mathbf{v}\right\|_{2}^{2}\left\|\mathbf{x}_{t+1}+\mathbf{v}\right\|_{2}^{2}-4\left|\Im\left(\mathbf{x}_{t+1}^{\mathcal{H}} \mathbf{v}\right)\right|^{2}} \tag{53}
\end{align*}
$$

in which the last term can be replaced with its lower bound $\rho\|\mathbf{v}\|_{2} \operatorname{dist}\left(\mathbf{x}_{t+1}, \mathbf{v}\right)$ established in Lemma 1. Upon dropping 757 the nonnegative term $\frac{L}{2}\left\|\mathrm{e}^{j \angle \mathbf{x}_{t}^{\mathcal{H}} \mathbf{v}} \mathbf{v}-\mathbf{x}_{t+1}\right\|_{2}^{2}$, and recalling the 758 definition of $\operatorname{dist}\left(\mathbf{x}_{t}, \mathbf{v}\right)$, we immediately have

$$
\rho\|\mathbf{v}\|_{2} \operatorname{dist}\left(\mathbf{x}_{t+1}, \mathbf{v}\right) \leq L \operatorname{dist}^{2}\left(\mathbf{x}_{t}, \mathbf{v}\right)
$$

dividing both sides of which by $\rho\|\mathbf{v}\|_{2}^{2}$ yields

$$
\frac{\operatorname{dist}\left(\mathbf{x}_{t+1}, \mathbf{v}\right)}{\|\mathbf{v}\|_{2}} \leq \frac{L}{\rho} \cdot \frac{\operatorname{dist}^{2}\left(\mathbf{x}_{t}, \mathbf{v}\right)}{\|\mathbf{v}\|_{2}^{2}}=\frac{\rho}{L}\left(\frac{L}{\rho} \cdot \frac{\operatorname{dist}\left(\mathbf{x}_{t}, \mathbf{v}\right)}{\|\mathbf{v}\|_{2}}\right)^{2}
$$

Applying the above-mentioned inequality successively from 761 the initialization \mathbf{x}_{0} for t iterations through \mathbf{x}_{t} gives rise to (45), 762 concluding the proof.

