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Abstract—The work analyzes dynamic responses of a healthy1

plant under optimal switching data-injection attacks on sensors2

and develops countermeasures from the vantage point of optimal3

control. This is approached in a cyber-physical system setting,4

where the attacker can inject false data into a selected subset of5

sensors to maximize the quadratic cost of states and the energy6

consumption of the controller at a minimal effort. A 0-1 integer7

program is formulated, through which the adversary finds an8

optimal sequence of sets of sensors to attack at optimal switch-9

ing instants. Specifically, the number of compromised sensors10

per instant is kept fixed, yet their locations can be dynamic.11

Leveraging the embedded transformation and mathematical pro-12

gramming, an analytical solution is obtained, which includes an13

algebraic switching condition determining the optimal sequence14

of attack locations (compromised sensor sets), along with an15

optimal state-feedback-based data-injection law. To thwart the16

adversary, however, a resilient control approach is put forward17

for stabilizing the compromised system under arbitrary switch-18

ing attacks constructed based on a set of state-feedback laws,19

each of which corresponds to a compromised sensor set. Finally,20

an application using power generators in a cyber-enabled smart21

grid is provided to corroborate the effectiveness of the resilient22

control scheme and the practical merits of the theory.23

Index Terms—Data-injection attacks, dynamic set, resilient24

control, switching condition.25

I. INTRODUCTION26

CYBER-PHYSICAL systems (CPSs) inherit the commu-27

nication structure of the Internet of Things (IoT), yet they28

place more emphasis on the monitoring and control of entities29
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in the physical world [1]. These systems are typically com- 30

posed of a set of networked agents, that includes sensors, actu- 31

ators, controllers, and communication devices. Heterogeneous 32

devices are connected to collaboratively control the physi- 33

cal processes over high-speed communication networks [2]. 34

CPSs realize the feedback and information exchange between 35

the cyberspace and the physical world. Nonetheless, the deep 36

integration of physical and information systems brings poten- 37

tial threats too [3]. Real-world applications are safety-critical: 38

their failure can cause irreparable harm to the physical system 39

being controlled and to people who rely on it. As a typical 40

application of CPSs, the cyber-enabled smart grid comprises a 41

large number of servers, computers, meters, phasor measure- 42

ment units, generators, and so on. By blocking the information 43

exchange between the users and the electricity sectors or 44

destroying the data integrity [4], [5], the adversary can affect 45

the electricity price and increase the energy consumption of 46

generators [6]. 47

To enhance the security of CPSs, the defender should be 48

aware of diverse attack behaviors that the CPS may suffer 49

as well as understand the attacker’s intention [7]. Malicious 50

attacks on CPSs can be launched at the physical layer, 51

network layer [8], and application layer [9]. A common way 52

to enhance the resilience of CPSs is to implement defense 53

strategies against known attack patterns [10]. The resilient 54

control or estimation focuses on mitigating the normal opera- 55

tion of attacked systems or restoring the actual state variables 56

with certain acceptable error bounds [11]. Most advances 57

impose assumptions on the attacker’s abilities [12] or on its 58

behavior patterns [13]. The resilient controller under fixed 59

delay or out-of-order transmissions was proposed to optimize 60

the worst-case performance [14]. An output-feedback con- 61

troller under deception attacks with stochastic characteristics 62

was designed to guarantee the prescribed security in prob- 63

ability while obtaining an upper bound of a quadratic cost 64

criterion [15]. 65

On the other hand, studying the adversary’s optimal attack 66

schedule can in turn offer insight on devising effective defense 67

strategies [16]. A family of cyber attacks with switching 68

behaviors has attracted attention, which can be categorized 69

into two groups: 1) location-switching attacks and 2) signal- 70

switching attacks. The attack signal can be, for instance, 71

a switching signal turning on or off electrical devices and 72

change the network topology [17] or a continuous false 73

signal injected into controllers or actuators. State recovery 74

under location switching attacks with known or unknown 75

switching frequencies was studied in [18]. Stochastic linear 76
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systems under attacks were modeled as switching systems with77

