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Abstract—Modern distribution grids are currently being chal-
lenged by frequent and sizable voltage fluctuations, due mainly
to the increasing deployment of electric vehicles and renewable
generators. Existing approaches to maintaining bus voltage mag-
nitudes within the desired region can cope with either traditional
utility-owned devices (e.g., shunt capacitors), or contemporary
smart inverters that come with distributed generation units (e.g.,
photovoltaic plants). The discrete on-off commitment of capacitor
units is often configured on an hourly or daily basis, yet smart
inverters can be controlled within milliseconds, thus challenging
joint control of these two types of assets. In this context, a novel
two-timescale voltage regulation scheme is developed for distri-
bution grids by judiciously coupling data-driven with physics-
based optimization. On a faster timescale, say every second, the
optimal setpoints of smart inverters are obtained by minimizing
instantaneous bus voltage deviations from their nominal values,
based on either the exact alternating current power flow model or
a linear approximant of it; whereas, on the slower timescale (e.g.,
every hour), shunt capacitors are configured to minimize the long-
term discounted voltage deviations using a deep reinforcement
learning algorithm. Extensive numerical tests on a real-world 47-
bus distribution network as well as the IEEE 123-bus test feeder
using real data corroborate the effectiveness of the novel scheme.

Index terms— Two timescales, voltage control, inverters,
capacitors, deep reinforcement learning.

I. INTRODUCTION

Frequent and sizable voltage fluctuations caused by the
growing deployment of electric vehicles, demand response
programs, and renewable energy sources, challenge modern
distribution grids. Electric utilities are currently experiencing
major issues related to the unprecedented levels of load peaks
as well as renewable penetration. For instance, a solar farm
connected at the end of a long distribution feeder in a rural area
can cause voltage excursions along the feeder, while the appar-
ent power capability of a substation transformer is strained by
frequent reverse power flows. Moreover, over-voltage happens
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during midday when photovoltaic (PV) generation peaks and
load demand is relatively low; whereas voltage sags occur
mostly overnight due to low PV generation even when load
demand is high [1]. This motivates why voltage regulation, the
task of maintaining bus voltage magnitudes within desirable
ranges, is critical in modern distribution grids.

Early approaches to regulating the voltages at a residential
level have mainly relied on utility-owned devices, including
load-tap-changing transformers, voltage regulators, and capac-
itor banks, to name a few. They offer a convenient means of
controlling reactive power, through which the voltage profile
at their terminal buses as well as at other buses can be
regulated [2, p. 678]. Obtaining the optimal configuration for
these devices entails solving mixed-integer programs, which
are NP-hard in general. To optimize the tap positions, a semi-
definite relaxation heuristic was used in [3], [4]. Control rules
based on heuristics were developed in [5], [1]. However,
these approaches can be computationally demanding, and do
not guarantee optimal performance. A batch reinforcement
learning (RL) scheme based on linear function approximation
was lately advocated in [6].

Another characteristic inherent to utility-owned equipment
is their limited life cycle, which prompts control on a daily or
even monthly basis. Such configurations have been effective in
traditional distribution grids without (or with low) renewable
generation, and with slowly varying load. Yet, as distributed
generation grows in residential networks nowadays [7], [8],
rapid voltage fluctuations occur frequently. According to a
recent landmark bill, California mandated 50% of its electricity
to be powered by renewable resources by 2025 and 60% by
2030. The power generated by a solar panel can vary by
15% of its nameplate rating within one-minute intervals [9].
Voltage control would entail more frequent switching actions,
and further installation of control devices.

Smart power inverters on the other hand, come with con-
temporary distributed generation units, such as PV panels, and
wind turbines. Embedded with computing and communication
units, these can be commanded to adjust reactive power output
within seconds, and in a continuously-valued fashion. Indeed,
engaging smart inverters in reactive power control has recently
emerged as a promising solution [10]. Computing the optimal
setpoints for inverters’ reactive power output is an instance
of the optimal power flow task, which is non-convex [11].
To deal with the renewable uncertainty as well as other
communication issues (e.g., delay and packet loss), stochastic,
online, decentralized, and localized reactive control schemes
have been advocated [10], [12], [13], [9], [14], [15], [16].
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RL refers to a collection of tools for solving Markovian
decision processes (MDPs), especially when the underlying
transition mechanism is unknown [17]. In settings involv-
ing high-dimensional, continuous action and/or state spaces
however, it is well known that conventional RL approaches
suffer from the so-called ‘curse of dimensionality,’ which
limits their impact in practice [18]. Deep neural networks
(DNNs) can address the curse of dimensionality in the high-
dimensional and continuous state space by providing compact
low-dimensional representations of high-dimensional inputs
[19]. Wedding deep learning with RL (using a DNN to ap-
proximate the action-value function), deep (D) RL has offered
artificial agents with human-level performance across diverse
application domains [18], [20]. (D)RL algorithms have also
shown great potential in several challenging power systems
control and monitoring tasks [21], [22], [6], [23], [24], [25],
and load control [26], [27]. A batch RL scheme using linear
function approximation was developed for voltage regulation
in distribution systems [6]. For voltage control of transmission
networks, DRL was recently investigated to adjust generator
voltage setpoints [21]. A shortcoming of the mentioned (D)RL
voltage control schemes is their inability to cope with the curse
of dimensionality in action space. Moreover, joint control
of both utility-owned devices and emerging power inverters
has not been fully investigated. In addition, the discrete
variables describing the on-off operation of capacitors and
slow timescale associated with changing capacitor statuses,
compared with those of fast-responding inverters further chal-
lenges voltage regulation. As a consequence, current capacitor
decisions have a long-standing influence on future inverter
setpoints. The other way around, current inverter setpoints also
affect future commitment of capacitors through the aggregate
cost. Indeed, this two-way long-term interaction is difficult to
model and cope with.

