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Abstract—In today’s cyber-enabled smart grids, high penetra-
tion of uncertain renewables, purposeful manipulation of meter
readings, and the need for wide-area situational awareness, call
for fast, accurate, and robust power system state estimation. The
least-absolute-value (LAV) estimator is known for its robustness
relative to the weighted least-squares one. However, due to non-
convexity and nonsmoothness, existing LAV solvers based on
linear programming are typically slow and, hence, inadequate
for real-time system monitoring. This paper, develops two novel
algorithms for efficient LAV estimation, which draw from recent
advances in composite optimization. The first is a determinis-
tic linear proximal scheme that handles a sequence of (5 ∼ 10
in general) convex quadratic problems, each efficiently solvable
either via off-the-shelf toolboxes or through the alternating direc-
tion method of multipliers. Leveraging the sparse connectivity
inherent to power networks, the second scheme is stochastic and
updates only a few entries of the complex voltage state vector per
iteration. In particular, when voltage magnitude and (re)active
power flow measurements are used only, this number reduces to
one or two regardless of the number of buses in the network.
This computational complexity evidently scales well to large-
size power systems. Furthermore, by carefully mini-batching the
voltage and power flow measurements, accelerated implementa-
tion of the stochastic iterations becomes possible. The developed
algorithms are numerically evaluated using a variety of bench-
mark power networks. Simulated tests corroborate that improved
robustness can be attained at comparable or markedly reduced
computation times for medium- or large-size networks relative
to existing alternatives.

Index Terms—SCADA measurements, nonlinear AC estima-
tion, cyberattacks, alternating direction method of multipliers,
prox-linear algorithms.
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I. INTRODUCTION

THE NORTH American electric grid, the largest machine
on earth, is recognized as the greatest engineering

achievement of the 20th century [1]: thousands of miles of
transmission lines and millions of miles of distribution lines,
linking thousands of power plants to millions of factories and
homes. Accurately monitoring the grid’s operating condition
is critical to several control and optimization tasks, including
optimal power flow, reliability analysis, attack detection, and
future network expansion planning [2], [3].

To enable grid-wide monitoring, power system engineers
in the 1960s pursued voltages at a few critical buses based
on readings collected from current and potential transformers.
But the power flow equations were never feasible due to timing
and modeling inaccuracies. In a seminal work [4], the statis-
tical foundation was laid for power system state estimation
(PSSE), whose central task is to obtain the voltage magnitude
and angle information at all buses given the network param-
eters and measurements acquired from across the grid. Since
then, there have been numerous PSSE contributions; see for
example, [3] for a recent review of PSSE advances, some of
which are outlined below.

Power grids are primarily monitored by supervisory control
and data acquisition (SCADA) systems. Parameter uncertainty,
instrument mis-calibration, and unmonitored topology changes
can however, yield grossly corrupted SCADA measurements
(a.k.a. ‘bad data’) [5]. Designed for functionality and effi-
ciency with little attention paid to security, today’s SCADA
systems are vulnerable to cyberattacks [6]. Bad data also come
in the form of purposeful manipulation of smart meter read-
ings, as asserted by the first hacker-caused power outage: the
2015 Ukraine blackout [7]. Any of these events can happen
which will cause a given data collection to be much more
inaccurate than is assumed by popular mathematical models.
Efficient robust PSSE approaches against cyber threats are thus
well motivated in the smart grid context [8].

Commonly used PSSE criteria include the weighted least-
squares (WLS) and the least-absolute value (LAV) [9]. Other
enhanced estimators for robustness consist of the Schweppe-
Huber generalized M-estimator [10], as well as the least-
median and the least-trimmed squares state estimators [11].
The WLS criterion would coincide with the maximum likeli-
hood criterion when additive white Gaussian noise is assumed.
Unfortunately, WLS comes with a number of limitations. First,
obtaining the WLS estimate based on SCADA measurements
amounts to minimizing a nonconvex quartic polynomial. As
a result, the quality of the resultant iterative estimators relies
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heavily on the initialization (see justifications in [12] and [13]).
Furthermore, the convergence of Gauss-Newton iterations for
nonconvex objectives is hardly guaranteed in general [14].
As least as important, WLS estimators are sensitive to bad
data [5]. They may yield very poor estimates in the pres-
ence of outliers. These issues were somewhat mitigated by
incorporating the largest normalized residual (LNR) test for
bad data removal [5], or, via reformulating the (possibly reg-
ularized) WLS into a semidefinite program (SDP) via convex
relaxation [15], [16]. The former alternates between the LNR
test and the estimation, while the latter solves SDPs. The least-
median-squares and the least-trimmed-squares estimators have
provably improved performance under certain conditions [11].
Unfortunately, their computational complexities and storage
requirements scale unfavorably with the number of buses in
the network [3].

On the other hand, LAV estimators simultaneously identify
and reject bad data while acquiring an accurate estimate of
the state [17]. Recent research efforts have focused on dealing
with the nonconvexity and nonsmoothness in LAV estimation.
Upon linearizing the nonlinear measurement functions at the
most recent iterate, a series of linear programs was solved [17].
Techniques for improving the linear programming by exploit-
ing the system’s structure [18], or via iterative reweighting [19]
have also been reported. LAV estimation based only on PMU
data was studied [20], [21], in which a strategic scaling
was suggested to eliminate the effect of leverage measure-
ments [10], [11]. Despite these efforts, LAV estimators have
not been widely employed yet in today’s power networks due
mostly to their computational inefficiency [20].

