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Abstract—Contemporary electricity distribution systems are
being challenged by the variability of renewable energy sources.
Slow response times and long energy management periods cannot
efficiently integrate intermittent renewable generation and de-
mand. Yet stochasticity can be judiciously coupled with system
flexibilities to enhance grid operation efficiency. Voltage magni-
tudes for instance can transiently exceed regulation limits, while
smart inverters can be overloaded over short time intervals. To
implement such a mode of operation, an ergodic energy manage-
ment framework is developed here. Considering a distribution
grid with distributed energy sources and a feed-in tariff program,
active power curtailment and reactive power compensation are
formulated as a stochastic optimization problem. Tighter opera-
tional constraints are enforced in an average sense, while looser
margins are enforced to be satisfied at all times. Stochastic dual
subgradient solvers are developed based on exact and approx-
imate grid models of varying complexity. Numerical tests on a
real-world 56-bus distribution grid and the IEEE 123-bus test
feeder relying on both grid models corroborate the advantages of
the novel schemes over their deterministic alternatives.
Index Terms—Energy management, reactive power compensa-

tion, active power curtailment, stochastic optimization, dual de-
composition.

I. INTRODUCTION

D ISTRIBUTED generation and the prospective integration
of electric vehicles and elastic loads create unseen opera-

tional scenarios for distribution grids [1]. Several utilities in the
US currently experience issues with integrating residential- and
commercial-scale solar generation. For example, solar farms of-
tentimes connected at the end of a long distribution feeder in dis-
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tant rural areas, are routinely reported to introduce voltage regu-
lation problems to the residential buses across the feeder. These
frequently reversing power flows strain the apparent power ca-
pabilities of substation transformers. Moreover, data collected
from residential PVs reveal that solar generation can fluctuate
by up to 15% of their nameplate ratings within one-minute inter-
vals [2]. The aforementioned issues critically challenge energy
management of distribution grids.
On the other hand, contemporary distributed generation units

are equipped with the so-termed smart power inverters that
have two-way communication and computing capabilities, and
thus offer unprecedented control opportunities [3]. Leveraging
smart inverters for joint reactive power compensation and
active power curtailment to achieve various objectives (power
loss minimization, conservation voltage reduction, or voltage
regulation) is considered here. Traditionally, distribution grid
voltage regulation is performed via load-tap-changing trans-
formers, capacitor banks, and voltage regulators [4]. This
utility-owned equipment involves discrete control actions, and
its lifespan is affected by frequent switching operations [5],
[3]. Regulating voltage under increasing generation from dis-
tributed renewable sources would require even more frequent
switching actions and perhaps further installations.
In this context, recent research efforts have focused on

engaging smart inverters in the energy management system
(EMS) of distribution grids [1], [6], [7]; especially, given that
these inverters come with PVs and electric vehicles anyways.
Customer-owned power inverters can be commanded to adjust
reactive power injections within milliseconds and in a con-
tinuously-valued manner [8], [6]. Albeit currently prohibited
by some standards (see e.g., [9]), controlling reactive power
through smart inverters has been reported to improve grid's
voltage profile, or even displace utility-owned voltage regu-
lating equipment at more than 50% solar penetration [8].
Using approximate grid models, voltage regulation is ef-

fected through a multi-agent scheme in [10], and local control
algorithms are devised in [7]. Building on the exact full AC
grid model, reactive power control is an instance of the op-
timal power flow (OPF) problem, which is non-convex in
general [11]. Recently, different convex relaxations have been
proposed; see [12] for a review. In radial networks, the OPF
can be relaxed into a second-order cone program (SOCP) via
either polar coordinates [13], or the branch flow model [14];
or into a semidefinite program (SDP) [15]. Although the two
relaxations have been shown to be equivalent, [16] advocates
using the SOCP one due to its lower computational complexity.
Leveraging the SOCP relaxation, a two timescale conventional
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and inverter-based reactive power control has been formulated
in [17]. Accounting for stochasticity, an adaptive local control
algorithm for single-branch grids is developed in [18], and a
stochastic centralized approach has been pursued in [19].
Apart from exploiting the reactive power capabilities of smart