References

[1] W. A. Wulf, "Great achievements and grand challenges," Bridge, 765 vol. 30, no. 3/4, pp. 5-10, Fall 2010. [Online]. Available: http://www. 766 greatachievements.org/
[2] A. Abur and A. Gómez-Expósito, Power System State Estimation: Theory 768 and Implementation. New York, NY, USA: Marcel Dekker, 2004.
[3] G. Wang, G. B. Giannakis, J. Chen, and J. Sun, "Distribution system state 770 estimation: An overview of recent developments," Front. Inf. Technol. 771 Electron. Eng., vol. 20, no. 1, pp. 1-14, Jan. 2019.
[4] F. C. Schweppe, J. Wildes, and D. Rom, "Power system static state estimation: Parts I, II, and III," IEEE Trans. Power App. Syst., vol. PAS-89, no. 1, pp. 120-135, Jan. 1970.
[5] D. P. Bertsekas, Nonlinear Programming, 2nd ed. Belmont, MA, USA: Athena Scientific, 1999.
[6] H. Zhu and G. B. Giannakis, "Power system nonlinear state estimation using distributed semidefinite programming," IEEE J. Sel. Topics Signal Process., vol. 8, no. 6, pp. 1039-1050, Dec. 2014.
[7] Y. Zhang, R. Madani, and J. Lavaei, "Conic relaxations for power system state estimation with line measurements," IEEE Trans. Control Netw. Syst., vol. 5, no. 3, pp. 1193-1205, Sep. 2018.
[8] S. Bhela, V. Kekatos, and S. Veeramachaneni, "Enhancing observability in distribution grids using smart meter data," IEEE Trans. Smart Grid, vol. 9, no. 6, pp. 5953-5961, Nov. 2018.
[9] Mission Support Center, "Cyber threat and vulnerability analysis of the U.S. electric sector," Idaho Nat. Lab., Idaho Falls, ID, USA, Tech. Rep., 2016.
[10] H. M. Merrill and F. C. Schweppe, "Bad data suppression in power system static state estimation," IEEE Trans. Power App. Syst., vol. PAS-90, no. 6, pp. 2718-2725, Nov. 1971.
[11] Y. Liu, P. Ning, and M. K. Reiter, "False data injection attacks against state estimation in electric power grids," ACM Trans. Inf. Syst. Secur., vol. 14, no. 1, May 2011, Art. no. 13.
[12] S. Soltan, M. Yannakakis, and G. Zussman, "Power grid state estimation following a joint cyber and physical attack," IEEE Trans. Control Netw. Syst., vol. 5, no. 1, pp. 499-512, Mar. 2018.
[13] H. G. Aghamolki, Z. Miao, and L. Fan, "SOCP convex relaxationbased simultaneous state estimation and bad data identification," 2018, arXiv:1804.05130.
[14] S. Akhlaghi, N. Zhou, and Z. Huang, "A multi-step adaptive interpolation approach to mitigating the impact of nonlinearity on dynamic state estimation," IEEE Trans. Smart Grid, vol. 9, no. 4, pp. 3102-3111, Jul. 2018.
[15] L. Mili, M. Cheniae, N. Vichare, and P. Rousseeuw, "Robustification of the least absolute value estimator by means of projection statistics [power system state estimation]," IEEE Trans. Power Syst., vol. 11, no. 1, pp. 216225, Feb. 1996.
[16] P. J. Huber, "Robust Statistics," in International Encyclopedia of Statistical Science. New York, NY, USA: Springer, 2011, pp. 1248-1251.
[17] W. W. Kotiuga and M. Vidyasagar, "Bad data rejection properties of weighted least-absolute-value techniques applied to static state estimation," IEEE Trans. Power App. Syst., vol. PAS-101, no. 4, pp. 844-853, Apr. 1982.
[18] A. Abur and M. K. Celik, "A fast algorithm for the weighted least-absolutevalue state estimation (for power systems)," IEEE Trans. Power Syst., vol. 6, no. 1, pp. 1-8, Feb. 1991.
[19] R. Jabr and B. Pal, "Iteratively re-weighted least-absolute-value method for state estimation," IET Gener., Transmiss., Distrib., vol. 150, no. 4, pp. 385-391, Jul. 2003.
[20] G. Wang, G. B. Giannakis, and Y. C. Eldar, "Solving systems of random quadratic equations via truncated amplitude flow," IEEE Trans. Inf. Theory, vol. 64, no. 2, pp. 773-794, Feb. 2018.
[21] J. C. Duchi and F. Ruan, "Solving (most) of a set of quadratic equalities: Composite optimization for robust phase retrieval," 2018, arXiv:1705.02356.
[22] P. M. Pardalos and S. A. Vavasis, "Quadratic programming with one negative eigenvalue is NP-hard," J. Global Optim., vol. 1, no. 1, pp. 1522, 1991.
[23] A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications, vol. 2. Philadelphia, PA, USA: SIAM, 2001.
[24] A. Conca, D. Edidin, M. Hering, and C. Vinzant, "An algebraic characterization of injectivity in phase retrieval," Appl. Comput. Harmon. Anal., vol. 38, no. 2, pp. 346-356, Mar. 2015.
[25] J. V. Burke and M. C. Ferris, "A Gauss-Newton method for convex composite optimization," Math. Program., vol. 71, no. 2, pp. 179-194, Dec. 1995.
[26] A. S. Lewis and S. J. Wright, "A proximal method for composite minimization," Math. Program., vol. 158, no. 1/2, pp. 501-546, Jul. 2016.
[27] A. I. Markushevich, Theory of Functions of A Complex Variable, 2nd ed. New York, NY, USA: Chelsea, 1977.
[28] D. H. Brandwood, "A complex gradient operator and its application in adaptive array theory," IEE Proc. F-Commun., Radar Signal Process., vol. 130, no. 1, pp. 11-16, Feb. 1983.
[29] G. Wang, G. B. Giannakis, and J. Chen, "Robust and scalable power system 847 state estimation via composite optimization," 2017, arXiv:1708.06013_ 848
[30] J. C. Duchi and F. Ruan, "Stochastic methods for composite optimization 849 problems," 2017, arXiv:1703.08570.
1] R. Balan, "Reconstruction of signals from magnitudes of redundant rep- 851 resentations: The complex case," Found. Comput. Math., vol. 16, no. 3, 852 pp. 677-721, Jun. 2016.
[32] Power Systems Test Case Archive, Univ. Washington, Seattle, WA, USA. 854 [Online]. Available: http://www.ee.washington.edu/research/pstca
[33] R. D. Zimmerman, C. E. Murillo-Sanchez, and R. J. Thomas, "MAT- 856 POWER: Steady-state operations, planning and analysis tools for power 857 systems research and education," IEEE Trans. Power Syst., vol. 26, no. 1, 858 pp. 12-19, Feb. 2011.

859
[34] J. F. Sturm, "Using SeDuMi 1.02, a MATLAB toolbox for optimization 860 over symmetric cones," Optim. Method Softw., vol. 11, no. 1-4, pp. 625- 861 653, Jan. 1999.

Gang Wang (M'18) received the B.Eng. de- 863 gree in electrical engineering and automation 864 from the Beijing Institute of Technology, Beijing, 865 China, in 2011, and the Ph.D. degree in elec- 866 trical and computer engineering from the Uni- 867 versity of Minnesota, Minneapolis, MN, USA, in 868 2018.