In this context, voltage control is dealt with in the present
paper using shunt capacitors and smart inverters. Preliminary
results were presented in [28]. A novel two-timescale solution
combining first principles based on physical models and data-
driven advances is put forth. On the slow timescale (e.g.,
hourly or daily basis), the optimal configuration (correspond-
ing to the discrete on-off commitment) of capacitors is formu-
lated as a Markov decision process, by carefully defining state,
action, and cost according to the available control variables in
the grid. The solution of this MDP is approached by means of
a DRL algorithm. This framework leverages the merits of the
so-termed target network and experience replay, which can
remove the correlation among the sequence of observations,
to make the DRL stable and tractable. On the other hand, the
setpoints of the inverters’ reactive power output, are computed
by minimizing the instantaneous voltage deviation using the
exact or approximate grid models on the fast timescale (e.g.,
every few seconds).

Compared with past works, our contributions can be sum-
marized as follows.
c1) Joint control of two types of assets. A hybrid data- and

physics-driven approach to managing both utility-owned
equipment as well as smart inverters;

c2) Slow-timescale learning. Modeling demand and genera-

tion as Markovian processes, optimal capacitor settings
are learned from data using DRL;

c3) Fast-timescale optimization. Using exact or approximate
grid models, the optimal setpoints for inverters are found
relying on the most recent slow-timescale solution; and,

c4) Curse of dimensionality in action space. Introducing hy-
per deep Q-network to handle the curse of dimensionality
emerging due to large number of capacitors.

II. VOLTAGE CONTROL IN TWO TIMESCALES

In this section, we describe the system model, and formulate
the two-timescale voltage regulation problem.

A. System model

Consider a distribution grid of N + 1 buses rooted at the
substation bus indexed by i = 0, whose buses are collected
into N0 := {0}∪N , and lines into L := {1, . . . , N}. For all
i ∈ N (i.e., without substation bus), let vi denote their squared
voltage magnitude, and pi+ jqi their complex power injected.
For brevity, collect all nodal quantities into column vectors
vvv, ppp, qqq. Active power injection is split into its generation pgi
and consumption pci as pi := pgi −pci ; likewise, reactive power
injection is qi := qgi − qci . In distribution grids, it holds that
pgi = pci = qci = 0 and qgi > 0 if bus i has a capacitor; while
pgi = qgi = 0 if bus i is a purely load bus; and pci ≥ 0,
qci ≥ 0, pgi ≥ 0 if bus i is equipped with a DG. Let us
stack generation and consumption components into vectors
pppg , qqqg , pppc, and qqqc accordingly. Predictions of active power
consumption and solar generation (pppc, qqqc, pppg) can be obtained
through the hourly and real-time market (see e.g., [10]), or by
running load demand (solar generation) prediction algorithms
[29].

As mentioned earlier, there are two types of assets in mod-
ern distribution grids that can be engaged in reactive power
control; that is, utility-owned equipment featuring discrete
actions and limited lifespan, as well as smart inverters control-
lable within seconds and in a continuously-valued fashion. As
the aggregate load varies in a relatively slow way, traditional
devices have been sufficient for providing voltage support;
while fast-responding solutions using inverters become indis-
pensable with the increase of uncertain renewable penetration.
In this context, the present work focuses on voltage regulation
by capitalizing on the reactive control capabilities of both
capacitors and inverters, while our framework can also account
for other reactive power control devices. To this end, we divide
every day into NT̄ intervals indexed by τ = 1, . . . , NT̄ . Each
of these NT̄ intervals is further partitioned into NT time slots
which are indexed by t = 1, . . . , NT , as illustrated in Fig. 1.
To match the slow load variations, the on-off decisions of
capacitors are made (at the end of) every interval τ , which can
be chosen to be e.g., an hour; yet, to accommodate the rapidly
changing renewable generation, the inverter output is adjusted
(at the beginning of) every slot t, taken to be e.g., a minute. We
assume that quantities pppg(τ, t), pppc(τ, t), and qqqc(τ, t) remain the
same within each t-slot, but may change from slot t to t+ 1.

Suppose there are Na shunt capacitors installed in the grid,
whose bus indices are collected in Na, and are in one-to-one
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Fig. 1: Two-timescale partitioning of a day for joint capacitor
and inverter control.

correspondence with entries of K := {1, . . . , Na} (a simple
renumbering). Assume that every bus is equipped with either a
shunt capacitor or a smart inverter, but not both. The remaining
buses, after removing entries in Na from N , collected in Nr,
are assumed equipped with inverters. This assumption is made
without loss of generality as one can simply set the upper and
lower bounds on the reactive output to zero at buses having
no inverters installed.

As capacitor configuration is performed on a slow timescale
(every τ ), the reactive compensation qgi (τ, t) provided by
capacitor ki ∈ K (i.e., capacitor at bus i) is represented by

qgi (τ, t) = ŷki(τ)qga,ki , ∀i ∈ Na, τ, t (1)

where ŷki(τ) ∈ {0, 1} is the on-off commitment of capacitor
ki for the entire interval τ . Clearly, if ŷki(τ) = 1, a constant
amount (nameplate value) of reactive power qga,ki is injected
in the grid during this interval, and 0 otherwise. For conve-
nience, the on-off decisions of capacitor units at interval τ are
collected in a column vector ŷyy(τ).