The LAV-based PSSE is revisited in this work from the
viewpoint of composite optimization [22], [23], which consid-
ers minimizing functions f (v) = h(c(v)) that are compositions
of a convex function h, and a smooth vector function c. Two
novel proximal linear (prox-linear) procedures are developed
based upon minimizing a sequence of convex quadratic
subproblems. The first deterministic LAV solver minimizes
functions constructed from a linearized approximation to the
original objective and a quadratic regularization, each effi-
ciently implementable using either off-the-shelf solvers, or,
the alternating direction method of multipliers (ADMM). The
convergence of such deterministic prox-linear algorithms has
been documented [23], [24].

The second LAV solver builds on a stochastic prox-linear
algorithm, and has each iteration minimizing the summation
of a linearized approximation to the LAV loss of a single mea-
surement and the regularization term [25], [26]. Interestingly,
each iteration of the stochastic LAV solver has a closed-form
update. Thanks to the sparse connectivity inherent to power
networks, this amounts to updating very few entries of the state
vector. Moreover, even faster implementation of the stochastic
solver is realized by means of judiciously mini-batching the
measurements.

Bad leverage points may challenge, but the proposed
prox-linear algorithms can be generalized to accommodate
robust estimation formulations including the Huber estimation,
Huber M-estimation, and the Schweppe-Huber generalized M-
estimation [10], [11], [27]–[30]. The novel algorithms were

numerically tested using the IEEE 14-, 118-bus, and the
PEGASE 9, 241-bus benchmark networks. Simulations cor-
roborate their merits relative to the WLS-based Gauss-Newton
iterations.

Outline. Grid modeling and problem formulation are given
in Section II. Upon reviewing the basics of composite
optimization, Section III presents the deterministic LAV solver,
followed by its stochastic alternative in Section IV. Extensive
numerical tests are presented in Section V, while the paper is
concluded in Section VI.

Notation: Matrices (column vectors) are denoted by upper-
(lower-) case boldface letters. Symbols (·)T and (·)H repre-
sent (Hermitian) transpose, and (·) complex conjugate. Sets are
denoted using calligraphic letters. Symbol �(·) (�(·)) takes the
real (imaginary) part of a complex number. Operator dg(xi)

defines a diagonal matrix holding entries of xi on its diagonal,
while [xi]1≤i≤N returns a matrix with xHi being its i-th row.

II. GRID MODELING AND PROBLEM FORMULATION

An electric grid having N buses and L lines is modeled
as a graph G = (N , E), whose nodes N := {1, 2, . . . , N}
correspond to buses and whose edges E := {(n, n′)} ⊆
N × N correspond to lines. The complex voltage per bus
n ∈ N is expressed in rectangular coordinates as vn =
�(vn) + j�(vn), with all nodal voltages forming the vector
v := [v1 · · · vN]H ∈ C

N .
The voltage magnitude square Vn := |vn|2 = �2(vn) +

�2(vn) can be compactly expressed as a quadratic function
of v, namely

Vn = vHHV
n v, with HV

n := eneTn (1)

where en denotes the n-th canonical vector in R
N . To express

power injections as functions of v, introduce the so-termed
bus admittance matrix Y = G + jB ∈ C

N [2]. In rectangular
coordinates, the active and reactive power injections pn and
qn at bus n are given by

pn = �(vn)

N∑

n′=1

[�(vn′)Gnn′ − �(vn)Bnn′]

+ �(vn)

N∑

n′=1

[�(vn′)Gnn′ + �(vn′)Bnn′] (2)

qn = �(vn)

N∑

n′=1

[�(vn′)Gnn′ − �(vn)Bnn′ ]

− �(vn)

N∑

n′=1

[�(vn′)Gnn′ + �(vn′)Bnn′ ] (3)

which admits a compact representation as

pn = vHHp
nv, with Hp

n := YHeneTn + eneTn Y
2

(4a)

qn = vHHq
nv, with Hq

n := YHeneTn − eneTn Y
2j

. (4b)

Recognize that the line current from bus n to n′ at the ‘from’
end obeys Inn′ = eTnn′ if = eTnn′Yf v, where if ∈ C

|E | collects
all line currents, and Yf ∈ C

|E |×N relates the bus voltages
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to all line currents at the ‘from’ (sending) end. Ohm’s and
Kirchhoff’s laws assert that the ‘from-end’ power flow over
line (n, n′) can be expressed as S

f
nn′ = Pf

nn′ − jQf
nn′ = vnifnn′ =

(vHen)(eTnn′ if ) = vHeneTnn′Yf v, yielding

Pf
nn′ = vHHP

nn′v, with HP
nn′ := YH

f enn′eTn + eneTnn′Yf

2
(5a)

Qf
nn′ = vHHQ

nn′v, with HQ
nn′ := YH

f enn′eTn − eneTnn′Yf

2j
.

(5b)

The active and reactive power flows measured at the ‘to’
(receiving) ends Pt

nn′ and Qt
nn′ can be written symmetrically

to Pf
nn′ and Qf

nn′ ; and hence, they are omitted here for brevity.
Given line parameters collected in Y and Yf , all SCADA

measurements including squared voltage magnitudes as well as
active and reactive power injections and flows can be expressed
as quadratic functions of the voltages v ∈ C

N . This justifies
why v is referred to as the system state. If SV , Sp, Sq, S f

P,
S f

Q, S t
P, and S t

Q signify the smart meter locations of the cor-
responding type, we have available the following (possibly
noisy or even corrupted) measurements: {V̌n}n∈SV , {p̌n}n∈Sp ,

{q̌n}n∈Sq , {P̌f
nn′ }(n,n′)∈S f

P
, {Q̌f

nn′ }(n,n′)∈S f
Q

, {P̌t
nn′ }(n,n′)∈S t

P
, and

{Q̌t
nn′ }(n,n′)∈S t

Q
, henceforth concatenated in the vector z ∈ R

M ,
where M denotes the total number of measurements.