unknown inputs, followed by a multiple model approach for78

resilient state estimation [19]. Precisely, the attacker decides79

when and where to launch an attack based on a Markov80

process. Switching DoS attacks on multiple communication81

lines with limited attacking times were examined [20]. The82

optimal switching sequence can be found by solving an integer83

program using an exhaustive search.84

Despite the considerable success on switching attacks, the85

response of dynamic systems under switching data-injection86

attacks that can alter system dynamics (rather than estima-87

tion error or network topology) has not been studied. There88

are two critical challenges: Q1) Whether and how one can89

design an optimal switching data-injection law to maximize90

damage to the control system from the vantage point of the91

attacker? and Q2) How can one design an enhanced feed-92

back control law to restore stability and maintain control93

performance of the system under such switching data-injection94

attacks? We answer these two questions in this article con-95

sidering switching data-injection attacks on sensors. In our96

previous works [21], [22], attacks on actuators were consid-97

ered, that aim at maximizing a quadratic state cost. In contrast,98

this article takes the standpoint of the attacker and focuses on99

designing attacks to maximize the controller’s effort. Last but100

not least, a defense framework to stabilize the compromised101

system is proposed here. Specifically, the optimal switching102

data-injection attack design problem is formulated as a 0-1103

integer programming problem [22], for which we develop104

an analytical solution of optimizing a nonlinear fractional105

function of the switching input.106

This article studies the data-injection attacks that aim at107

manipulating the control signal and corrupting the system108

dynamics. Typically, CPSs comprise a large amount of sens-109

ing devices that are distributed in an unprotected, or even110

harmful environment. The malicious attacker can perform111

the node capture attack to crack the communication code,112

and manipulate purposefully the information exchanged with113

neighboring nodes or with the control center. To “benchmark”114

the worst-case performance due to comprised control signals,115

the sequence of optimal attack locations (namely, set of sen-116

sors) along with the corresponding optimal data-injection law117

over an attack duration is addressed. In this context, the set118

of attack locations is also termed as a compromised set. In a119

nutshell, the main contributions of this article are summarized120

as follows.121

c1) We formulate the optimal switching data-injection attack122

design problem as a 0-1 integer programming problem.123

An analytical solution is established, including an alge-124

braic switching condition along with a state-feedback-125

based data-injection law.126

c2) We develop a novel resilient control scheme to miti-127

gate the effect of attacks and enhance the closed-loop128

system, that entails identifying uncertainty matrices129

associated with different compromised sets and design-130

ing output-feedback controller gains. Our proposed131

control law can stabilize systems under even the132

worst-case attacks, while ensuring a bounded control133

cost.134

The rest of this article is organized as follows. In Section II, 135

the attack model is given. In Section III, the optimal switch- 136

ing attack design problem is formulated and studied. In 137

Section IV, a resilient control scheme is put forward to 138

defend against the switching attack with arbitrary switch- 139

ing sequences. Numerical tests using power generators are 140

presented in Section V, while this article is concluded in 141

Section VI. 142

II. ATTACK MODEL 143

We consider a healthy but possibly unstable plant described 144

by a linear time-invariant (LTI) system 145

ẋ(t) = Ax(t)+ Bu(t) (1a) 146

y(t) = Cx(t) (1b) 147

u(t) = Ky(t) (1c) 148

where x(t) ∈ R
n is the state vector, u(t) ∈ R

k is the con- 149

trol input, and (A, B, C) are the system matrices of suitable 150

dimensions. To stabilize the LTI system, the output-feedback 151

control with some gain matrix K ∈ R
k×m is considered. In the 152

context of switching attacks, the plant is supposed to com- 153

prise a large number of sensor nodes; that is, m is large. At 154

time t, each node sends its measurement to a central con- 155

troller via a vulnerable wireless network. Before characterizing 156

the worst-case attack consequence, we make several stan- 157

dard assumptions on the knowledge and attack ability of the 158

adversary. 159

Assumption 1: The adversary has perfect knowledge of the 160

system parameters in (1), namely, A, B, C, and K matrices. 161

Assumption 2: The adversary can capture the target sen- 162

sor nodes and crack the passwords of their communication 163

channels before launching attacks. 164

Assumption 3: When an attack occurs, the adversary injects 165

datum d0
a,jua(t) into compromised sensor j ∈ S(t) ⊆ 166

{1, . . . ,m}, where S(t) collects the indices of all attacked sen- 167

sors at time t; ua(t) is a global component that the attacker can 168

optimize over, yet the local components d0
a,j can be different 169

across sensors, which are arbitrarily selected by the adver- 170

sary a priori and kept fixed throughout the attack. After the 171

attack, the aggregated signal y(t) + da(t)ua(t) is transmitted 172

to the controller, where da(t) := [da,1(t) · · · da,m(t)]� with 173

da,j(t) = d0
a,j if j ∈ S and da,j(t) = 0 otherwise. Moreover, 174

da can be viewed as an “indicator” vector, which signifies the 175

locations of the attacked sensors. 176

Following conventions, we use accordingly symbols xc, yc, 177

and uc to denote the state, measurement, and control vectors 178

of the (compromised) LTI system under attack. Precisely, the 179

attacked system can be described as 180

ẋc(t) = Axc(t)+ Buc(t) (2a) 181

yc(t) = Cxc(t)+ da(t)ua(t) (2b) 182

uc(t) = Kyc(t). (2c) 183

For ease of understanding, consider the setup described 184

in Fig. 1, where the system consists of three sensor nodes. 185

Suppose that the adversary can compromise only one node at 186

a time. If the adversary compromises Sensor 1 at time t1, 187
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Fig. 1. Switching data-injection attack framework.

it holds that da(t1) = [d0
a,1 0 0]� with attack component188

d0
a,1 determined by the attacker at the starting time t0; and189

if Sensor 3 is attacked at time t2, then da(t2) = [0 0 d0
a,3]�.190

Correspondingly, the false data da(t1)ua(t1) and da(t2)ua(t2)191

are injected into the measurement vectors y(t1) = Cxc(t1)192

and y(t2) = Cxc(t2) [see (1b)] to yield the compromised193

measurement vectors yc(t1) and yc(t2) [see (2b)].194

In the traditional linear quadratic regulator (LQR) control,195

the goal of the system operator is to minimize the standard196

quadratic cost function involving the state variables and the197

controller effort over a fixed horizon; see standard textbook,198

e.g., [23]. On the contrary, the goal of the attacker is to199

maximize the aforementioned quadratic cost of the controller,200

therefore degrading the control performance, by choosing a201

sequence of instants to inject false data into a subset of sensors202

while maintaining a low attack cost.203

On the other hand, the injected data can be understood204

as an adversarial interference produced by certain electrical205

equipment in a dynamic system. Due to physical limitations206

however, these equipment cannot produce an arbitrarily large207

interference signal, so the amplitude of ua(t) should be kept as208

small as possible. Considering any finite-time horizon [t0, tf ],209

two meaningful objective functions for optimal attack design210

are given by211

Ja = 1

2
x�

c (tf )Gxc(tf )+ 1

2

∫ tf

t0

[
u�

c (t)Quc(t)− γ u2
a(t)

]
dt (3)212

and213

Jb = 1

2
x�

c (tf )Gxc(tf )+ 1

2

∫ tf

t0

[
x�

c (t)Qxc(t)− γ u2
a(t)

]
dt (4)214

where G and Q are symmetric, positive semidefinite matrices215

of suitable dimensions, and γ > 0 is a weighting coefficient,216

both chosen by the attacker. Their values tradeoff between the217

damage to the healthy plant and the attack cost. Specifically,218

too large (eigenvalues of) Q or too small γ values may incur219

instability of the plant under attack. If the adversary prefers220

a minimal energy cost and selects a larger γ value relative to221

(eigenvalues of) Q, then the resultant ua(t) is able to render222

the system states to deviate from their actual values, and the223

stability of the attacked system may not lose.224

Upon plugging (2b) and (2c) into (3), the objective function 225

Ja can be rewritten as 226

Ja = 1

2
x�

c (tf )Gxc(tf )+ 1

2

∫ tf

t0

[
x�

c (t)Q̃xc(t)+ 2ua(t)s�(t)xc(t) 227

+ γ̃ (t)u2
a(t)