On the other hand, the reactive power qgr,i(τ, t) generated
by inverter i is adjusted on the fast timescale (every t), and it
is constrained by |qgr,i(τ, t)| ≤

√
(s̄i)2 − (pgi (τ, t))

2, where s̄i
is the power capability of inverter i. Traditionally, inverter i is
designed as s̄i = p̄gi , where p̄gi is the active power capacity of
the renewable generation unit installed at bus i. However, when
maximum output is reached, i.e., pgi (τ, t) = p̄gi , no reactive
power can be provided. To address this, oversized inverters’
nameplate capacity has been advocated such that s̄i > p̄gi [10].
For instance, choosing s̄i = 1.08p̄gi and limiting qgr,i(τ, t) to√

(s̄i)2 − (p̄gi )
2 instead of

√
(s̄i)2 − (pgi (τ, t))

2, the reactive
power compensation provided by inverter i is |qgr,i(τ, t)| ≤
0.4p̄gi , regardless of the instantaneous PV output pgi (τ, t) [10].
As such, qgr,i(τ, t) generated by inverter i is constrained as

|qgr,i(τ, t)| ≤ q̄
g
i :=

√
(s̄i)2 − (p̄gi )

2, ∀i ∈ Nr, t. (2)

B. Two-timescale voltage regulation formulation

Given two-timescale load consumption and generation that
we model as Markovian processes [30], the task of voltage reg-
ulation is to find the optimal reactive power support per slot by
configuring capacitors in every interval and adjusting inverter
outputs in every slot, such that the long-term average voltage
deviation is minimized. As voltage magnitudes vvv(τ, t) depend
solely on the control variables qqqg(τ, t), they are expressed as
implicit functions of qqqg(τ, t), yielding vvvτ,t(qqq

g(τ, t)), whose

actual function forms for postulated grid models will be given
Section III. The novel two-timescale voltage control scheme
entails solving the following stochastic optimization problem

minimize
{qqqgr (τ,t)}

{yyy(τ)∈{0,1}Na}

E

[ ∞∑
τ=1

NT∑
t=1

γτ ‖vvvτ,t(qqqg(τ, t))− v0111‖2
]

(3a)

subject to qgi (τ, t) = ŷki(τ)qga,ki , ∀i ∈ Na, τ, t (3b)

qgi (τ, t) = qgr,i(τ, t), ∀i ∈ Nr, τ, t (3c)

|qgr,i(τ, t)| ≤ q̄
g
i , ∀i ∈ Nr, τ, t (3d)

for some discount factor γ ∈ (0, 1), where the expectation is
taken over the joint distribution of (pppc(τ, t), qqqc(τ, t), pppg(τ, t))
across all intervals and slots. Clearly, the optimization problem
(3) involves infinitely many variables {qqqgr(τ, t)} and {ŷyy(τ)},
which are coupled across time via the cost function and the
constraint (3b). Moreover, discrete variables ŷyy(τ) ∈ {0, 1}Na
render problem (3) nonconvex and generally NP-hard. Last
but not least, it is a multi-stage optimization, whose decisions
are not all made at the same stage, and must also account
for the power variability during real-time operation. In words,
tackling (3) exactly is challenging.

Instead, our goal is to design algorithms that sequentially
observe predictions {(pppc(τ, t), qqqc(τ, t)), qqqg(τ, t)}, and solve
near optimally problem (3). The assumption is that, although
no distributional knowledge of those stochastic processes
involved is given, their realizations can be made available
in real time, by means of e.g., accurate forecasting methods
[29]. In this sense, the physics governing the electric power
system will be utilized together with data to solve (3) in real
time. Specifically, on the slow timescale, say at the end of
each interval τ − 1, the optimal on-off capacitor decisions
yyy(τ) will be set through a DRL algorithm that can learn from
the predictions collected within the current interval τ − 1;
while, on the fast timescale, namely at the beginning of each
slot t within interval τ , our two-stage control scheme will
compute the optimal setpoints for inverters, by minimizing the
instantaneous bus voltage deviations while respecting physical
constraints, given the current on-off commitment of capacitor
units ŷyy(τ) found at the very end of interval (τ−1). These two
timescales are detailed in Sections III and IV, respectively.

III. FAST-TIMESCALE OPTIMIZATION OF INVERTERS

As alluded earlier, the actual forms of vvvτ,t(qqqg(τ, t)) will be
specified in this section, relying on the exact AC model or a
linearized approximant of it. Leveraging convex relaxation to
deal with the nonconvexity, the considered AC model yields
a second-order cone program (SOCP), whereas the linearized
one leads to a linearly constrained quadratic program. In con-
trast, the latter offers an approximate yet computationally more
affordable alternative to the former. Selecting between these
two models relies on affordable computational capabilities.

A. Branch flow model

Due to the radial structure of distribution grids, every non-
root bus i ∈ N has a unique parent bus termed πi. The two
are joined through the i-th distribution line represented by
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Fig. 2: Bus i is connected to its unique parent πi via line i.