In this paper, the following corruption model is con-
sidered [31]: If {ξi} ⊆ R models an arbitrary attack (or
outlier) sequence, given the measurement matrices {Hm}M

m=1
in (1)-(5a), we observe for 1 ≤ m ≤ M the samples

zm ≈
{

vHHmv if m ∈ Inom

ξm if m ∈ Iout (6)

where additive measurement noise can be included if ≈ is
replaced by equality, and Inom, Iout ⊆ {1, 2, . . . , M} collect
the indices of nominal data and outliers, respectively. In other
words, Iout is the set of meter indices that can be compro-
mised. The indices in Iout are assumed chosen randomly from
{1, 2, . . . , M}. Instrument failures occur at random, although
the attack sequence {ξm} may rely on {Hm} (even adversar-
ially). Specifically, two models will be considered for the
attacks.
M1 Matrices {Hm}M

m=1 are independent of {ξm}M
m=1.

M2 Nominal measurement matrices {Hm}m∈Inom are inde-
pendent of {ξm}m∈Iout .

It is worth highlighting that M1 requires full independence
between the corruption and measurements. That is, the attacker
may only corrupt ξm without knowing Hm. On the contrary,
M2 allows completely arbitrary dependence between ξm and
Hm for m ∈ Iout, which is natural as the type of corrup-
tion may also rely on the individual measurement Hm being
taken.

Having elaborated on the system and corruption models,
the PSSE problem can be stated as follows: Given matri-
ces Y, Yf , and the available measurements z ∈ R

M , with
entries as in (6) obeying M1 or M2, recover the voltage vector
v ∈ C

N . The first attempt may be seeking the WLS esti-
mate, or the ML one when assuming independent Gaussian

noise [4]. It is known however that the WLS criterion is
sensitive to outliers, and may yield very bad estimates even
if there are few grossly corrupted measurements [5]. As is
well documented in statistics and optimization, the �1-based
losses yield median-based estimators [32], and handle gross
errors in the measurements z in a relatively benign way.
Prompted by this, we will consider here minimizing the
�1 loss of the residuals, which leads to the so-called LAV
estimate [17]

minimize
v∈CN

f (v) := 1

M

M∑

m=1

∣∣∣vHHmv − zm

∣∣∣. (7)

Because of {vHHmv}M
m=1 and the absolute-value operation,

the LAV objective in (7) is nonsmooth, nonconvex, and not
even locally convex near the optima ±v∗. This is clear
from the real-valued scalar case f (v) = |v∗v − 1|, where
v ∈ R. A local analysis based on convexity and smooth-
ness is thus impossible, and f (v) is difficult to minimize. For
this reason, Gauss-Newton is not applicable to minimize (7).
Nevertheless, the criterion f (v) possesses several unique struc-
tural properties, which we exploit next to develop efficient
algorithms.

Remark 1: For an N-bus power system, most existing PSSE
approaches have relied on optimizing over (2N − 1) real vari-
ables, which consist of either the polar or the rectangular
components of the complex voltage phasors after excluding
the angle or the imaginary part of the reference bus that is
often set to 0. Nevertheless, when iterative algorithms are
used, working directly with the N-dimensional complex volt-
age vector has in general lower complexity and computational
burden than in the real case. This is due to the compact
quadratic representations of all SCADA quantities in complex
voltage phasors, namely the natural sparsity of quadratic mea-
surement matrices in the unknown complex voltage phasor
vector.

III. DETERMINISTIC PROX-LINEAR LAV SOLVER

In this section, we will develop a deterministic solver of (7).
To that end, let us start rewriting the objective in (7) as

minimize
v∈CN

f (v) := h(c(v)) (8)

the composition of a convex function h : R
M → R, and a

smooth vector function c : C
N → R

M , a structure that is
known to be amenable to efficient algorithms [22], [23]. It is
clear that this general form subsumes (7) as a special case, for
which we can take h(u) = (1/M)‖u‖1 and c(v) = [vHHmv −
zm]1≤m≤M . The compositional structure lends itself well to the
proximal linear (prox-linear) algorithm, which is a variant of
the Gauss-Newton iterations [22]. Specifically, define close to
a given v the local “linearization” of f as

fv(w) := h(c(v) + �(∇Hc(v)(w − v))) (9)

where ∇c(v) ∈ C
N×M denotes the Jacobian matrix of c at

v based on Wirtinger derivatives for functions of complex-
valued variables [33, Appendix]. In contrast to the nonconvex
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f (v), function fv(w) in (9) is convex in w, which is the key
behind the prox-linear method. Starting with some point v0,
which can be the flat-voltage profile point, namely the all-one
vector, construct the iteration

vt+1 := arg min
v∈CN

{
fvt(v) + 1

2μt
‖v − vt‖2

2

}
(10)

where μt > 0 is a stepsize that can be fixed in advance, or be
determined by a line search [23].

Evidently, the subproblem (10) to be solved at every
iteration of the prox-linear algorithm is convex, and can be
handled by off-the-shelf solvers such as CVX [34]. However,
these interior-point based solvers may not scale well when
{Hm} are large. For this reason, we derive next a more efficient
iterative procedure using ADMM iterations [35], [36].