inverters, active power curtailment has been advocated as an
ancillary service as well [20]–[23]. Droop-based active power
curtailment has been proposed as an efficient means for over-
voltage prevention [20]. In [21], an SDP-based relaxation has
been devised for jointly commanding active and reactive power
setpoints to inverters in multi-phase distribution grids. Lever-
aging joint reactive power compensation and active power cur-
tailment, a multi-objective OPF is formulated for unbalanced
four-wire distribution grids in [22]. Local voltage control strate-
gies are developed for customers enrolled in a feed-in tariff
(FIT) policy [23]. An FIT power supply policy compensates DG
owners for the surplus of renewable energy they inject into the
grid. Similarly structured programs have been successfully de-
ployed in Europe and several US states [24].
Existing energy management schemes enforce inverter-re-

lated and voltage regulation-related constraints at all times.
However, the operation of future grids could benefit from
currently unexploited system flexibilities. Two possible options
are the overloading tolerance of inverters and the voltage
regulation margins. Specifically, the inverters found in DG
units and storage units are manufactured to operate higher
than their nameplate apparent power rating [25]. Actually,
this feature has already been exploited in designing panels
[26]. Moreover, most voltage regulation standards, such as
the American National Standard Institute (ANSI) C84.1 [27],
and the EN 50160 standard [28], define two voltage regions:
one for normal operations, and one whose use is limited in
frequency and duration. According to the EN 50160 standard,
for example, nodal voltage magnitudes are required to lie in the
latter region for 95% of any 10-minute sample [5], [28].
To exploit such flexibilities, this work proposes an energy

management scheme, where voltage regulation and inverter
capacity constraints are imposed in a stochastic rather than a
deterministic sense. Our contribution is not on the effect of
pricing and curtailment policies on renewable integration. It
is rather an algorithmic framework for exploiting the afore-
mentioned sources of flexibility to lower costs and improve
renewable integration. Different from existing schemes, oper-
ational constraints are relaxed instantaneously, while tighter
limits are enforced in an average sense. This is achieved using
a stochastic dual subgradient scheme that relies on power
flow models with different accuracy-complexity trade-offs.
The schemes are based only on data to command set-points to
DG units, and enjoy convergence and feasibility guarantees.
Numerical tests using synthetic and real data on a 56-bus and
the IEEE 123-bus grids corroborate the efficacy of the scheme.
Paper Outline: The rest of the paper is outlined as fol-

lows. The novel energy management problem is formulated
in Section II. An ergodic optimization approach is presented
in Section III, while a stochastic approximation solver is
developed in Section IV. The implementation of the solver
depending on two grid models is presented in Section V, while
performance advantages over the deterministic alternatives are

supported by the numerical tests of Section VI. Concluding
remarks are drawn in Section VII.
Notation: Lower- (upper-) case boldface letters denote

column vectors (matrices), with the exception of power flow
vectors . Calligraphic symbols are reserved for sets,
while denotes the set of all nonnegative -dimensional
vectors; the symbol stands for transposition; and and
denote the all-zeros and all-ones vectors, respectively.

II. PROBLEM FORMULATION

Consider a distribution grid comprising buses. The
grid is modeled by a tree graph , where

is the set of nodes (buses) and denotes
the cardinality of the edge (line) set . Note that albeit struc-
turally meshed, distribution grids are usually operated as radial.
The tree is rooted at the substation bus indexed by , and
all non-root buses comprise the set . Let
be the squared voltage magnitude at bus , and the
complex power injection at bus for all . For notational
brevity, nodal quantities related to non-root buses are stacked in
column vectors , and .
Active and reactive power injections at bus are split into

their generation and consumption components as
and . For a purely load bus, the consumption
components are oftentimes related via a constant power
factor, whereas . A DG bus in addition to the
nonnegative components , it also provides renewable
generation and reactive power support . All buses
are henceforth assumed to be constant power buses. For buses
having only a shunt capacitor, it holds that
and . Generation and consumption components are