(πi, i) ∈ L having impedance ri+jxi. Let Pi(τ, t)+jQi(τ, t)
stand for the complex power flowing from buses πi to i seen
at the ‘front’ end at time slot t of interval τ , as depicted in
Fig. 2. Throughout this section, the interval index τ will be
dropped when it is clear from the context.

With further `i denoting the squared current magnitude on
line i ∈ L, the celebrated branch flow model is described by
the following equations for all buses i ∈ N , and for all t
within every interval τ [31], [32]

pi(t) =
∑
j∈χi

Pj(t)− (Pi(t)− ri`i(t)) (4a)

qi(t) =
∑
j∈χi

Qj(t)− (Qi(t)− xi`i(t)) (4b)

vi(t) = vπi(t)− 2(riPi(t)+ xiQi(t))+ (r2
i + x2

i )`i(t) (4c)

`i(t) =
P 2
i (t) +Q2

i (t)

vπi(t)
(4d)

where we have ignored the dependence on τ for brevity, and
χi denotes the set of all children buses for bus i.

Clearly, the set of equations in (4d) is quadratic in Pi(t) and
Qi(t), yielding a nonconvex set. To address this challenge,
consider relaxing the equalities (4d) into inequalities (a.k.a.
hyperbolic relaxation, see e.g., [11])

P 2
i (t) +Q2

i (t) ≤ vπi(t)`i(t), ∀i ∈ N , t (5)

which can be equivalently rewritten as the following second-
order cone constraints∥∥∥∥∥∥

2Pi(t)
2Qi(t)

`i(t)− vπi(t)

∥∥∥∥∥∥ ≤ vπi(t) + `i(t), ∀i ∈ N . (6)

Equations (4a)-(4c) and (6) now define a convex feasible
set. The procedure of leveraging this relaxed set (instead
of the nonconvex one) is known as SOCP relaxation [32].
Interestingly, it has been shown that under certain conditions,
SOCP relaxation is exact in the sense that the set of inequalties
(6) holds with equalities at the optimum [33].

Given the capacitor configuration ŷyy(τ) found at the end of
the last interval τ − 1, under the aforementioned relaxed grid
model, the voltage regulation on the fast timescale based on
the exact AC model can be described as follows

minimize
vvv(t),qqqgr(t),PPP (t),QQQ(t)

‖vvv(t)− v0111‖2 (7a)

subject to (4a)− (4d)
qgi (t) = ŷki(τ)qga,ki , ∀i ∈ Na (7b)

qgi (t) = qgr,i(t), ∀i ∈ Nr (7c)

|qgr,i(t)| ≤ q̄
g
i , ∀i ∈ Nr (7d)

which is readily a convex SOCP and can be efficiently solved
by off-the-shelf convex programming toolboxes. The optimal
setpoints of smart inverters for the exact AC model are found
as the qgr -minimizer of (7).

However, solving SOCPs could be computationally demand-
ing when dealing with relatively large-scale distribution grids,
say of several hundred buses. Trading off modeling accuracy
for computational efficiency, our next instantiation of the fast-
timescale voltage control relies on an approximate grid model.

B. Linearized power flow model

As line current magnitudes {`i} are relatively small com-
pared to line flows, the last term in (4a)-(4c) can be ignored
yielding the next set of linear equations for all i, t [34]

pi(t) =
∑
j∈χi

Pj(t)− Pi(t) (8a)

qi(t) =
∑
j∈χi

Qj(t)−Qi(t) (8b)

vi(t) = vπi(t)− 2(riPi(t) + xiQi(t)) (8c)

which is known as the linearized distribution flow model.
In this fashion, all squared voltage magnitudes vvv(t) can be
expressed as linear functions of qqqg(t).

Adopting the approximate model (8), the optimal setpoints
of inverters can be found by solving the following optimization
problem per slot t in interval τ , provided ŷyy(τ) is available from
the last interval on the slow timescale

minimize
vvv(t),qqqgr(t),PPP (t),QQQ(t)

‖vvv(t)− v0111‖2 (9a)

subject to (8a)− (8c)
qgi (t) = ŷki(τ)qga,ki , ∀i ∈ Na (9b)

qgi (t) = qgr,i(t), ∀i ∈ Nr (9c)

|qgr,i(t)| ≤ q̄
g
i , ∀i ∈ Nr. (9d)

As all constraints are linear and the cost is quadratic, (9)
constitutes a standard convex quadratic program. As such, it
can be solved efficiently by e.g., primal-dual algorithms, or
off-the-shelf convex programming solvers, whose implemen-
tation details are skipped due to space limitations.

IV. SLOW-TIMESCALE CAPACITOR RECONFIGURATION

Here we deal with reconfiguration of shunt capacitors on
the slow timescale. This amounts to determining their on-
off status for the ensuing interval. Past approaches to solving
the resultant integer-valued optimization were heuristic, or,
relied on semidefinite programming relaxation. They do not
guarantee optimality, while they also incur high computational
and storage complexities. We take a different route by drawing
from advances in artificial intelligence, to develop data-driven
solutions that could near optimally learn, track, as well as
adapt to unknown generation and consumption dynamics.
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Fig. 3: Deep Q-network

A. A data-driven solution

Clearly from (7b)–(9b), the capacitor decisions ŷyy(τ) made
at the end of interval τ−1 (slow-timescale learning) influence
inverters’ setpoints during the entire interval τ (fast-timescale
optimization). The other way around, inverters’ regulation on
voltages influences the capacitor commitment for the next
interval. This two-way between the capacitor configuration and
the optimal setpoints of inverters motivates our RL formula-
tion. Dealing with learning policy functions in an environment
with action-dependent dynamically evolving states and costs,
RL seeks a policy function (of states) to draw actions from,
in order to minimize the average cumulative cost [17].