When specifying f to be the LAV objective of (7), the
minimization in (10) becomes

vt+1 = arg min
v∈CN

‖�(At(v − vt)) − ct‖1 + 1

2
‖v − vt‖2

2 (11)

with coefficients given by

At :=
[
(2μt/M)vHt Hm

]

1≤m≤M
(12a)

ct :=
[
(μt/M)

(
zm − vHt Hmvt

)]

1≤m≤M
. (12b)

For brevity, let w := v − vt, and rewrite (11) equivalently as
a constrained optimization problem

minimize
u∈CM, w∈CN

‖�(u) − ct‖1 + 1

2
‖w‖2

2 (13a)

subject to Atw = u. (13b)

To decouple constraints and also facilitate the implementation
of ADMM, introduce an auxiliary copy ũ and w̃ for u and w
accordingly, and rewrite (13) into

minimize
ũ, w̃, u, w

∥∥�(
ũ
) − ct

∥∥
1 + 1

2

∥∥w̃
∥∥2

2 (14a)

subject to ũ = u, w̃ = w, Atw = u. (14b)

Letting λ ∈ C
N and ν ∈ C

M be the Lagrange multipliers
corresponding to the w- and u-consensus constraints, respec-
tively, the augmented Lagrangian after leaving out the last
equality in (14b) can be expressed as

L(w̃, ũ, w, u;λ, ν) := ∥∥�(ũ) − ct
∥∥

1 + 1

2

∥∥w̃
∥∥2

2

+ �
(
λH

(
w̃ − w

)) + �
(
νH

(
ũ − u

))

+ ρ

2

∥∥w̃ − w
∥∥2

2 + ρ

2

∥∥ũ − u
∥∥2

2 (15)

where ρ > 0 is a predefined step size. With k ∈ N denoting the
iteration index for solving (13), or equivalently (10), ADMM
cycles through the following recursions

w̃k+1 := arg min
w̃

{
1

2
‖w̃‖2

2 + ρ

2

∥∥∥w̃ − (wk − λk)

∥∥∥
2

2

}
(16a)

ũk+1 := arg min
ũ

{
1

2

∥∥�(
ũ
) − ct

∥∥
1 + ρ

2

∥∥∥ũ −
(

uk − νk
)∥∥∥

2

2

}

(16b)

{
wk+1, uk+1

}

:= arg min
w, u

∥∥∥w −
(

w̃k+1 + λk
)∥∥∥

2

2
+

∥∥∥u −
(

ũk+1 + νk
)∥∥∥

2

2

subject to Atw = u (16c)[
λk+1

νk+1

]
=

[
λk + (

w̃k+1 − wk+1
)

νk + (
ũk+1 − uk+1

)
]

(16d)

where all the dual variables have been scaled by the factor
ρ > 0 [35].

Interestingly enough, the solutions of (16a)-(16c) can be
provided in closed form, as we elaborate in the following two
propositions, whose proofs are deferred to the Appendix.

Proposition 1: The solutions of (16a) and (16b) are
respectively

w̃k+1 := ρ

1 + ρ

(
wk − λk

)
(17a)

ũk+1 := ct + S1/2ρ

(
�

(
uk − νk

)
− ct

)
+ i�

(
uk − νk

)

(17b)

where the shrinkage operator Sτ (x) : R
N × R+ → R

N is
Sτ (x) := sign(x)�max(|x|−τ1, 0), with � and |·| denoting the
entrywise multiplication and absolute operators, respectively,
and

sign(x) :=
{

x/|x|, x �= 0
0, x = 0

provides an entrywise definition of operator sign(x).
The constrained minimization of (16c) essentially projects

the pair (w̃k+1 + λk, ũk+1 + νk) onto the convex set specified
by the linear equality constraint, namely {(w, u) : Atw = u}.
Its solution is derived in a simple closed form next.

Proposition 2: Given b ∈ C
N and d ∈ C

M , the solution of

minimize
w∈CN , u∈CM

1

2
‖w − b‖2

2 + 1

2
‖u − d‖2

2

subject to Aw = u

is given as

w∗ :=
(

I + AHA
)−1(

b + AHd
)

(18a)

u∗ := Aw∗. (18b)

Using Proposition 2, the minimizer of (16c) is found as

wk+1 :=
(

I + AH
t At

)−1[
w̃k+1 + λk + AH

(
ũk+1 + νk

)]

(19a)

uk+1 := Awk+1. (19b)

The four updates in (16) are computationally simple except
for the matrix inversion of (19a), which nevertheless can be
cached once computed during the first iteration. In addition,
variables ũ0, λ0, and ν0 of ADMM can be initialized to zero.
Finally, the solution of (11) can be obtained as

vt+1 := vt + w∗ (20)

where w∗ is the converged w-iterate of the ADMM iterations
in (17), (19), and (16d).

The novel deterministic LAV solver based on ADMM is
summarized in Table I, in which the inner loop consisting
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TABLE I
DETERMINISTIC LAV SOLVER USING ADMM

of Steps 3-8 can be replaced with off-the-shelf solvers to
solve (11) for vt+1.

As far as performance is concerned, if h is L-Lipschitz and
∇c is β-Lipschitz, then taking a constant stepsize μ ≤ 1/(Lβ)

in (10) guarantees that [24]:
i) the proposed solver in Table I is a descent method; and,
ii) the iterate sequence {vt} converges to a stationary point

of the LAV objective in (7).
The computational burden of the ADMM based determin-

istic solver is dominated by the projection step of (19), which
incurs per-iteration computational complexity on the order
of O(MN2). This complexity can be afforded in small- or
medium-size PSSE tasks, but may not be efficient enough for
nowadays increasingly interconnected power networks. This
motivates our stochastic alternative of the ensuing section that
relies on very inexpensive iterations.

IV. STOCHASTIC PROX-LINEAR LAV SOLVER

Finding the minimizer of (11) exactly per iteration of the
deterministic LAV solver may be computationally expensive,
and can be intractable when the network size grows very
large. Considering the wide applicability of LAV estimation
as well as the increasing interconnection of microgrids, scal-
able online and stochastic approaches become of substantial
interest. In this section, a stochastic linear proximal algorithm
of [25] is adapted to our PSSE task, and enables the prox-linear
method to efficiently solve the LAV estimation problem at
scale. Advantages of the stochastic approaches over their deter-
ministic counterparts include oftentimes simple closed-form
updates as well as faster convergence to yield an (approx-
imately) optimal solution. Leveraging the sparsity structure
of the measurement matrices and judiciously grouping mea-
surements into small mini-batches can considerably speedup
implementation of the stochastic solver.