]
dt (5) 228

where the coefficients are given by 229

Q̃ := C�K�QKC (6a) 230

s(t) := C�K�QKda(t) (6b) 231

γ̃ (t) := d�
a (t)K

�QKda(t)− γ. (6c) 232

To guarantee existence of an optimal solution, the adversary 233

needs to design Q and γ such that γ̃ (t) < 0 [23]. It is 234

clear from (5) that maximizing the controller energy consump- 235

tion in Ja amounts to maximizing integrations of both the 236

state quadratic x�
c (t)Q̃xc(t) and the cross term ua(t)s�(t)xc(t) 237

(between ua and xc). In comparison, only the integration of 238

the state quadratic is maximized in Jb. In other words, if the 239

adversary is solely interested in damaging the system state, 240

the objective function Jb is preferred; but if the control cost 241

of the attacked system is of interest too, then, Ja is preferred. 242

III. OPTIMAL SWITCHING ATTACK DESIGN 243

In a large-scale CPS setting, compromising all communica- 244

tion channels necessarily requires a large amount of energy. 245

The adversary with limited budget is instead inclined to attack 246

only few sensors, possibly those of lowest security levels or 247

with most vulnerable communication channels. Due to the lim- 248

ited computing resources and channel cracking capabilities, 249

this article focuses on a practical setting where the adversary 250

can attack a fixed number of sensors at a time. On the other 251

hand, it is also not wise or optimal for the attacker to con- 252

stantly attack a fixed set of sensors. A smart yet affordable 253

strategy is to select a size-fixed set of sensors to effect attacks 254

at every attack instant, to yield the worst-case system response. 255

This dynamic attack strategy is to switch the attack among 256

multiple sensor sets from time to time. 257

The goal of the attacker is to determine an optimal switching 258

sequence of sensor sets to attack with an optimal data-injection 259

law, so as to maximize the objective value Ja or Jb. When there 260

are m sensors and the adversary can attack say � � m sensors 261

at a time, the total number of candidate attacks (i.e., size-� 262

sensor sets) is M := (m
�

)
. With slight abuse of notation, the 263

M sensor sets (namely, the M sets of �-sensor combinations) 264

can be represented by the indicator vectors {di
a}M

i=1 defined in 265

Assumption 3. 266

Example 1: If m = 3 and � = 2, there are M = (3
2

)
267

sensor sets; that is, {1, 2}, {1, 3}, and {2, 3} collecting the 268

indices of the attacked sensors. Each of the three sensor 269

sets can be uniquely represented by d1
a := [d0

a,1 d0
a,2 0]�, 270

d2
a := [d0

a,1 0 d0
a,3]�, and d3

a := [0 d0
a,2 d0

a,3]�. 271

From Fig. 1, if the input to the controller is compromised, 272

the control signal (output of the controller) will be disturbed, 273

so will the system dynamics. The control signal under the 274
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described switching data-injection attacks can be given by275

uc(t) = K

⎡
⎣Cxc(t)+

M∑
j=1

wj(t)dj
aua(t)

⎤
⎦ (7)276

where the switch input vector w := [w1 · · · wM] belongs to277

W0 :=
⎧⎨
⎩w(t)

∣∣∣∣
M∑

j=1

wj(t) = 1, and wj(t) ∈ {0, 1} ∀j

⎫⎬
⎭. (8)278

Per attack instant t ≥ t0, since only one sensor set (namely,279

dj
a for some j) is to be chosen, its corresponding switch input280

wj(t) is set 1, while the others are set 0. Observe that the com-281

ponents of dj
a are time invariant and known to the attacker.282

Therefore, the values of w(t) := [w1(t) . . . wM(t)]� at dif-283

ferent t signify the compromised sensor sets at corresponding284

instants. If two consecutive compromised sets (i.e., before and285

after some instant t) are different, then instant t is a switching286

instant, namely, the time at which the value of w(t) changes.287

The compromised sets at all switching instants define the288

so-called switching sequence289

ζ := {(w(t0), ua(t0)), . . . , (w(tN), ua(tN))} (9)290

where t0 ≤ t1 ≤ · · · ≤ tN ≤ tf , the set {t1, . . . , tN} collects291

all switching instants, and N is the total number of switching292

operations.293

In general, the attacker can assume the same objective294

function for all sensor sets. In certain settings of practical295

interest, the attacker may prefer different objective functions296

when different sensor sets are compromised. In Example 1,297

if the attacker aims to induce a larger deviation to state xc,1298

(xc = [xc,1 xc,2 xc,3]�) when sensor set {1, 2} is attacked,299

the attacker can simply use a diagonal matrix Q1 with entry300

Q1(1, 1) greater than Q1(2, 2) and Q1(3, 3), where Q1 belongs301

to the objective function for set {1, 2}. This prompts us302

to choose an objective function that sums the excited local303

objective functions at every instant, that is304

Ĵa =
M∑

j=1

wjJ
j
a and Ĵb =

M∑
j=1

wjJ
j
b (10)305

where Jj
a or Jj

b is obtained by replacing Q and γ in (3) or (4)306

with Qj and γj.307

Putting (2), (7), and (10) together, the optimal switching308

data-injection attack design problem is to find w(t) and ua(t)309

that310

max Ĵa or Ĵb (11a)311

s.t. ẋc(t) = Aaxc(t)+
M∑

j=1

wj(t)bj
aua(t) (11b)312

uc(t) = K

⎡
⎣Cxc(t)+

M∑
j=1

wj(t)dj
aua(t)