Modeling load demand and renewable generation as Marko-
vian processes, the optimal configuration of capacitors can be
formulated as an MDP, which can be efficiently solved through
RL algorithms. An MDP is defined as a 5-tuple (S,A,P, c, γ),
where S is a set of states; A is a set of actions; P is a set
of transition matrices; c : S ×A 7→ R is a cost function such
that, for sss ∈ S and aaa ∈ A, c = (c(sss,aaa))sss∈S,aaa∈A are the real-
valued instantaneous costs after the system operator takes an
action aaa at state sss; and γ ∈ [0, 1) is the discount factor. These
components are defined next before introducing our voltage
regulation scheme.

Action space A. Each action corresponds to one possible on-
off commitment of capacitors 1 to Na, giving rise to an action
vector aaa(τ) = yyy(τ) per interval τ . The set of binary action
vectors constitutes the action space A, whose cardinality is
exponential in the number of capacitors, meaning |A| = 2Na .

State space S. This includes per interval τ the average
active power at all buses except for the substation, along
with the current capacitor configurations; that is, sss(τ) :=
[ p̄pp>(τ), ŷyy>(τ)]>, which contains both continuous and discrete
variables. Clearly, it holds that S ⊆ RN × 2Na .

The action is decided according to the configuration policy
π that is a function of the most recent state sss(τ − 1), given as

aaa(τ) = π(sss(τ − 1)). (10)

Cost function c. The cost on the slow timescale is

c(sss(τ − 1), aaa(τ)) =

NT∑
t=1

‖vvvτ,t(qqqg(τ, t))− v0111‖2 . (11)

Set of transition probability matrices P . While being at a
state sss ∈ S upon taking an action aaa, the system moves to a new
state sss′ ∈ S probabilistically. Let Paaassssss′ denote the transition

probability matrix from state sss to the next state sss′ under a
given action aaa. Evidently, it holds that P := {Paaassssss′ |∀aaa ∈ A}.

Discount factor γ. The discount factor γ ∈ [0, 1), trades
off the current versus future costs. The smaller γ is, the more
weight the current cost has in the overall cost.

Given the current state and action, the so-termed action-
value function under the control policy π is defined as

Qπ(sss(τ − 1), aaa(τ)) :=

E

[ ∞∑
τ ′=τ

γτ
′−τ c(sss(τ ′ − 1), aaa(τ ′))

∣∣∣π,sss(τ − 1), aaa(τ)

]
(12)

where the expectation E is taken with respect to all sources
of randomness.

To find the optimal capacitor configuration policy π∗, that
minimizes the average voltage deviation in the long run, we
resort to the Bellman optimality equations; see e.g., [17]. Solv-
ing those yields the action-value function under the optimal
policy π∗ on the fly, given by

Qπ∗(sss,aaa) = E[c(sss,aaa)] + γ
∑
sss′∈S

Paaassssss′ min
aaa∈A

Qπ∗(sss
′, aaa′). (13)

With Qπ∗(sss,aaa) obtained, the optimal capacitor configuration
policy can be found as

π∗(sss) = arg min
aaa

Qπ∗(sss,aaa). (14)

It is clear from (13) that if all transition probabilities {Paaassssss′}
were available, we can derive Qπ∗(sss,aaa), and subsequently
the optimal policy π∗ from (14). Nonetheless, obtaining those
transition probabilities is impractical in practical distribution
systems. This calls for approaches that aim directly at π∗,
without assuming any knowledge of {Paaassssss′}.

One celebrated approach of this kind is Q-learning, which
can learn π∗ by approximating Qπ∗(sss,aaa) ‘on-the-fly’ [17,
p. 107]. Due to its high-dimensional continuous state space
S however, Q-learning is not applicable for the problem at
hand. This motivates function approximation based Q-learning
schemes that can deal with continuous state domains.

B. A deep reinforcement learning approach

DQN offers a NN function approximator of the Q-function,
chosen to be e.g., a fully connected feed-forward NN, or a
convolutional NN, depending on the application [18]. It takes
as input the state vector, to generate at its output Q-values
for all possible actions (one for each). As demonstrated in
[18], such a NN indeed enables learning the Q-values of
all state-action pairs, from just a few observations obtained
by interacting with the environment. Hence, it effectively
addresses the challenge brought by the ‘curse of dimension-
ality’ [18]. Inspired by this, we employ a feed-forward NN
to approximate the Q-function in our setting. Specifically, our
DNN consists of L fully connected hidden layers with ReLU
activation functions, depicted in Fig. 3. At the input layer,
each neuron is fed with one entry of the state vector sss(τ −1),
which, after passing through L ReLU layers, outputs a vector
ooo(τ) ∈ R2Na , whose elements predict the Q-values for all
possible actions (i.e., capacitor configurations). Since each
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output unit corresponds to a particular configuration of all Na
capacitors, there is a total of 2Na neurons at the output layer.
For ease of exposition, let us collect all weight parameters of
this DQN into a vector θθθ which parameterizes the input-output
relationship as ooo(τ) = Qπ(sss(τ−1), aaa(τ);θθθ) (c.f. (12)). At the
end of a given interval τ − 1, upon passing the state vector
sss(τ − 1) through this DQN, the corresponding predicted Q-
values ooo(τ) for all possible actions become available at the
output. Based on these predicted values, the system operator
selects the action having the smallest predicted Q-value to be
in effect over the next interval.