A. Stochastic LAV Solver

Instead of dealing with the quadratic subproblems in (11),
each iteration of the stochastic LAV solver samples a datum
mt ∈ {1, 2, . . . , M} uniformly at random from the total M of
measurements, and substitutes functions (h, c) by (hmt , cmt )

associated with the sampled datum in the local linearization

TABLE II
STOCHASTIC LAV SOLVER

of (9), hence also in (11), yielding

vt+1 := arg min
v∈CN

{∣∣∣�
(

aHmt
(v − vt)

)
− cmt

∣∣∣ + 1

2μt
‖v − vt‖2

2

}

(21)

where the coefficients are given by

amt := 2Hmt vt (22a)

cmt := zmt − vHt Hmt vt. (22b)

Different from iteratively seeking solutions of (11) based on
ADMM iterations, the minimization of (21) admits a simple
closed-form minimizer presented in the next result, which is
proved in the Appendix.

Proposition 3: Given a ∈ C
N and c ∈ R, the solution of

minimize
w∈CN

∣∣∣�
(

aHw
)

− c
∣∣∣ + 1

2τ
‖w‖2

2 (23)

is given by ŵ := projτ (c/‖a‖2
2) ·a, where the projection opera-

tor projτ (x) : R×R+ → R returns the real number in interval
[−τ, τ ] closest to any given x ∈ R.

Based on Proposition 3, the solution of (21) is given by

vt+1 := vt + projμt

(
cmt/‖amt‖2

2

)
· amt . (24)

Intuitively, measurements with a relatively small absolute
residual, namely |cmt | ≤ ‖amt‖2

2, are deemed ‘nominal,’ and vt

is updated with a step of cmt/‖amt‖2
2 along the current direction

of amt . On the other hand, the measurements of larger absolute
residuals are likely to be outliers, so vt is updated along its
direction amt by only a step of τt as opposed to cmt/‖amt‖2

2.
The proposed stochastic prox-linear LAV solver is listed

in Table II. For convergence, a diminishing stepsize sequence
{μt} is required. Specifically, we consider stepsizes that are
square summable but not summable; that is,

∞∑

t=0

μt = ∞, and
∞∑

t=0

μ2
t < ∞. (25)

For instance, one can choose μt = αt−β with appropriately
selected constants α > 0 and β ∈ (0.5, 1]. Then the sequence
{vt} converges to a stationary point of the LAV objective in
(7) almost surely [25, Th. 1].

In terms of computational complexity, it can be verified that
each Hm matrix corresponding to a square voltage magnitude
or (re)active power flow measurement [see (1) and (5)] has
exactly one or three nonzero entries, respectively. As such,
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Fig. 1. The IEEE 14-bus benchmark configuration.

if the available measurements include only these two types
of measurements, evaluating (amt , cmt ) as well as updating vt

per stochastic iteration requires just a small number (≤ 10) of
scalar multiplications and additions, therefore incurring per-
iteration complexity of O(1), which is independent of the
network size N. This complexity evidently scales favorably
to very large interconnected power networks. It is also worth
highlighting that only one or two entries of vt are updated
depending on whether a voltage or power flow measurement
is processed at each iteration. On the other hand, even if the
power injections are measured too, the number of scalar oper-
ations per iteration increases to the order of the number of
neighboring buses, which still remains much smaller than N
in most real-world networks.

Remark 2: PMU measurements can be easily accounted for
in (7). The developed prox-linear LAV schemes apply without
any algorithmic modification.

B. Accelerated Implementation Using Mini-Batches

Although it involves only simple closed-form updates, the
stochastic solver in Table II may require a large number of
iterations to converge for high-dimensional power networks.
Stochastic approaches based on mini-batches of measurements
have been recently popular in large-scale machine learning
tasks, because they offer a means of accelerating the stochastic
algorithms. Yet, the naive way of designing mini-batches by
grouping measurements randomly would yield a sequence of
quadratic programs as in (11) of the deterministic LAV solver,
which does not have closed-form solutions due to the �1 term.
The novelty here is to fully exploit the sparsity of Hm matrices
to group measurements into mini-batches in a way that closed-
form solutions of the resulting quadratic programs are possible.

Suppose that active and reactive power flows over all lines
and the square voltage magnitude at all buses are measured.
Since HV

n in (1) has exactly one nonzero entry at the (n, n)-th
position, the corresponding updating vector an in (22a) has
(at most) one nonzero entry at the n-th position. Updating
vt using (24) modifies the n-th position only. Hence, refin-
ing v using the N voltage measurements sequentially in N
stochastic iterations is equivalent to updating v using all N
measurements simultaneously in a single iteration. For power
flows, every Hm has three nonzero entries in two rows. For

TABLE III
MINI-BATCHING POWER FLOW MEASUREMENTS

instance, HP
nn′ has nonzero entries indexed by (n, n′), (n, n),

and (n′, n); and so does HQ
nn′ . Processing the active or reactive

power flow measurement over line (n, n′) amounts to updating
the n-th and n′-th entries of vt. Hence, so long as each of a
mini-batch of measurements does not share common indices
with the remaining ones, processing a mini-batch of such mea-
surements one after the other boils down to processing all
measurements simultaneously in one iteration.