⎤
⎦ (11c)313

w(t) ∈ W0 ∀t (11d)314

where the coefficients Aa := A + BKC and bj
a := BKdj

a for315

all j = 1, . . . ,M. In (11), the optimal switching data-injection316

attack design problem is formulated as a 0-1 integer program.317

If the binary variables {wj(t)}M
j=1 and the corresponding con- 318

straint (11d) are not present, (11) is LQR, whose optimal 319

solution can be readily obtained in the closed-form lever- 320

aging Pontryagin’s maximum principle (see [23]). In fact, 321

constraint (11d) renders (11) nonconvex and NP-hard in gen- 322

eral [24]. Fortunately, but if an optimal solution of w(t) is 323

successfully found, then the optimal switching sequence ζ can 324

be easily recovered. 325

Interestingly enough, if we view the attacked system (2) 326

as a linear switched system (see [25] for related definitions), 327

the problem of optimal switch data-injection attack design on 328

an LTI system in (11) can be treated as the optimal control 329

problem of a linear switched system. As far as optimal con- 330

trol of switched systems is concerned, there is no closed-form 331

solution in general, even for linear ones [26]. Recent efforts 332

have primarily focused on the open-loop systems. Specifically, 333

minimizing a quadratic cost on the state variables, an algebraic 334

switching condition was developed for the open-loop linear 335

switched systems [27], by leveraging the so-termed embedded 336

transformation [28]. This result was further generalized to the 337

multiple objective case [29]. For general closed-loop systems, 338

whether and how one can obtain a closed-form expression of 339

the switching condition remains unclear. Indeed, the attacked 340

system (2) constitutes a special closed-loop system involv- 341

ing scalar control (instead of vector) ua(t), which prompts 342

us to exploit the embedded transformation as well as recent 343

mathematical programming advances to hopefully tackle (11). 344

The idea of the embedded transformation is to relax each 345

binary constraint wj(t) ∈ {0, 1} to a box one wj(t) ∈ [0, 1], 346

followed by solving a convex problem. Rather than dealing 347

with constraint (11d), we consider the switch input vector w(t) 348

belonging to the following convex set: 349

W1 :=
⎧⎨
⎩w(t)

∣∣∣
M∑

j=1

wj(t) = 1, and 0 ≤ wj(t) ≤ 1 ∀j

⎫⎬
⎭. (12) 350

After replacing the last constraint w(t) ∈ W0 with w(t) ∈ 351

W1 in (11), we arrive at the following embedded switching 352

data-injection attack design problem: 353

max (11a) (13a) 354

s.t. (11b), (11c), and w(t) ∈ W1 (13b) 355

which boils down to an optimal control problem of LQR 356

type and whose optimal solution can be obtained leveraging 357

Pontryagin’s maximum principle. If luckily, the optimal solu- 358

tion of w(t) in (13) takes values at w(t) ∈ W0 for all t, one can 359

verify that the resulting solution is also the optimal solution of 360

the original problem (11). To see this, we discuss the following 361

two cases depending on whether Ja or Jb is maximized. 362

A. Maximizing Ĵa 363

Before applying the embedded transformation, we first 364

simplify Ĵa. According to (10), Ĵa can be written as 365

Ĵa = 1

2
x�

c

(
tf
)
Gxc

(
tf
)

366

+ 1

2

M∑
j=1

wj

∫ tf

t0

[
u�

c (t)Qjuc(t)− γju
2
a(t)

]
dt. (14) 367
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For notational brevity, the dependence on t will be neglected.368

Since w ∈ W0, it can be easily checked that369 ⎛
⎝ M∑

j=1

wjdj
a

⎞
⎠

�
K�

⎛
⎝ M∑

j=1

wjQj

⎞
⎠ M∑

j=1

wjKdj
a =

M∑
j=1

wjdj
a
�

K�QjKdj
a370

and371 ⎛
⎝ M∑

j=1

wjdj
a

⎞
⎠

�
K�

⎛
⎝ M∑

j=1

wjQj

⎞
⎠KCxc =

M∑
j=1

wjdj
a
�

K�QjKCxc.372

Following (6), define for all j = 1, . . . ,M that:373

Q̃j := K�QjK (15a)374

γ̃j := dj
a
�

K�QjKdj
a − γj (15b)375

sj := C�K�QjKdj
a. (15c)376

Expanding (14), Ĵa can be further simplified into377

Ĵa = 1

2
x�

c (tf )Gxc(tf )378

+ 1

2

M∑
j=1

wj

∫ tf

t0

(
x�

c wjQ̃jxc + 2x�
c sjua + γ̃ju

2
a

)
dt. (16)379

If the objective function Ĵa in (10) is adopted, we have the380

following result.381

Theorem 1: Consider the performance index (16) for the382

attacked system (2). Then, the optimal switching condition of383

the switching attack for the original design problem (11) is384

given by385

i(t) := arg max
j∈{1,...,M} qi(t)− f 2

j (t)/γ̃j (17)386

and the optimal data-injection law387

ua(t) := −fi(t)/γ̃i(t) (18)388

where389

fj(t) := s�xc
j (t)+ bj

a
�
(t)λ(t) ∀j = 1, . . . ,M (19)390

and λ(t) := [λ1(t) · · · λn(t)]� is the solution of391

λ̇(t) = −Q̃i(t)xc(t)− ua(t)si(t) − A�
a λ(t) (20)392

with the boundary condition λ(tf ) = Gx(tf ).393

Proof: Our proof starts with Pontryagin’s maximum princi-394

ple for the relaxed problem (13) (see [23]), which is followed395

by showing that the optimal solution of w is always achieved at396

one of the vertices of the polytope W1. Hence, the relaxation397

is tight, which recovers the optimal solution of the original398

challenging nonconvex problem (11). Toward this objective399

and using (21), the Hamilton function for (13) is given by400

H = x�
c

M∑
j=1

wjQ̃jxc + 2x�
c

M∑
j=1

wjsjua +
M∑

j=1

wjγ̃ju
2
a401

− λ�
⎛
⎝Aaxc +

M∑
j=1

wjbj
aua

⎞
⎠. (21)402

To ensure existence of a meaningful solution, the adjustable403

parameters Qj, γj, and {dj
a}M

j=1 should be designed such that404

∂2H/∂u2
a < 0 [30]. Upon defining γ̃ := [γ̃1 · · · γ̃M]�, we 405

deduce that for all w ∈ W1, the following holds: 406

∂2H/∂u2
a =

M∑
j=1

wjdj
a
�

K�QjKdj
a − γj = w�γ̃ < 0. (22) 407

That is, function H is strictly concave with a unique maximum 408

given by the stationary point of the gradient in ua. By setting 409

∂H/∂ua = 0, we arrive at 410

ua = −
M∑

j=1

wj
s�xc

j + bj
a
�
λ

dj
a
�

K�QjKdj
a − γj

= −
M∑

j=1

wj
fj
γ̃j
. (23) 411

By the co-state equation λ̇ = −∂H/∂xc, we have that 412

λ̇ = −
M∑

j=1

wjQ̃jxc −
M∑

j=1

wjsjua − A�
a λ. 413

Let f := [f1 · · · fM]� and q := [q1 · · · qM]�. Plugging (23) 414

into (21) yields 415

H = λ�Aaxc + w�q
2

−
(
w�f

)2

2w�γ̃
416

where qi = x�
c Q̃xc. Evidently, as only the last two terms in H 417

depend on w, maximizing H with respect to w ∈ W1 is equiv- 418

alent to maximize the following reduced Hamilton function 419

over W1: 420

H̄ := w�q
2

−
(
w�f

)2

2w�γ̃
:= ϕ(w)