He is currently a Postdoctoral Associate with 870 the Department of Electrical and Computer En- 871 gineering, University of Minnesota. His research 872 interests focus on the areas of statistical signal 873 processing, stochastic and (non-)convex optimization with applications 874 to autonomous energy grids, and deep learning.
Dr. Wang was a recipient of a National Scholarship (2014), a Guo Rui 876 Scholarship (2017), and an Innovation Scholarship (first place in 2017), 877 all from China, as well as a Best Student Paper Award at the 2017 Eu- 878 ropean Signal Processing Conference.

Hao Zhu (M'12) received the B.Eng. degree in 881 electrical engineering from Tsinghua University, 882 Beijing, China in 2006, and the M.Sc. (minor: 883 Math) and Ph.D. degrees in electrical engineer- 884 ing from the University of Minnesota, Minneapo- 885 lis, MN, USA, in 2009 and 2012, respectively. 886

She is currently an Assistant Professor in 887 electrical and computer engineering (ECE) with 888 The University of Texas at Austin, Austin, TX, 889 USA. She was a Postdoctoral Researcher, from 890 2012 to 2013, and then an Assistant Profes- 891 sor in ECE from 2014-2017 with the University of Illinois at Urbana- 892 Champaign. Her current research interests include power system moni- 893 toring and operations considering its cyber-physical coupling, as well as 894 energy data analytics.

895
Dr. Zhu was a recipient of the NSF CAREER Award in 2017, the 896 Siebel Energy Institute Seed Grant, and the U.S. AFRL Summer Fac- 897 ulty Fellowship in 2016. She is the faculty advisor and/or coauthor of two 898 best papers at the North American Power Symposium. She is currently a 899 member of the steering committee of the IEEE Smart Grid representing 900 the IEEE Signal Processing Society.

Georgios B. Giannakis ($F^{\prime} 97$) received the Diploma degree in electrical engineering from the National Technical University of Athens, Athens, Greece, in 1981, the M.Sc. degree in electrical engineering in 1983, the M.Sc. degree in mathematics, and the Ph.D. degree in electrical engineering both in 1986 from the University of Southern California, Los Angeles, CA, USA.

He was with the University of Virginia, from 1987 to 1998 and since 1999, he has been a Professor with the University of Minnesota, Minneapolis, MN, USA, where he holds an Endowed Chair in Wireless Telecommunications, University of Minnesota McKnight Presidential Chair in Electrical and Computer Engineering, and serves as the Director of the Digital Technology Center. His general interests include the areas of communications, networking, and statistical signal processing-subjects on which he has authored/coauthored more than 430 journal papers, 730 conference papers, 25 book chapters, two edited books, and two research monographs (h-index 134). His current research focuses on learning from big data, wireless cognitive radios, and network science with applications to social, brain, and power networks with renewables. He is the (co-)inventor of 30 patents issued.

Dr. Giannakis was the (co-)recipient of nine best paper awards from the IEEE SIgnal Processing (SP) and Communications Societies, including the G. Marconi Prize Paper Award in Wireless Communications. He is also a recipient of the Technical Achievement Awards from the SP Society (2000), from the EURASIP (2005), a Young Faculty Teaching Award, the G. W. Taylor Award for Distinguished Research from the University of Minnesota, and the IEEE Fourier Technical Field Award (inaugural recipient in 2015). He is a Fellow of the EURASIP, and has served the IEEE in a number of posts, including that of a Distinguished Lecturer for the IEEE-SP Society.

Jian Sun (M'10) was born in Jilin Province, 937 China, in 1978. He received the Bachelor's de- 938 gree from the Department of Automation and 939 Electric Engineoring, Jilin Institute of Technol- 940 ogy, Changchun, China, in 2001, the Master's 941 degree--from the Changchun Institute of Optics, 942 Fine Mechanics and Physics, Chinese Academy 943 of Sciences (CAS), Changchun, China, in 2004, 944 and the Ph.D. degree-from the Institute of Au- 945 tomation, CAS, Beijing, China, in 2007.

He was a Research Fellow with the Faculty 947 of Advanced Technology, University of Glamorgan, U.K., from April 2008948 to October 2009. He was a Postdoctoral Research Fellow with the Bei- 949 jing Institute of Technology, Beijing, China, from December 2007 to May 950 2010. In May 2010, he joined the School of Automation, Beijing Institute 951 of Technology, where he has been a Professor since 2013. His research 952 interests include control, security, and learning of networked control sys- 953 tems and cyber-physical systems.

Dr. Sun is currently on the Editorial Boards of Journal of Systems

[^0]: ${ }^{1}$ Throughout, \mathbf{v} is fixed for the actual system state, whereas \mathbf{x} is used for the optimization variable and the state estimate.