Intuitively, the weights θθθ should be chosen such that the
DQN outputs match well the actual Q-values with input any
state vector. Toward this objective, the popular stochastic
gradient descent (SGD) method is employed to update θθθ ‘on
the fly’ [18]. At the end of a given interval τ , precisely
when i) the system operator has made decision aaa(τ), ii) the
grid has completed the transition from the state sss(τ − 1)
to a new state sss(τ), and, (iii) the network has incurred
and revealed cost c(sss(τ − 1), aaa(τ)), we perform a SGD
update based on the current estimate θθθτ to yield θθθτ+1. The
so-termed temporal-difference learning [17] confirms that a
sample approximation of the optimal cost-to-go from interval
τ is given by c(sss(τ − 1), aaa(τ)) + γ min

aaa′∈A
Qπ(sss(τ), aaa′;θθθτ ),

where c(sss(τ−1), aaa(τ)) is the instantaneous cost observed, and
min
aaa′

Qπ(sss(τ), aaa′;θθθτ ) represents the smallest possible predicted
cost-to-go from state sss(τ), which can be computed through our
DQN with weights θθθτ , and is discounted by factor γ. In words,
the target value c(sss(τ − 1), aaa(τ)) + γ min

aaa′∈A
Qπ(sss(τ), aaa′;θθθτ ) is

readily available at the end of interval τ − 1. Adopting the
`2-norm error criterion, a meaningful approach to tuning the
weights θθθ entails minimizing the following loss function

L(θθθ) :=
[
c(sss(τ − 1), aaa(τ)) + γ min

aaa′∈A
Qπ(sss(τ), aaa′;θθθτ )

−Qπ(sss(τ − 1), aaa(τ);θθθ)
]2

(15)

for which the SGD update is given by

θθθτ+1 = θθθτ − βτ∇L(θθθ)|θθθτ (16)

where βτ > 0 is a preselected learning rate, and ∇L(θθθ)
denotes the (sub-)gradient.

However, due to the compositional structure of DNNs,
the update (16) does not work well in practice. In fact, the
resultant DQN oftentimes does not provide a stable result; see
e.g., [35]. To bypass these hurdles, several modifications have
been introduced. In this work, we adopt the target network and
experience replay [18]. To this aim, let us define an experience
e(τ ′) := (sss(τ ′ − 1), aaa(τ ′)), c(sss(τ ′ − 1), aaa(τ ′)), sss(τ ′)), to be
a tuple of state, action, cost, and the next state. Consider
also having a replay buffer R(τ) on-the-fly, which stores
the most recent R > 0 experiences visited by the agent.
For instance, the replay buffer at any interval τ ≥ R is
R(τ) := {e(τ − R + 1), . . . , e(τ)}. Furthermore, as another
effective remedy to stabilizing the DQN updates, we replicate
the DQN to create a second DNN, commonly referred to as the
target network, whose weight parameters are concatenated in
the vector θθθTar. It is worth highlighting that this target network

Algorithm 1 Two-timescale voltage regulation scheme.

1: Initialize: θθθ0 randomly; weight of the target network
θθθTar

0 = θθθ0; replay buffer R; and the initial state sss(0).
2: for τ = 1, 2, ... do
3: Take action aaa(τ) through exploration-exploitation

aaa(τ) =

{
random aaa ∈ A w.p. ετ
arg minaaa′ Q(sss(τ − 1), aaa′;θθθτ ) w.p. 1−ετ

where ετ = max
{

1− 0.1× bτ/50c, 0
}
.

4: Evaluate ccc(sss(τ − 1), aaa(τ)) using (11).
5: for t = 1, 2, ..., NT do
6: Compute qqqg(τ, t) using (7) or (9).
7: end for
8: Update sss(τ).
9: Save (sss(τ−1), aaa(τ), c(sss(τ−1), aaa(τ)), sss(τ)) into R(τ).

10: Randomly sample Mτ experiences from R(τ).
11: Form the mini-batch loss LTar(θθθτ ;Mτ ) using (19).
12: Update θθθτ+1 using (20).
13: if mod(τ,B) = 0 then
14: Update the target network θθθTar

τ = θθθτ .
15: end if
16: end for

is not trained, but its parameters θθθTar are only periodically
reset to estimates of θθθ, say every B training iterations of the
DQN. Consider now the temporal-difference loss for some
randomly drawn experience e(τ ′) from R(τ) at interval τ

LTar(θθθτ ; e(τ ′)) :=
1

2

[
c(sss(τ ′ − 1), aaa(τ ′))

+ γmin
aaa′

QTar(sss(τ), aaa′;θθθTar
τ ′ )−Q(sss(τ ′ − 1), aaa(τ ′);θθθτ )

]2
.