2
− ψ2(w)

2φ(w)
. 421

The derivatives of φ(w) and ψ(w) with respect to wj are 422

given by 423

φ̇ = γ̃j, and ψ̇ = fj. (24) 424

The second derivative of H̄ with respect to wj is 425

∂2H̄

∂w2
j

= −
(
fjφ − γ̃jψ

)2

φ3
≥ 0. (25) 426

Likewise, the second partial derivative of H̄ with respect to wj 427

and wk can be found as 428

∂H̄

∂wj∂wk
= − (fjφ − γ̃jψ)(fkφ − γ̃kψ)

φ3
. (26) 429

Define z := [z1 · · · zM]� with entries given by zj = fjφ − 430

γ̃jψ . Then, based on (25) and (26), the Hessian matrix of H̄ 431

can be written as follows: 432

∂2H̄

∂w2
= − 1

φ3

⎡
⎢⎢⎢⎣

z2
1 z1z2 · · · z1zM

z2z1 z2
2 · · · z2zM

...
...

. . .
...

zMz1 zMz2 · · · z2
M

⎤
⎥⎥⎥⎦ = zz�

−φ3

 0 433

which confirms that function H̄ is convex over W1. 434

Maximizing H over w ∈ W1 reduces to maximizing convex 435

H̄ over a convex feasibility set w ∈ W1. In this case, the min- 436

imum is always attained at one of the vertices of the polytope 437

determined by the M box constraints in W1 [31]. It is evident 438
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Algorithm 1: Optimal Switching Data-Injection Attack
Algorithm

1 Determine dj
a for all compromised sensor sets j ∈ {1, . . . ,M}.

2 Set: G, Qj, and γj according to the attacker’s preference.
3 for i = 1, . . . ,M do
4 Solve (29);
5 end
6 Initialize: attack horizon [t0, tf ], and S(t0).
7 Estimate: initial state xc(t0).
8 while t ≤ tf do
9 for i = 1, . . . ,M do

10 Compute (19);
11 Evaluate βj(t) = qj(t)− f 2

j (t)/γ̃j;
12 end
13 if i := arg maxj{βj} then
14 Compute (28);
15 ẋc(t) = Aaxc(t)+ bi

aua(t);
16 λ(t) = Pixc(t);
17 end
18 end

that the vertices of W1 coincide with the standard basis vectors439

wj ∈ R
M (whose jth entry is one, and remaining entries are440

zero), satisfying wj ∈ W0. Hence, the optimal solution of the441

relaxed problem recovers the optimal solution of the original442

nonconvex problem. Concretely, we have that443

max
w∈W1

H̄(w) = max
j∈{1,...,M} qj(t)− f 2

j (t)/γ̃j (27)444

and the optimal switching instants are given by the time when445

w∗(t) changes. This completing the proof.446

Regarding Theorem 1, we have the following observations.447

Remark 1: By simply comparing the values {qj(t) −448

f 2
j (t)/γ̃j} for all sensor sets at each instant, the attacker449

achieves an optimal switch input.450

Remark 2: In the steady state, the optimal data-injection451

law is a state-feedback signal given by452

ua(t) = − 1

γ̃i

(
s�

i + bi
a
�

Pi

)
xc(t) (28)453

where Pi ∈ S
n×n+ is the solution of the Riccati equation454

PiAa + A�
a Pi − 1

γ̃i

(
Pibi

a + si
)(

bi
a
�

Pi + s�
i

)
+ Qi = 0. (29)455

Remark 3: To find ua(t0) in (28), the adversary has to esti-456

mate the initial state xc(t0) from sensor measurements y(t) of457

the healthy plant for t ≤ t0, using, e.g., a Luenberger observer,458

before launching attacks.459

B. Maximizing Jb460

According to (10), Ĵb can be written as461

Ĵb = 1

2
x�

c (tf )Gxc(tf )462

+ 1

2

M∑
j=1

wj

∫ tf

t0

[
x�

c (t)Qjxc(t)− γju
2
a(t)

]
dt. (30)463

If the objective function Ĵb is adopted, we have the following464

theorem.465

Theorem 2: The optimal switching condition of the switch- 466

ing attack that maximizes the performance index (30) for the 467

attacked system (2) is given by 468

i(t) := arg max
j∈{1,...,M} x�

c Qjxc + 1

γj

(
bj

a
�
λ
)2

(31) 469

with the optimal data-injection law being 470

ua(t) := 1

γi
bj

a
�
λ(t) (32) 471

where λ(t) is the solution of 472

λ̇(t) = −Qixc(t)− A�
a λ(t) (33) 473

with the boundary condition λ(tf ) = Gx(tf ). 474

Proof: Appealing again to the Pontryagin’s maximum prin- 475

ciple, the Hamilton function is given by 476

H = 1

2

M∑
j=1

wj

[
x�

c (t)Qjxc(t)− γju
2
a(t)

]
477

+ λ�(t)

⎡
⎣Aaxc(t)+

M∑
j=1

wjbj
aua(t)