For illustration, consider the IEEE 14-bus test system
depicted in Fig. 1 [37]. Consider a total of 54 measurements,
which include 14 square voltage magnitudes, as well as 20
‘from-end’ active and reactive power flows each. All volt-
age magnitudes can be grouped as a single mini-batch, or
into several mini-batches by any means. One way of mini-
batching each type of power flow measurements is suggested
in Table III, where 20 active (reactive) power flows yield 5
mini-batches of equal size. It can be easily verified that any
two measurements within a group (mini-batch) are measured
over two lines of non-overlapping indices.

Let the entire measurements be divided into B mini-batches
denoted by {Bb}B

b=1 ⊆ {1, 2, . . . , M}. If a mini-batch Bbt of
measurements is drawn uniformly at random from {Bb}B

b=1 at
iteration t, the accelerated implementation by means of mini-
batching, updates the state estimate according to [see (24)]

vt+1 := vt +
∑

m∈Bbt

projμt

(
cm/‖am‖2

2

)
· am (26)

which is in sharp contrast to that of using ADMM iterations to
deal with the quadratic subproblems (10) in the deterministic
LAV solver.

V. NUMERICAL TESTS

The proposed linear proximal LAV solvers were numeri-
cally tested in this section. Three power network benchmarks
including the IEEE 14-, 118-bus, and the PEGASE 9, 241-
bus systems were simulated, following the MATLAB-based
toolbox MATPOWER [37], [38].

The linear programming (LP) and the iteratively reweighted
least-squares (IRLS) based LAV estimators [17], [18], [39],
along with the ‘workhorse’ Gauss-Newton iterations for the
WLS-based PSSE [2] were adopted as baselines. It is worth
mentioning that the LP-based implementation can be regarded
as a special case of the deterministic prox-linear algorithm
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with a constant step size of ∞. To see this, per iteration, the
LP-based scheme [18] solves the minimization problem in (10)
but without the augmented majorization term 1

2μt
‖v − vt‖2

2,
or equivalently with μt = ∞. To be specific, the linear
program was formulated over 2N − 1 real variables consist-
ing of the real and imaginary parts of the unknown voltage
phasor vector, after excluding the imaginary part of the ref-
erence bus which was set 0. Per iteration, the resultant linear
program was solved by calling for the convex optimization
package CVX [34] together with its embedded interior-point
solver SeDuMi [40]. Given that there is no parameter in
the LP-based LAV estimator, although the time performance
may vary if different toolboxes are used for solving the
resultant linear programs, its convergence behavior in terms
of the number of iterations is independent of the toolbox
used. Furthermore, the Gauss-Newton iterations were imple-
mented by calling for the embedded state estimation function
‘doSE.m’ in MATPOWER.

Regarding the initialization, when all squared voltage mag-
nitudes are measured, the initial point is taken to be the voltage
magnitude vector, unless otherwise specified. Each simulated
scheme stops either when a maximum number 100 of iterations
are reached, or when the normalized distance between two
consecutive estimates becomes smaller than 10−10, namely
‖vt − vt−1‖2/

√
N ≤ 10−10. In order to fix the phase ambi-

guity, the phase generated at the reference bus was set to
0 in all tests. For numerical stability, and to eliminate the
effect of certain leverage measurements [20], the developed
solvers were implemented using the normalized data, namely
{( zm‖Hm‖2

, Hm‖Hm‖2
)}M

m=1. Although this work focused on fast and
scalable implementations of LAV estimators, certain enhanced
solvers that possess similar compositional structure as in
LAV (7) can also benefit from the developed composite
optimization algorithms. Those include, e.g., the (robustified)
Schweppe-Huber generalized M-estimator [10].

A. Noiseless Case

The first experiment simulates the noiseless data to eval-
uate the convergence and runtime of the novel algorithms
relative to the WLS-based Gauss-Newton iterations, as well
as the LP- and IRLS-based LAV solvers on the IEEE 14-
bus test system. The default voltage profile was employed.
Measurements including all (‘sending-end’) active and reac-
tive power flows, as well as all squared voltage magnitudes
were obtained from MATPOWER [38]. The ADMM-based
deterministic prox-linear solver in Table I was implemented
with stepsize μ = 200, where each quadratic subproblem was
solved using a maximum of 150 ADMM iterations with step-
size ρ = 100. It is worth mentioning that the deterministic
prox-linear solver can be also implemented using standard
convex programming approaches (by solving subproblem (10)
directly). It typically converges in a few (less than 10) itera-
tions yet at a higher computational complexity. The stochastic
algorithm in Table II used the diminishing stepsize 1/t0.8. The
accelerated scheme in (26) was implemented with stepsize
0.8 using a total of 11 mini-batches: 1 for all voltage magni-
tudes, and 5 of equal size for (sending-end) active and reactive

TABLE IV
COMPARISONS OF DIFFERENT STATE ESTIMATORS

Fig. 2. Convergence performance for the IEEE 14-bus system.

power flows, each grouped as in Table III. The normalized
root mean-square error (RMSE) ‖vt − v‖2/‖v‖2 was evalu-
ated at every Gauss-Newton iteration, per linear program, and
every M stochastic iterations of the stochastic and accelerated
schemes, where v is the true voltage profile, and vt denotes
the estimate obtained at the t iteration.

Figure 2 compares the normalized RMSE for the LP-, and
IRLS-based, deterministic, stochastic, and accelerated LAV
solvers with that of the WLS-based Gauss-Newton itera-
tions, whose corresponding runtime and number of iterations
to reach the stopping criterion are tabulated in Table IV.
Evidently, the deterministic scheme is the fastest in terms
of both the number of iterations and runtime, and converges
to a point of machine accuracy (i.e., 10−16) in 8 iterations.
The IRLS is also fast, but similar to the WLS-based Gauss-
Newton iterations, it requires inverting a matrix per iteration
which may discourage its use in large power systems. Even
though the time of solving each LP may vary across tool-
boxes, convergence of the LP-based scheme in terms of the
number of iterations will be the same. Evidently, solving a
LP of 2M constraints and 2N − 1 real variables is compu-
tationally more cumbersome and slower than performing M
(accelerated) stochastic LAV iterations, hence justifying the
fast convergence rate of the proposed LAV solvers.