stacked accordingly in vectors , and .
The energy management controller is run centrally by the

utility and communicates set-points to DG units. Although co-
ordinative control of power inverters and utility-owned voltage
regulating devices would only improve performance, it is a non-
trivial task and is not considered here; see [17] for a dynamic
programming approach. In the envisioned scenario, the grid op-
eration is divided into short control periods indexed by . The
duration of these periods depends on the variability of active and
reactive power consumption and the availability of data predic-
tions. Since power inverters provide a continuously-valued con-
trol variable that can be adjusted in milliseconds, transients have
been reported to be negligible [8]. This is in contrast to con-
ventional voltage regulating equipment that results in switching
transients. Without loss of generality, a 30-sec control interval
will be presumed hereafter.
During time period , the grid operator can buy or sell en-

ergy from or to the main grid through the substation bus
via the real-time market. The price for this energy exchange is

, and it is assumed to be positive at all times. Apparently, if
the real-time market operates on a 5-min basis, the price re-
mains constant over 10 consecutive control periods. Internally
in the distribution grid, customers with renewable generation
units, such as PVs or wind micro-turbines, can subscribe to a
so-termed FIT program; see e.g., [24], [29]. According to this
program, the surplus of renewable energy a customer may have
can be bought if deemed appropriate by the utility company at
the FIT price . Although FIT prices are currently adjusted
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on a monthly basis, time-varying prices are considered here
for the sake of generality. Feed-in-tariff prices are also assumed
to be positive. Energy consumption from both FIT and regular
customers is charged at a retail price . The energy cost for
customer during period is the product of

(1)

times the duration of the control period, where the operators
and [30]. Apparently,

at most one of the two summands in (1) is nonzero per slot .
From the utility side, the energy cost for time slot is

(2)

multiplied by the slot duration, where and for vectors
are applied entry-wise now. Heed that the energy exchange with
the main grid depends on the internal consumption
and generation, and the associated power losses on distribution
lines. Thus, the energy exchange can be thought of as a
function of the control variables , while its dependence
on and grid power losses is implicitly indicated by the
subscript .
If the energy management scheme were to minimize the

utility's cost in (2), it would force the minimum possible local
generation. To see that, consider a node where at time
the demand is higher than the installed solar capacity; hence,

. Then, the utility EMS
would command unless there is an under-voltage
condition. Such a policy contradicts the purpose of an FIT
program. The FIT program should curtail renewable power
only if a customer has a surplus and the surplus cannot be
bought due to either financial or voltage regulation reasons.
To accommodate the FIT terms, the utility does not curtail
renewable generation when the net injection is negative. Thus,
the cost to be minimized by the energy management scheme is

rather than that in (2).
Operation of the energy management scheme is detailed next.

Before control period , the EMS collects predictions for prices
, loads , and the maximum renewable gener-

ation . At every period , buses are partitioned to those having
a renewable energy surplus comprising the set

(3)

and to those buses belonging to the complementary set of
denoted by . To jointly perform active power curtailment and
reactive power management, the EMS could solve the ensuing
problem per time interval

(4a)

(4b)
(4c)
(4d)
(4e)

Power injections are constrained in the feasible
set defined by (4b)-(4e). Constraints (4b)-(4d) apply locally per
bus , whereas the voltage constraints in (4e) couple power in-
jections across the grid. Specifically, the term in (4b)
is the active power curtailed for all inverters with renewable sur-

plus at time , i.e., . Constraint (4d) originates from the
maximum apparent power capability (nameplate rating) of
inverter . Constraint (4e) maintains the squared voltage mag-
nitudes in the prescribed interval at all nodes. Sim-
ilar to the energy exchange , voltage magnitudes are
expressed as implicit functions of , whose actual func-
tion forms depend on the postulated grid model and are elabo-
rated in Section V. To simplify the exposition, constraints on the
apparent power flows on distribution lines have been ignored;
such limits can be readily incorporated using the grid model of
Section V-B. It is worth mentioning that policy scenarios where
the utility accepts any energy surplus as soon as grid constraints
are satisfied can be captured by simply setting FIT prices
to zero for all in (4).
Problem (4) guarantees that all power and voltage constraints