⎤
⎦. (34) 478

The co-state equation confirms that 479

λ̇(t) = −
M∑

j=1

wjQjxc(t)− A�
a λ(t) (35) 480

and by means of the coupled equation, it further holds that 481

ua(t) =
M∑

j=1

wj

γj
bj

a
�
λ(t). (36) 482

Substituting (36) into (34) yields 483

H̄ =
M∑

j=1

wjx
�Qj
c xc +

M∑
j=1

M∑
j=1

wjwk

γjγk

(
λ�bj

a

)(
λ�bk

a

)
. 484

Maximizing H̄ over w(t) ∈ W1 now boils down to solving the 485

following quadratic programming problem: 486

maximize
w

w�Hw + w�q (37a) 487

subject to w ∈ W1 (37b) 488

where H := hh� with h := [(λ�b1
a)/γ1 · · · (λ�bM

a )/γM]� and 489

q := [(x�Q1
c xc) · · · (x�QM

c xc)]�. 490

Evidently, function H̄ is convex in w. Again, the optimal 491

solution of maximizing H̄(w) over w ∈ W1 is attained (at 492

least) at one of the vertices of the polytope determined by W1, 493

hence proving that the switch input w(t) obtains its optimal 494

solution in W0. Concretely, we have that 495

max
w∈W1

H̄(w) = max
j∈{1,...,M} x�

c Qjxc + 1

γj

(
λ�bj

a
)2

(38) 496

completing the proof. 497
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IV. COUNTERMEASURE DESIGN498

After exploiting the attack strategy from the perspective499

of the adversary, it is of paramount importance to pursue500

defense schemes (countermeasures) to mitigate the attacks.501

The problem of interest is to design an enhanced output-502

feedback controller to stabilize the attacked system, such that503

the control performance is preserved in a well-defined sense.504

The countermeasure against switching attacks has mainly505

focused on the network topology attack and the DoS506

attack [20]. The resilient control against location switching507

attacks has not been investigated in the literature. Compared508

with the existing efforts that use cover network information,509

or have a subset of sensors immune to attacks destroying510

the feasibility of stealthy attacks [32], this article develops511

a resilient control scheme that tolerates intrusions. In gen-512

eral, resilience means that the operator maintains an acceptable513

level of operational normalcy despite attacks. Before present-514

ing the countermeasure design, we start by introducing the515

definition of a resilient control scheme.516

Definition 1: A feedback control law ũ is said to be resilient517

if it can stabilize the plant under a sequence of attacks arbi-518

trarily constructed based on a set of state-feedback laws, while519

guaranteeing an acceptable cost, that is, for some given bound520

J̃, the following holds:521

J̃ ≤ J̃∗ (39)522

where523

J̃ =
∫ ∞

0

(
x�

c Q̃xc + ũ�R̃ũ
)

dt. (40)524

The operator has the freedom to select the two weighting525

matrices Q̃  0 and R̃  0 to compensate for the control526

performance degradation of the healthy plant. The state of the527

healthy system can be reconstructed using, e.g., a Luenberger528

observer [33]. If the attacker injects false data into a set of529

sensors over a period of time, the reconstruction error ec(t)530

may diverge and the alarm will be triggered if it exceeds a531

threshold532 { ˙̂x(t) = Ax̂(t)+ Buc(t)+ L[yc(t)− ŷ(t)]
ŷ(t) = Cx̂(t)

533

ėc(t) = (A − LC)ec(t)+ Ldaua(t)534

where ec(t) := xc(t)− x̂(t) and L is a gain matrix.535

The attacked system can be modeled as a switched system536

consisting of M modes537

Mode j: ẋc,j(t) = (
Aa + BK
Kj

)
xc,j(t), j = 1, . . . ,M.538

Consider for example, if Ja is maximized, substituting (28)539

into (11b), we have540


Kj = − 1

γ̃jj

[
dj

a

(
s�

j + Bj
a
�

Pj

)]
. (41)541

The attacker uses matrices 
Kj at time tj and switches to 
Kj′542

at tj′ . The attacker may change the attack locations randomly543

according to a stochastic model, or optimally with respect to an544

unknown criterion. As such, matrices 
Kj can be treated as a545

switching uncertainty of the healthy plant. The guaranteed cost546

control approach can be adopted to mitigate the attacks [34].547

Once the detector detects an attack, or that the system response 548

is considerably altered such that the attack is exposed, the 549

defender needs to estimate the sensor links that have been 550

compromised, as well as identify the uncertainty matrices 
Kj. 551

Recent advances on identifying the attack set from sensor mea- 552

surements (e.g., [35]) assume attacks on the state equations, 553

and do not utilize the information of the attacked state xc. 554

The proposed identification problem is generally NP-hard, and 555

reducing-complexity algorithms are presented. We adopt the 556

following steps to defend against switching attacks. 557

Step 1 (Attack Extraction): As the false data injected into 558

sensor measurements 559

f a(t) = ua(t)dj
a. (42) 560

The defender should find historical false data f a(t) := 561

[f 1
a (t) · · · f n

a (t)]
� to identify the uncertainty matrix 
Kj. The 562

goal of this step is to extract f a(t) and sort the timestamp 563

of f a(t) into M parts, namely, O1, . . . , OM , each of which 564

corresponds to a compromised sensor set. In Example 1, if 565

f 1
a (t) < δ, where δ > 0 is a preselected threshold to account 566

for computation and measurement inaccuracies, then t ∈ O3 567

(referring to set {2, 3}); if f 2
a (t) < δ, t ∈ O2 (referring to set 568

{1, 3}). If f 3
a (t) < δ, then t ∈ O1 (referring to set {1, 2}). In this 569

article, we assume that the control center is able to reset the 570

attacked system under a known initial condition, and compare 571

the attacked sensor measurements with yv(t) from a virtual 572

healthy system, namely 573

ẋv(t) = Aaxv(t) (43a) 574

yv(t) = Cxv(t). (43b) 575

Upon defining 576

ex = xc − xv 577

ey = yc − yv 578

we obtain that 579

ėx(t) = Aaex(t)+ BKf a(t) (44a) 580

ey(t) = Cex(t)+ f a(t) (44b) 581

where ex(0) = 0. Vector f a(t) can be calculated by the compar- 582

ison result ey(t), and once f a(t) is recovered, the compromised 583

sensors are found. 584

Step 2 (Attack Identification): The defender makes use of 585

the data whose timestamp was collected in Oj to identify the 586

unknown parameter matrices 
Kj, using the common least- 587

squares algorithm by solving 588

min

Kj

∑
t∈Oj

∥∥ f a(t)−
Kjxc(t)
∥∥2

2. (45) 589

In practice, ey can be induced by, e.g., link failures in system 590

components, noise in communication channels, or intentional 591

attacks. If the online identification algorithm converges, there 592

exists a state-feedback data-injection attack [36] (different 593

from random attacks [37] or constant switching attacks [38]). 594

Step 3 (Resilient Control): To circumvent switching attacks, 595

the controller needs to be redesigned in a way to be 596

resilient. The system implements a feedback control law ũ 597

on the attacked system, which is obtained according to the 598
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following design criterion. The system operator selects a599