The Gauss-Newton method terminated after six iterations,
but at a sub-optimal point of normalized RMSE 10−3 or
so. The accelerated implementation is comparable with the
stochastic LAV solver, and yields an accurate solution with
RMSE = 4.28 × 10−8 in time also comparable to the Gauss-
Newton iterations. The proposed LAV solvers are much faster
than the LP-based implementation.
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Fig. 3. Robustness to outliers for the IEEE 118-bus system.

B. Presence of Outliers

The second experiment was set to assess the robustness of
the novel deterministic and stochastic solvers to measurements
with outliers using the IEEE 118-bus benchmark network [37],
while the IRLS-based LAV implementation and the WLS-
based Gauss-Newton iterations were simulated as baselines.
The actual voltage magnitude (in p.u.) and angle (in radi-
ans) of each bus were uniformly distributed over [0.9, 1.1],
and over [−0.1π, 0.1π ]. To assess the PSSE performance
versus the measurement size, an additional type of measure-
ments was included in a deterministic manner, as described
next. All seven types of SCADA measurements were first enu-
merated as {|Vn|2, Pf

nk, Qf
nk, Pn, Qn, Pt

nk, Qt
nk}. Each x-axis

value in Fig. 3 signifies the number of ordered types of mea-
surements used in the experiment to yield the corresponding
normalized RMSEs, which are obtained by averaging over
100 independent realizations. For example, 5 implies that the
first 5 types of data (i.e., |Vn|2, Pf

nk, Qf
nk, Pn, Qn over all buses

and lines) were measured. Additive noise was independently
generated from Gaussian distributions having zero-mean and
standard deviation 0.004, 0.008, and 0.01 p.u. for the volt-
age magnitude, line flow, and power injection measurements,
respectively [18]. Ten percent of the measured data were
corrupted according to model M1, chosen randomly from
line flows and bus injections. The outlying data {ξm} were
drawn independently from a Laplacian distribution with zero-
mean and standard deviation 30. The subproblems (10) with
μ = 100 of the deterministic scheme were solved using a
maximum of 200 ADMM iterations with stepsize ρ = 100,
while the stochastic one was implemented with a diminishing
stepsize μt = 10/t0.9. It is evident from Fig. 3 that our prox-
linear LAV schemes are resilient to outlying measurements
under corruption model M1, yielding improved performance
relative to the IRLS estimator. Furthermore, IRLS works well
when the number of measurements grows large. Finally, the
ADMM-based prox-linear estimator requires the least num-
ber of iterations for convergence. It is followed by the IRLS
estimator, and then by the stochastic prox-linear estimator.

The third experiment tests the scalability and efficacy of the
stochastic iterations on a larger power network of 9, 241 buses

TABLE V
COMPARISONS OF THE GAUSS-NEWTON AND STOCHASTIC

LAV ESTIMATORS

available in MATPOWER [38]. The true voltage magnitude of
each bus was uniformly distributed over [0.95, 1.05], and its
angle over [−0.05π, 0.05π ]. The maximum number of itera-
tions for the Gauss-Newton method was set 10. All seven types
of SCADA data were measured with additive noise described
in the last experiment, 5% of which were compromised under
model M2. The corrupted data ξm := ṽHHmṽ relying on the
individual Hm were generated using ṽ ∈ R

N from the standard-
ized multivariate Gaussian distribution. In words, there were
a total of 18, 481 variables to be estimated, a total of 91, 919
measurements were obtained, 4, 595 of which were purpose-
fully manipulated by adversaries. Initialized with the flat
voltage profile point, the WLS-based Gauss-Newton iterations
yielded an estimate of RMSE 0.9846, whereas the stochastic
scheme in Table II with diminishing stepsize μt = 100/t0.8

attained an RMSE of 0.0412. The corresponding computa-
tional runtime of each scheme was reported in Table V.
Evidently, the stochastic LAV implementation is several times
faster than the WLS-based Gauss-Newton iterations.

Remark 3: Each Gauss-Newton iteration involves inverting
a (2N − 1) × (2N − 1) matrix, which incurs computational
complexity O((2N − 1)3). It is clear when the system size
N grows large, say N ≥ 10, 000, this cubic complexity of
Gauss-Newton iterations as well as the memory required may
easily become prohibitive for a desktop computer. On the con-
trary, the per-iteration complexity of the proposed stochastic
LAV scheme can be as low as O(1), which is clearly scal-
able, and well-tailored for PSSE tasks of large dimensions. It
is thus intuitive that in large-scale power systems, the proposed
stochastic iterations based LAV implementation is faster than
the Gauss-Newton iterations. The advantage of adopting inex-
pensive stochastic iterations to handle large-scale optimization
problems has been corroborated by the recent success of deep
learning for visual recognition and speech translation too,
where stochastic gradient based approaches (e.g., stochastic
gradient descent) constitute the ‘workhorse’ in training deep
neural networks [41].