are satisfied at all times. Nevertheless, future distribution
grids will afford flexibilities that can be leveraged to lower
operational costs and better integrate renewables. Two possible
sources of flexibility are the overloading capability of smart
inverters and the voltage regulation ranges. Regarding the
former, a grid-tied power inverter can exceed its apparent
power capacity for a short period of time. Indeed, power
electronics are empirically designed to operate at even 1.2–1.5
times higher than their nameplate rating [25]. For the latter,
instead of requiring the squared voltage magnitudes to lie in
at every , it suffices for their time-averages to lie in , and the
instantaneous values to lie within a wider range. For instance,
according to standard EN 50160, voltages are required to stay
in for 95% of any 10-minute sample [28]. Additionally,
heed that problem (4) depends on predictions ,
and prices . It is therefore optimal only if load
demand, renewable generation, and prices are perfectly known.
In practice though involve uncertainties
(e.g., measurement noise, time-delay, and system variability)
rendering the solution of (4) hardly optimal.
To leverage operational flexibilities and cope with uncertain-

ties, a stochastic rather than the deterministic energy manage-
ment formulation of (4) is pursued next. To that end, the time-
varying problem parameters are mod-
eled as stochastic processes [31]–[33]. To capture ensemble av-
erages via time averages, the aforementioned stochastic pro-
cesses are assumed stationary and ergodic, yet not necessarily
independent across time; see [34] and [35]. Recall that a sto-
chastic process is ergodic if its moments (e.g., the mean) can
be inferred from a single realization of the process. The novel
energy management scheme entails solving the following sto-
chastic optimization problem

(5a)

(5b)
(5c)
(5d)
(5e)
(5f)
(5g)

where the optimization variables consist of for all
periods , and the expectations are taken over the joint distri-
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bution of across all periods . Constraint
(5f) guarantees that the average apparent power complies with
the nameplate inverter capacity for all buses; while constraint
(5d) enforces a hard limit on the instantaneous
apparent power for all . Similarly, the averages of squared
voltage magnitudes are maintained in according to (5g),
whereas constraint (5e) ensures that their instantaneous values
lie in a region with . For example,
the ANSI C84.1 requires voltage magnitudes to lie within

per unit (p.u.) of normal operation, but within
p.u. over short durations [27].

Let us compare the solution of (5) to the minimizers obtained
from (4) at every time . Note that constraint (4d) implies con-
straints (5d) and (5f), but not the converse. Likewise, constraints
(4e) guarantees (5e) and (5g). Therefore, the stochastic scheme
in (5) constitutes a relaxation of the deterministic problem (4)
solved over time . As such, the minimizers of (5) could yield
a lower average operational cost, i.e., , where the
expectation is taken over time .
The stochastic problem in (5) involves infinitely many vari-

ables . Nodal power injections at time should sat-
isfy the instantaneous constraints (5b)-(5e). Further, the infin-
itely many variables are coupled across time via the objective
function and the average constraints (5f) and (5g), hence chal-
lenging the solution of (5). A stochastic optimization approach
for tackling (5) is pursued in the next section.

III. ERGODIC ENERGY MANAGEMENT

The goal of ergodic energy management (EEM) is to
design algorithms that sequentially observe predictions

, and solve near optimally the stochastic
problem in (5). The EEM is inspired by related ideas from
resource allocation in wireless communication networks, where
due to propagation channel uncertainties and variabilities, one
prefers to optimize the average rather than the instantaneous
system behavior [36], [37]. The key assumption is that only
realizations of those stochastic processes are available, while
their joint probability density function is typically unknown.
Since optimization variables, henceforth collectively denoted

by , are coupled via expectations, constraints
(5f) and (5g) are dualized. Let , and de-
note the dual variables corresponding to (5f), and the lower and
upper voltage bounds in (5g), respectively. All other constraints
are kept explicit. Using these definitions, the Lagrangian func-
tion of (5) is readily written as