(17)

Upon taking expectation with respect to all sources of ran-
domness generating this experience, we arrive at

LTar(θθθτ ;R(τ))) := Ee(τ ′) LTar(θθθτ ; e(τ ′)). (18)

In practice however, the underlying transition probabilities are
unknown, which challenges evaluating and hence minimizing
LTar(θθθτ ;R(τ))) exactly. A commonly adopted alternative is
to approximate the expected loss with an empirical loss over a
few samples (that is, experiences here). To this end, we draw
a mini-batch of Mτ experiences uniformly at random from the
replay buffer R(τ), whose indices are collected in the setMτ ,
i.e., {e(τ ′)}τ ′∈Mτ

∼ U(R(τ)). Upon computing for each of
those sampled experiences an output using the target network
with parameters θθθTar

τ , the empirical loss is

LTar(θθθτ ;Mτ ) :=
1

2Mτ

∑
τ ′∈Mτ

[
c(sss(τ ′ − 1), aaa(τ ′))

+ γmin
aaa′

QTar(sss(τ ′), aaa′;θθθTar
τ )−Q(sss(τ ′ − 1), aaa(τ ′);θθθτ )

]2
.

(19)

In a nutshell, the weight parameter vector θθθτ of the DQN is
efficiently updated ‘on-the-fly’ using SGD over the empirical
loss LTar(θθθτ ;Mτ ), with iterates given by

θθθτ+1 = θθθτ − βτ∇LTar(θθθτ ;Mτ ). (20)
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Fig. 4: Schematic diagram of the 47-bus industrial distribution
feeder. Bus 1 is the substation, and the 6 loads connected to
it model other feeders on this substation.
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Fig. 5: Time-averaged instantaneous costs incurred by the four
voltage control schemes.

Incorporating target network and experience replay reme-
dies for stable DRL, our proposed two-timescale voltage
regulation scheme is summarized in Alg. 1.

V. NUMERICAL TESTS

In this section, numerical tests on a real-world 47-bus
distribution feeder as well as the IEEE 123-bus benchmark
system are provided to showcase the performance of our
proposed DRL-based voltage control scheme (cf. presented
in Alg. 1). As has already been shown in previous works
(e.g., [10], [13], [32]), the linearized distribution flow model
approximates the exact AC model very well; hence, numerical
results based on the linearized model were only reported here.

The first experiment entails the Southern California Edison
47-bus distribution feeder [11], which is depicted in Fig. 4.
This feeder is integrated with four shunt capacitors as well
as five smart inverters. As the voltage magnitude v0 of the
substation bus is regulated to be a constant (1 in all our tests)
through a voltage transformer, the capacitor at the substation
was excluded from our control. Thus, a total of three shunt
capacitors along with five smart inverters embedded with large
PV plants were engaged in voltage regulation. The rest three
capacitors are installed on buses 3, 37, and 47, with capacities
120, 180, and 180 kVar, respectively, while the five large
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Fig. 6: Voltage magnitude profiles obtained by the four voltage
control schemes over the simulation period of 10, 000 slots.
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Fig. 7: Voltage magnitude profiles obtained by the four voltage
control schemes at buses 10 and 33 from slot 9, 900 to 10, 000.

PV plants are located on buses 2, 16, 18, 21, and 22, with
capacities 300, 80, 300, 400, and 200 kW, respectively. To
test our scheme in a realistic setting, real consumption as
well as solar generation data were obtained from the Smart∗

project collected on August 24, 2011 [36], which were first
preprocessed by following the procedure described in our
precursor work [10].

In our tests, to match the availability of real data, each slot
t was set to a minute, and each interval τ was set to five
minutes. A power factor of 0.8 was assumed for all loads.
The DQN used here consists of three fully connected layers,
which has 44 and 12 units in the first and second hidden layers,
respectively. Although simple, it was found sufficient for the
task at hand. ReLU activation functions (σ(x) = max(x, 0))
were employed in the hidden layers, and logistic sigmoid
functions s(x) = 1/(1 + e−x) were used at the output layer.



8 IEEE TRANSACTIONS ON SMART GRID (ACCEPTED, OCTOBER 31, 2019)

0 5 10 15 20 25 30 35 40

Bus Index

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05
V

ol
ta

ge
 m

ag
ni

tu
de

FixCap
RandCap
Real-time
DRLCap

Fig. 8: Voltage magnitude profiles at all buses at slot 9, 900
obtained by the four voltage control schemes.

To assess the performance of our proposed scheme, we have
simulated three capacitor configuration policies as baselines,
that include a fixed capacitor configuration (FixCap), a random
capacitor configuration (RandCap), and an (impractical) ‘real-
time’ policy. Specifically, the FixCap uses a fixed capaci-
tor configuration throughout, and the RandCap implements
random actions to configure the capacitors on every slow
time interval; both of which compute the inverter setpoints
by solving (9) per slot t. The impractical Real-time scheme
however, optimizes over inverters and capacitors on a single-
timescale, namely at every slot – hence justifying its ‘real-
time’ characterization. To carry out this optimization task,
first the binary constraints yki(t) ∈ {0, 1} are relaxed to box
ones yki(t) ∈ [0, 1], the resulting convex program is solved
using an off-the-shelf routine [37], which is followed by a
standard rounding step to recover binary solutions for capacitor
configurations [38].

In the first experiment, the DRL-based capacitor configura-
tion (DRLCap) voltage control approach was examined. The
replay buffer size was set to R = 10, the discount factor
γ = 0.99, the mini-batch size Mτ = 10, and the exploration-
exploitation parameter ετ = max

{
1 − 0.1 × bτ/50c, 0

}
.