VI. CONCLUSION

Robust power system state estimation was pursued using
contemporary tools of composite optimization. Building on
recent algorithmic advances, two solvers were put forward
to efficiently handle the LAV-based PSSE. Specifically, a
deterministic LAV method was developed based on a linear
proximal method, which yields a sequence of convex quadratic
subproblems that can be efficiently solved using off-the-shelf
solvers, or, through fast ADMM iterations. It converges as fast
as Gauss-Newton iterations, amounting to solving only 5 ∼ 10
quadratic programs in general. Inspired by the sparse connec-
tivity inherent to power networks, a highly scalable stochastic
scheme that can afford simple closed-form updates was also
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devised. When only line flows and voltage magnitudes are
measured, each stochastic iteration performs merely a few
complex scalar operations, incurring per-iteration complexity
O(1), regardless of the number of buses in the entire network.
If, on the other hand, the power injections are included as well,
this time complexity goes down to the order of the number of
neighboring buses, which still remains much smaller than the
network size in general. A mini-batching technique was sug-
gested to further accelerate the stochastic iterations by means
of leveraging the sparsity of measurement matrices. Numerical
tests on a variety of benchmark networks of up to 9, 241
buses showcase the robustness and computational efficiency
of the developed approaches relative to existing alternatives,
particularly over large-size networks.

Devising decentralized and parallel implementations of the
novel approaches constitutes interesting future research direc-
tions. Since the LAV estimator may yield non-robust estimates
in the presence of bad leverage points, and the measurement
scaling may not be able to effectively identify and elimi-
nate a certain type of leverage measurements, it is meaningful
and promising to generalize the presented deterministic and
stochastic proximal-linear based algorithmic tools to other
robustness-enhanced estimators such as the Schweppe-Huber
generalized M-estimator [10], [29], [30]. Coping with the
Y- and 	-connection, as well as investigating the technical
approaches in multiphase unbalanced distribution systems are
practically relevant future research topics too.

APPENDIX

Proof of Proposition 1: It is easy to check that the solu-
tion of (16a) is given by (17a), whose proof is thus omitted.
Considering any c ∈ R

N and d ∈ C
N , solving (16b) is

equivalent to solving

u∗ := arg min
u∈CN

λ‖�(u) − c‖1 + 1

2
‖u − d‖2

2. (27)

Upon defining x := u − c, problem (27) becomes

min
x∈CN

λ‖�(x)‖1 + 1

2
‖x − (d − c)‖2

2

or equivalently,

min
x

λ‖�(x)‖1 + 1

2
‖�(x) − �(d − c))‖2

2 + 1

2
‖�(x)

− �(d − c))‖2
2. (28)

Problem (28) can be decomposed into two subproblems that
correspond to optimizing over the real- and imaginary parts
of x = �(x) + j�(x) := xr + jxi; that is

min
xr∈RN

λ‖xr‖1 + 1

2
‖xr − �(d − c)‖2

2 (29)

and

min
xi∈RN

1

2
‖xi − �(d − c)‖2

2. (30)

The optimal solutions of the convex programs in (29)
and (30) can be found as, see [35]

x∗
r := Sλ(�(d − c)) = Sλ(�(d) − c)

x∗
i := �(d − c) = �(d)

thus yielding the optimal solution of (28) as

x∗ := x∗
r + jx∗

i = Sλ(�(d) − c) + j�(d).

Recalling u = x + c, the optimal solution of (27) is

u∗ = x∗ + c = c + Sλ(�(d) − c) + j�(d) (31)

which completes the proof.
Proof of Proposition 2: Letting χ denote the dual variable

associated with the constraint u = Aw, the KKT optimality
conditions are given by [35]

w∗ − b + AHχ∗ = 0

u∗ − d − χ∗ = 0

Aw∗ − u∗ = 0

or in the following compact form
⎡

⎣
IN 0 AH

0 IM −IM

A −IM 0

⎤

⎦

⎡

⎣
w∗
u∗
χ∗

⎤

⎦ =
⎡

⎣
b
d
0

⎤

⎦.

Eliminating the dual variable via χ∗ = u∗ − d from the
KKT system, yields

[
IN AH

A −IM

][
w∗
u∗

]
=

[
b + AHd

0

]
. (32)

By further eliminating d∗ and solving for b∗, the solution
to (32) and also to the minimization in (18) can be found in
two steps as

w∗ :=
(

I + AHA
)−1(

b + AHd
)

u∗ := Aw∗

which completes the proof of the claim.
Proof of Proposition 3: The optimality condition for (23) is

0 ∈ ∂
(∣∣∣�

(
aHw

)
− c

∣∣∣
)

+ 1

τ
w ⇐⇒ 0 ∈ ∂

∣∣∣�
(

aHw
)

− c
∣∣∣ · a

+ 1

τ
w

or equivalently,

0 ∈ ∂

∣∣∣�
(

aHw
)

− c
∣∣∣ · (τa) + w,

where ∂ denotes the subdifferential. Let us first examine the
case where �(aHw)− c �= 0. We thus have ∂|�(aHw)− c| =
sign(�(aHw) − c), which yields the optimum

w∗ = −τ sign
(
�

(
aHw

)
− c

)
· a.

Note that if c/‖a‖2
2 ≥ τ , or �(aHw∗) − c =

−τ‖a‖2
2 sign(aHw∗ −c)−c < 0, then w∗ = τa. Equivalently,

if c/‖a‖2
2 ≤ −τ , or �(aHw∗) − c = −τ‖a‖2

2 sign(aHw∗ −
c) − c > 0, then w∗ = −τa.

If �(aHw)−c = 0, the subdifferential of the absolute-value
operator belongs to the interval [−1, 1]; hence, the optimality
condition becomes

0 ∈ −[−1, 1] · (τa) + w ⇐⇒ w ∈ [−τ, τ ] a.
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Upon letting projτ (x) denote the projection of a real number
x onto the interval [−τ, τ ], one can combine the aforemen-
tioned three cases, and express compactly the optimum as
follows

w∗ := projτ
(

c/‖a‖2
2

)
· a

which concludes the proof of the proposition.
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