(6)

The dual function for problem (5) is the minimum of the La-
grangian function over all primal variables. Due to the linearity
of the expectation operator, the minimization and the expecta-

tion operators can be interchanged. After rearranging terms, the
dual function is thus expressed as

where functions are defined as

(7)

and the feasible set is given by the instantaneous constraints
in (5) as

(8)

The dual problem is obtained by maximizing the dual func-
tion over the dual variables, that is

(9)

Evaluating requires solving infinitely many prob-
lems of the form in (7), and then averaging the optimal
costs over the joint probability density function (pdf) of

. Even if the joint pdf were available,
finding the expectations would be non-trivial. Hence, even
evaluating the dual function becomes challenging. To maximize
the dual function in a feasible manner, a stochastic optimization
solver is proposed next.

IV. STOCHASTIC APPROXIMATION SOLVER
The problem at hand is tackled using a stochastic dual subgra-

dient method [36]–[38]. To maximize , the Lagrange
multipliers are updated using the projected subgradient itera-
tions for some step size , as

(10a)

(10b)

(10c)

where the vector is a subgradient of
evaluated at the previous iterate .

The entries of the subgradient vector, denoted by , can be
found as

(11a)
(11b)
(11c)

for all , where are the minimizers of the problem in
(7) for . Note that the Lagrange multipliers
are updated at every control interval.
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TABLE I
ERGODIC ENERGY MANAGEMENT ALGORITHM

Fig. 1. Bus is connected to its unique parent via line .

Table I summarizes the EEM algorithm. Operational limits
as well as the step size are set in Step 1, and Lagrange multi-
pliers are initialized to zero in Step 2. The EEM then iterates be-
tween four steps. In Step 4, the utility collects predictions for the
random variables involved. In the absence of more elaborate op-
tions, the most recently observed or metered values can be used
as predictions for the upcoming control period of interest. Step
5 finds the optimal primal variables by solving (7) evaluated at
the current value of the Lagrange multipliers. Step 6 updates the
Lagrange multipliers via the dual subgradient rule of (10). The
calculated setpoints are finally communicated to the
DGs, and applied to the grid in Step 7. It is worth stressing that
the proposed EEM scheme does not require any distributional
knowledge on the input data . Moreover,
although the focus is on utility cost minimization, other energy
management tasks such as voltage regulation and conservation
voltage reduction, could be cast under this framework.
As far as convergence is concerned, note first that

all primal and dual iterates depend on the realizations
, and are thus random. For that reason,

convergence claims are in probability. Using the definition
of , it is easy to show that there exists a finite such that

for all , i.e., the subgra-
dient is bounded at all times. In particular, it holds that

, while and are both upper bounded
by . Thus, the bound can be selected as

(12)

Adopting ([37], Theorem 1), the following result characterizes
the almost sure feasibility and optimality of the EEM algorithm.

Proposition 1 ([37]): For the sequences generated
by the algorithm in Table I, the next hold with probability 1 for
all

(13a)

(13b)

Furthermore, the incurred operational costs satisfy

almost surely for as in (12).
The proof of Proposition 1 can be found in [37]. Proposition

1 asserts that the ensembles of primal sequences are
feasible almost surely, meaning that constraints (5f) and (5g)
are satisfied almost surely. Moreover, the ergodic limit of the
objective is at most away from the optimal [cf. (5)].
The aforementioned claims hold even if the stochastic processes
involved are correlated across time [37]. Although stochastic
processes have been assumed to be ergodic for the theoretical
claims to hold, the numerical tests in Section VI using real data
show the efficacy of the scheme even with non-ergodic data.
The EEM problem in (5) and its stochastic approximation

solver of Table I involve the power losses and the
squared voltage magnitudes . So far, both quan-
tities have been expressed as functions of the control variables

. In that respect, the EEM scheme constitutes a gen-
eral framework where different power system models can be as-
sumed. To implement Step 5 in the algorithm of Table I, the ac-
tual forms of and need to be spec-
ified. As a turnkey application of EEM, the ensuing section fo-
cuses on radial single-phase distribution grids using two power
flow models with different accuracy-complexity trade-offs.