positive-definite matrix P̃ a priori, and its objective is to600

design a resilient control gain K̃ for the switching data-601

injection attacks, by solving the linear matrix inequality (LMI)602

in (48).603

Theorem 3: The feedback control law ũ(t) = K̃yc(t)604

is resilient with respect to the cost function (40).605

That is, for arbitrary switching sequences, the attacked606

system607

ẋc(t) =
M∑

j=1

wj(t)Ãjxc(t) (46)608

is asymptotically stable, and J̃ satisfies609

J̃ ≤ x�
0 P̃x0 (47)610

if there exist a symmetric matrix P̃  0 and a scalar γ̄ > 0611

such that the following LMI holds:612

[
Ã

�
i P̄ + P̄Ãi + Q̃ K̃

�

K̃ −R̃
−1

]
≤ γ̄ I (48)613

where x0 is the initial state, and Ãj := A + BK̃(C +
Kj) for614

all j = 1, . . . ,M.615

Proof: Choose a common Lyapunov function616

V(x) = x�
c (t)P̃xc(t) (49)617

for some symmetric matrix P̃  0. The time derivative of V(x)618

can be found as619

V̇(x) = ẋ�
c (t)P̃xc(t)+ x�

c (t)P̃ẋc(t)620

= x�
c (t)

M∑
j=1

wj(t)
(

Ã
�
j P̃ + P̃Ãj

)
xc(t).621

By the common Lyapunov function method, if the following622

holds:623

x�
c (t)

(
Ã

�
j P̃ + P̃Ãj + Q̃ + K̃

�
R̃K̃

)
xc(t) ≤ 0 (50)624

then625

V̇(x) ≤ −x�
c (t)

(
Q̃ + K̃

�
R̃K̃

)
xc(t) ≤ 0 (51)626

for wj(t) ∈ {0, 1} ∀j. That is, the attacked system is asymptot-627

ically stable. From (51), it is also evident that628

x�
c Q̃xc + ũ�R̃ũ ≤ −V̇(x). (52)629

Since xc(∞) = 0 holds for the stable closed-loop system, we630

deduce that631

J̃ ≤ −
∫ ∞

0
V̇(x)dt = x�

0 P̃x0. (53)632

The Schur compliment further confirms that (50) is equivalent633

to the LMI in (48), which completes the proof.634

V. ILLUSTRATIVE EXAMPLES 635

In this section, we provide several numerical tests to show- 636

case the effectiveness of the proposed resilient control scheme 637

as well as the practical merits of our theory. 638

A. Power Generator 639

Consider a remotely controlled power generator described 640

by the following normalized swing equation [39]: 641

δ̇(t) = ω(t) (54a) 642

Mω̇(t) = −Dω(t)− Pf (t)+ u(t) (54b) 643

where δ and ω denote the phase angle and frequency deviation 644

of the generator (rotor), respectively; u(t) is the mechan- 645

ical power provided for the generator; and M and D are 646

the inertia and damping coefficients, respectively. The term 647

Pf (t) = b sin(δ(t)) represents the electric power flow from 648

the generator to the bus, where b is the susceptance of the 649

transmission line. Upon linearizing the model at the nominal 650

point ω = δ = 0 with M = D = b = 1, and defining the 651

state x := [δ ω]�, we obtain an LTI system as in (1) whose 652

parameters are given by 653

A =
[

0 1
−1 −1

]
, B =

[
0 0
1 1

]
654

C = I, K = −
[

1 0
0 2

]
. 655

We consider a practical scenario where the adversary can alter 656

the mechanical power supplied to the generator, through break- 657

ing the integrity of the sensor signal measuring δ and ω of the 658

generator. Specifically, the adversary injects a state-feedback 659

signal into the control signal, which will make the generator 660

increase its power generation, and correspondingly, increase 661

the power flow Pf along the transmission line. Choose with- 662

out loss of generality that Q1 = Q2 = I and γ1 = γ2 = 6. 663

The attack vectors are d1
a = [1 0]� and d2

a = [0 1]�, i.e., the 664

attacker compromises one sensor every time. Then, one can 665

write that s1 = [1 0] and s2 = [0 4]. The healthy plant under 666

switching attacks becomes a switched system of two modes. 667

Using Theorem 1, the switching condition (17) becomes 668

i(t) := arg max
j∈{1,2} zj (55) 669

where 670

z1 = 1

4
|δ − λ2|, and z2 = 1

4
|4ω − 2λ2|. 671

The state trajectories of the system under switching attacks and 672

those of the health plant are presented in Fig. 2, along with 673

the switching instants between the two nodes given in Fig. 3. 674

Observe that the attack stays in Mode 1 during the period 675

[0.195, 0.278] s, yet it switches to Mode 2 at t = 0.278 s, 676

and stays there till t = 2.18 s. 677

Choose Q1 = 2I and keep other parameters unchanged. 678

Fig. 4 compares the simulation results under the optimal 679

switching attacks and under random switching attacks subject 680

to (55) with z1 ∼ U[0, 1] and z2 = 0.8. Their corresponding 681

performance indices [see (16)] are 93.5 and 51.5, respectively. 682
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Fig. 2. State trajectories under optimal switching attacks.

Fig. 3. Optimal switching instants.

Fig. 4. Comparison results between optimal switching attacks and random
switching attacks.