During training, the target network was updated every B = 5
iterations. The time-averaged instantaneous costs

1

τ

τ∑
i=1

c(sss(i− 1), aaa(i))

incurred by the four schemes over the first 1 ≤ τ ≤ 2, 000
intervals are plotted in Fig. 5. Evidently, the proposed scheme
attains a lower cost than FixCap, RandCap, and Real-time after
a short period of learning and interacting with the environment.
Even though the real-time scheme optimizes both capacitor
configurations and inverter setpoints per slot t, its suboptimal
performance in this case arises from the gap between the
convexified problem and the original nonconvex counterpart.
Fig. 6 presents the voltage magnitude profiles for all buses
regulated by the four schemes sampled at every 100 slots.
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Fig. 9: Hyper deep Q-network for capacitor configuration.
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Fig. 10: Time-averaged instantaneous costs incurred by the
four approaches on the IEEE 123-bus feeder.

Again, after a short period (∼ 4, 500 slots) of training through
interacting with the environment, our DRLCap voltage control
scheme quickly learns a stable and (near-) optimal policy.
In addition, voltage magnitude profiles regulated by FixCap,
RandCap, Real-time, and DRLCap at buses 10 and 33 from
slot 9, 900 to 10, 000 are shown in Fig. 7, while the voltage
magnitude profiles at all buses at slot 9, 900 are presented
in Fig. 8. Curves showcase the effectiveness of our DRLCap
scheme in smoothing voltage fluctuations incurred due to large
solar generation as well as heavy load demand.

To deal with distribution systems having a moderately large
number of capacitors, we further advocate a hyper deep Q-
network implementation, that endows our DRL-based scheme
with scalability. The idea here is to first split the total number
2Na of Q-value predictions ooo(τ) ∈ R2Na at the output layer
into K smaller groups, each of which is of the same size
2Na/K and is to be predicted by a small-size DQN. This ev-
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Fig. 11: Voltage magnitude profiles at all buses over the
simulation period of 25, 000 slots on the IEEE 123-bus feeder.

Fig. 12: Voltage magnitude profiles at buses 55 and 90 from
slot 24, 900 to 25, 000 obtained by the four approaches on the
IEEE 123-bus feeder.

idently yields the representation ooo(τ) := [ooo>1 (τ), . . . , ooo>K(τ)]>,
where oook(τ) ∈ R2Na/K for k = 1, . . . ,K. By running
K DQNs in parallel along with their corresponding target
networks, each DQN-k generates predicted Q-values oook(τ) for
the subset of actions corresponding to kth group. Note that all
DQNs are fed with the same state vector sss(τ − 1); see also
Fig. 9 for an illustration.

To examine the scalability and performance of this hyper Q-
network implementation, additional tests using the IEEE 123-
bus test feeder with 9 shunt capacitors were performed. Again,
the capacitor at bus 1 was excluded from the control, rendering
a total number of 28 = 256 actions (capacitor configurations).
Renewable (PV) units are located on buses 47, 49, 63, 73,
104, 108, 113, with capacities 100, 16, 70, 20, 20, 30, and 10
k, respectively. The 8 shunt capacitors are installed on buses
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Fig. 13: Voltage magnitude profiles at all buses on slot 24, 900
obtained by four approaches on the IEEE 123-bus feeder.

3, 20, 44, 93, 96, 98, 100, and 114, with capacities 50, 80,
100, 100, 100, 100, 100, and 60 kVar. In this experiment, we
used a total of K = 64 equal-sized DQNs to form the hyper
Q-network, where each DQN implemented a fully connected
3-layer feed-forward neural network, with ReLU activation
functions in the hidden layers, and sigmoid functions at the
output. The replay buffer size was set to R = 50, the batch
size to Mτ = 8, and the target network updating period to
B = 10. The time-averaged instantaneous costs obtained
over a simulation period of 5, 000 intervals is plotted in
Fig. 10. Moreover, voltage magnitude profiles of all buses over
the simulation period of 25, 000 slots sampled at every 100
slots under the four schemes are plotted in Fig. 11; voltage
magnitude profiles at buses 55 and 90 from slot 24, 900 to
25, 000 are shown in Fig. 12; and, voltage magnitude profiles
at all buses on slot 24, 900 are depicted in 13. Evidently, the
hyper deep Q-network based DRL scheme smooths out the
voltage fluctuations after a certain period (∼ 7, 000 slots) of
learning, while effectively handling the curse of dimensionality
in the control (action) space. Evidently from Figs. 10 and 13,
both the time-averaged immediate cost as well as the voltage
profiles of DRLCap converge to those of the impractical ‘real-
time’ scheme (which jointly optimizes inverter setpoints and
capacitor configurations per slot).

VI. CONCLUSIONS

In this work, joint control of traditional utility-owned equip-
ment and contemporary smart inverters for voltage regulation
through reactive power provision was investigated. To account
for the different response times of those assets, a two-timescale
approach to minimizing bus voltage deviations from their
nominal values was put forth, by combining physics- and data-
driven stochastic optimization. Load consumption and active
power generation dynamics were modeled as MDPs. On a
fast timescale, the setpoints of smart inverters were found by
minimizing the instantaneous bus voltage deviations, while on
a slower timescale, the capacitor banks were configured to
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minimize the long-term expected voltage deviations using a
deep reinforcement learning algorithm. The developed two-
timescale voltage regulation scheme was found efficient and
easy to implement in practice, through extensive numerical
tests on real-world distribution systems using real solar and
consumption data. This work also opens up several interesting
directions for future research, including deep reinforcement
learning for real-time optimal power flow as well as unit
commitment.
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