V. GRID MODELING AND ALGORITHMS

This section specifies functions and
using an exact full AC grid model and its

linear approximation. Both cases are then integrated into the
EEM algorithm. Selecting between the two models relies on
the computational capabilities that can be afforded. The AC
model-based EEM can be formulated as an SOCP, whereas
the linear model yields a linearly constrained quadratic
program. Therefore, the latter option offers an approximate yet
computationally less demanding alternative to the former.

A. Branch Flow Model-Based EEM
Due to the radial structure of distribution grids, every non-

root bus has a unique parent bus, which will be denoted
by . The directed edge corresponding to the
distribution line feeding bus will be indexed by ; see Fig. 1.
Without loss of generality, buses can be indexed such that
for all .
Let be the line impedance of line , and

the squared current magnitude on line at time . If
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is the complex power flow on line seen at the sending end bus
at time , the grid can be described by the branch-flowmodel

[39]

(14a)

(14b)

(14c)

(14d)

for all , where is the set of the children nodes of
bus . The power injections at the substation bus are

, and its squared voltage mag-
nitude is controlled at a desirable value. Similar to ,
the vectors , and , collect the entries of

, and , accordingly.
Equations (14a)-(14c) are linear with respect to the system

variables . The equations in (14d) are
quadratic yielding a non-convex feasible set. Nonetheless, the
latter equations have been recently relaxed to convex inequali-
ties described by the hyperbolic constraints [14]

(15)

which can be equivalently expressed as the convex second-order
cone constraints

(16)

Equations (14a)-(14c) and (16) represent now a convex fea-
sible set. Recent works suggest using this relaxed feasible set
to perform several grid optimization tasks. Under different con-
ditions, the relaxation has been shown to be exact, i.e., the ob-
tained minimizer attains (16) with equality; see [11] and ref-
erences therein. Henceforth, all SOCP relaxations are assumed
exact, which will be numerically verified in Section VI.
Based on (14a)-(14c) and (16), the active power injection at

the substation bus can be expressed as

where the second summand represents the total power losses on
distribution lines. Hence, under the aforementioned relaxed grid
model, the primal update (Step 5 in Table I) entails solving the
optimization problem

(17)

In addition to the original variables , the primal up-
date now involves the variables too. Problem
(17) can be reformulated to an SOCP. All instances of (17)
solved in Section VI were exact. Nevertheless, solving (17)
could be computationally demanding for large-scale distribu-
tion grids. This motivates our next instantiation of the EEM al-
gorithm under an approximate grid model.

B. Linear Distribution Flow-Based EEM
The linear distribution flow model can be derived as follows.

Because the line parameters have relatively
small entries, the last summands in (14a)-(14c) can be ignored
yielding the linear equations for all [39]

(18a)

(18b)

(18c)

In this way, squared voltage magnitudes are now approximated
as linear functions of . Assuming squared voltage mag-
nitudes to be close to 1 p.u., squared line current magnitudes are
approximated as [39]

(19)

Therefore, the active power injection at the substation bus can
be thus approximated by

Building on the approximate model of (18)-(19), the primal
update of the EEM algorithm (Step 5 of Table I) for period
entails solving the problem

(20)

From (18a)-(18b), the line flow variables can be sub-
stituted as linear functions of . Hence, problem (20) can
be solved as a linearly constrained quadratic program.

VI. NUMERICAL TESTS
The novel schemes were numerically tested on a 56-bus dis-

tribution grid from Southern California Edison (SCE) and the
IEEE 123-bus feeder [11], [40]. Line and bus data for the SCE
grid are listed in Tables II and III, accordingly, while a power
factor of 0.8 is assumed for all loads; see [11] for details. The
capacity of the PVs installed on buses 19 and 45 was set to 6
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TABLE II
LINE DATA FOR THE 56-BUS DISTRIBUTION FEEDER [11]

TABLE III
BUS DATA FOR THE 56-BUS DISTRIBUTION FEEDER [11]

MW. At each 30-sec control period, the EEM controller col-
lects power demands from load buses and solar generation pre-
dictions from PV units. Subsequently, active and reactive power
injections by PV inverters are determined by: i) solving the de-
terministic energy management (DEM) scheme in (4); and ii)
the novel EEM algorithm of Table I that is initialized to zero.
The margins for squared voltage magnitudes are set as

p.u. and
p.u., with nominal voltage p.u. The apparent power
capability for smart inverters is set to 1.3 times the nameplate
capacity of the associated PV. Performance is evaluated in
terms of the energy management cost and the instantaneous
counterpart of the cost in (5). All algorithms were implemented
using MATLAB and CVX on an Intel CPU @ 3.4 GHz (32 GB

Fig. 2. Energy management cost using the AC model on synthetic data (
for EEM).

RAM) computer [41]. Every run for the full AC and the linear
approximation model-based algorithms on the 56-bus grid was
completed in 1.5 and 1.3 seconds, respectively. The related
times for the IEEE 123-bus feeder increased to 4.5 and 3
seconds, respectively. It is worth mentioning that all SOCP re-
laxations encountered in the ensuing experiments were feasible
and exact.
To verify the almost sure optimality, the first experiment on

the 56-bus grid simulates synthetic load consumption and solar
generation as and , respectively. The
nominal values and are set to 40% of the peak demand
values and 80% of the maximum PV generation, accordingly.
Vectors and capture fluctuations modeled as independent
zero-mean Gaussian vectors with standard deviations equal to
5% of the corresponding nominal values. Given that current FIT
prices change on a monthly basis and are oftentimes half of con-
sumption prices [23], prices were set to ¢ kWh and

¢ kWh for all .
Using the branch flow model, Fig. 2 depicts the energy man-

agement cost for the deterministic and the ergodic energy man-
agement schemes over a single realization of 120 control pe-
riods. The step size for the ergodic scheme is set to ,
while the time-average energy management cost per time slot
is defined as .
The actual total operational cost over an hour is for the
DEM and for the EEM scheme.
The second test studies the effect of the step size on the con-

vergence of EEM. The AC-based EEM scheme was simulated
for along with the DEM scheme. Twenty
Monte Carlo system realizations over 60 control periods were
averaged for each step size value, while the corresponding av-
erage energy management cost is plotted in Fig. 3. The curves
demonstrate that larger step sizes incur higher energy manage-
ment costs, an observation that agrees with the optimality gap
of Proposition 1.
To test the proposed schemes in real-world conditions, the en-

suing two experiments entail real data from the Smart project
[2]. Consumption data involved the electricity usage at minute-
level samples from 443 homes on April 2, 2011; and the power



4772 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 31, NO. 6, NOVEMBER 2016

Fig. 3. Energy management cost averaged over 20 independent realizations
using the AC model.

Fig. 4. Energy management cost using the AC and the linear distribution flow
(LDF) models on real load and solar generation data [2].

output of 3 residential PVs collected at 5-second intervals over
August 12, 2011. Data were preprocessed as follows. Consump-
tion data were first linearly interpolated to yield 30-sec loads,
and then averaged over every 10 homes to better resemble bus
loads. Daily load curves were subsequently normalized to a
maximum value of one, and mapped to different buses [11].
Normalized daily load curves were multiplied with the nominal
load value per bus. Concerning PVs, 5-sec data were aggregated
to 30-sec data. Daily generation data were likewise scaled to
match rated capacities.
A single system realization was simulated over the 600 30-sec

control periods during 9:30 am–2:30 pm for both the AC- and
the approximate model-based schemes. Fig. 4 presents the cost
for . Using either the AC or the linear approximation
model, the novel EEM scheme achieves a lower cost than the
DEM one.
Fig. 5 depicts the evolution of the squared voltage magni-

tude for bus 45, and the evolution of the dual variable for
the tight voltage margin constraint in (5g). The voltage mag-
nitude for the deterministic scheme remains in the tight region

throughout the operation horizon.

Fig. 5. Voltage magnitude for bus 45 and the associated dual variable
using the AC model-based schemes.

The voltage magnitude obtained from the stochastic scheme lies
occasionally beyond the voltage margin . Nonethe-
less, over-voltage effects have short duration. At around 10:25
am, when the voltage magnitude violates the tight voltage con-
straint for the first time, the dual variable becomes positive and
starts increasing. As long as the voltage magnitude fluctuates
above the tight margin, the dual variable keeps increasing. After
roughly 12:20 pm, the voltage magnitude drops and remains
consistently below the upper margin, while the dual variable de-
creases and eventually becomes zero for the rest of the day.
To get a grid-level view of voltage regulation and active

power curtailment, the top panel of Fig. 6 shows the grid-av-
eraged voltage magnitude obtained via the DEM and EEM
schemes, as well as without any control. Under no control,
voltage magnitudes consistently exceed regulation margins.
Moreover, the EEM scheme yields slightly higher voltage pro-
file than DEM in exchange for lower operational cost. Similarly,
the bottom panel of Fig. 6 shows the grid-wise solar generation
curtailment incurred by DEM and EEM. Apparently, the DEM
scheme curtails more active power than the EEM scheme.
The last test involved the IEEE 123-bus feeder shown in

Fig. 7 [40]. The original multiphase system was heuristically
modified to a single-phase one as described in [11]: Loads
were split uniformly over all phases. Line self-impedances
were averaged over phases, while mutual impedances were
neglected. Closed switches were modeled as short circuits
and open switches were ignored. Distributed loads were
replaced by two identical spot loads at the two line ends.
Transformers were modeled as lines with given impedances,
and tap ratios for all voltage regulators were fixed to 1.08.
A single PV with nameplate rating of 1.2 MW is installed at
bus 114, which corresponds to PV penetration of about 100%.
With p.u., voltage regulation bounds are chosen as

p.u. and
p.u., while inverters can be overloaded by 110% their name-
plate rating. The linearized model was adopted, and real data
for solar generation and home loads were utilized. Each time
period , the prices were set to ¢ kWh and ¢
kWh. Fig. 8 presents the cost over 600 30-sec control slots
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Fig. 6. Top: Grid-averaged voltage magnitude using the AC model-based
schemes. Bottom: Total active power curtailment over 9:30 am–2:30 pm.

Fig. 7. Schematic diagram of the IEEE 123-bus test system with a PV [40].

during 9:30 am–2:30 pm for the two schemes. The step size was
set to . The total operational cost over the simulation
period amounts to for EEM and for DEM,
thus demonstrating the superiority of the ergodic approach in
the IEEE 123-bus feeder.

Fig. 8. Energy management cost evaluated on the IEEE 123-bus test system
using the linearized model on real load and solar generation data.

VII. CONCLUDING REMARKS

This paper introduced an EEM framework. Smart inverters
are engaged in active power curtailment and reactive power
support in a stochastic sense. A stochastic dual subgradient
scheme enforces tighter operational margins at all times, yet
letting system characteristics deviate over short time intervals.
The developed algorithms are guaranteed to converge to the
optimal operational point, while the feasibility is satisfied
almost surely. Numerical tests using a full AC grid model
and its linear approximation on a 56-bus grid and the IEEE
123-bus feeder demonstrated the viability of the approach. In
particular, the grid was operated within the regulated margins
at all times, while local variables could fluctuate over looser
ranges during extreme conditions. The suggested flexible grid
operation brings up several interesting questions. Enforcing
probabilistic rather than average constraints is worth investi-
gating. Decentralized and localized implementations are timely
and pertinent. Integrating utility-owned voltage regulating
equipment to develop coordinative control schemes constitutes
an interesting and challenging future research direction.
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