Invoking Theorem 3, a resilient control gain matrix can be683

obtained as684

K̃ = −
[

1.59 0.28
−0.1 0.89

]
.685

After implementing a resilient state-feedback control686

scheme, the state trajectories of the plant under attacks and the687

healthy plant are depicted in Fig. 5, where the upper bound688

on the cost was J̃∗ = 47.2.689

B. Power Systems690

Now, consider a power system comprising several power691

generators and load buses. Following (54), the dynamics per692

generator can be modeled by a set of linear swing equations:693

δ̇i(t) = ωi(t) (56a)694

Miω̇i(t) = −Diωi(t)− Pj
f (t)+ ui(t) (56b)695

Fig. 5. State trajectories under the proposed resilient control.

for i = 1, . . . , ng, where ng is the total number of generators. 696

We consider a PID load frequency controller, namely 697

ui = −
(

KP
i ωi + KI

i

∫ t

0
ωi dt + KD

i ω̇i

)
(57) 698

where the controller parameters KP
i ≥ 0, KI

i ≥ 0, and KD
i ≥ 0 699

are the proportional gain, integral gain, and derivative gain, 700

respectively. The overall power system dynamics of ng gen- 701

erators can be compactly expressed as the following linear 702

descriptor system: 703⎡
⎣ I 0 0

0 M + KD 0
0 0 0

⎤
⎦
⎡
⎣ δ̇

ω̇

θ̇

⎤
⎦ 704

= −
⎡
⎣ 0 −I 0

BGG + KI DG + KP BGL

BLG 0 BLL

⎤
⎦
⎡
⎣ δ

ω

θ

⎤
⎦ −

⎡
⎣ 0

Pωa
PL

⎤
⎦ 705

(58) 706

where vectors δ and ω collect accordingly the voltage phase 707

angles and the rotor angular frequency deviations at all gener- 708

ator buses; vectors θ and PL stack up the voltage phase angles 709

and power consumption at all load buses, respectively; and M 710

is a diagonal matrix; and likewise for matrices DG, DL, KP, 711

KI , and KD. 712

The attack design approach presented in Theorem 2 was 713

numerically tested and verified using the IEEE 9-bus bench- 714

mark system, which has three power generators and six 715

load buses [35]. The frequency measurements obtained may 716

have already been strategically modified by a knowledgeable 717

attacker to cause system frequencies to deviate from their nom- 718

inal values. Here, we assume that the attacker can alter the 719

frequencies measured at generators g1 and g2, and injects false 720

data Pωa := dj
aua(t) into the controller at victim generators. 721

Upon defining the state x := [δ� ω�]�, the attacked system 722

can be rewritten as 723

ẋ(t) = Aax(t)+ bj
aua(t). 724

Choose 725

KP = diag([0.1 0.1 0.1]), K = I 726

Q1 = diag([0 0 0 16 16 16]),Q2 = diag([0 0 0 14 14 14]) 727

γ1 = 7, γ2 = 11 728

d1
a = [0.15 0 0]�, d2

a = [0 0.15 0]�. 729
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Fig. 6. Optimal switching instants.

Fig. 7. State trajectories under optimal switching attacks.

Fig. 8. State trajectories under nonswitching attacks.

Then730

Aa =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−0.235 0.119 0.116 −1.8 0 0
0.436 − 0.847 0.411 0 − 4.941 0
0.905 0.874 −1.778 0 0 −9.25

⎤
⎥⎥⎥⎥⎥⎥⎦

731

b1
a = [0 0 0 1.2 0 0]�, b2

a = [0 0 0 0 4.4 0]�.732

Appealing to Theorem 2, the optimal switching condi-733

tion (31) becomes (55) where734

z1 = 16
(

x2
4 + x2

5 + x2
6

)
+ 0.21λ2

4735

z2 = 14
(

x2
4 + x2

5 + x2
6

)
+ 1.76λ2

5.736

Fig. 8 shows the frequency deviation response of g1 and737

g2, when only g1 or g2 is under attack. Comparing Figs. 6738

and 7, it is evident that at switching instants, the curves739

become discontinuous, which gives rise to the so-called vibra- 740

tion phenomenon [40]. The attacker switched four times in the 741

simulation interval of 12 s. 742

VI. CONCLUSION 743

In this article, the optimal data-injection attack with switch- 744

ing behaviors was studied. Two different objective functions 745

were suggested for the adversary to optimally determine the 746

attack strategy. One focuses on the controller energy consump- 747

tion, while the other considers the quadratic integration of 748

states. The optimal attack design problem was formulated as 749

an integer programming problem, which is hard to solve in 750

general. By reformulating it as an optimal control problem 751

of a linear switched system, we were able to find the optimal 752

solution. A defense approach was developed to mitigate a class 753

of data-injection attacks with feedback and location switching 754

characteristics. The merits and practicability of our proposed 755

strategies were shown by numerical simulations. 756
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Optimal Switching Attacks and Countermeasures
in Cyber-Physical Systems

Guangyu Wu , Gang Wang , Member, IEEE, Jian Sun , Member, IEEE, and Lu Xiong

Abstract—The work analyzes dynamic responses of a healthy1

plant under optimal switching data-injection attacks on sensors2

and develops countermeasures from the vantage point of optimal3

control. This is approached in a cyber-physical system setting,4

where the attacker can inject false data into a selected subset of5

sensors to maximize the quadratic cost of states and the energy6

consumption of the controller at a minimal effort. A 0-1 integer7

program is formulated, through which the adversary finds an8

optimal sequence of sets of sensors to attack at optimal switch-9

ing instants. Specifically, the number of compromised sensors10

per instant is kept fixed, yet their locations can be dynamic.11

Leveraging the embedded transformation and mathematical pro-12

gramming, an analytical solution is obtained, which includes an13

algebraic switching condition determining the optimal sequence14

of attack locations (compromised sensor sets), along with an15

optimal state-feedback-based data-injection law. To thwart the16

adversary, however, a resilient control approach is put forward17

for stabilizing the compromised system under arbitrary switch-18

ing attacks constructed based on a set of state-feedback laws,19

each of which corresponds to a compromised sensor set. Finally,20

an application using power generators in a cyber-enabled smart21

grid is provided to corroborate the effectiveness of the resilient22

control scheme and the practical merits of the theory.23

Index Terms—Data-injection attacks, dynamic set, resilient24

control, switching condition.25

I. INTRODUCTION26

CYBER-PHYSICAL systems (CPSs) inherit the commu-27

nication structure of the Internet of Things (IoT), yet they28

place more emphasis on the monitoring and control of entities29
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in the physical world [1]. These systems are typically com- 30

posed of a set of networked agents, that includes sensors, actu- 31

ators, controllers, and communication devices. Heterogeneous 32

devices are connected to collaboratively control the physi- 33

cal processes over high-speed communication networks [2]. 34

CPSs realize the feedback and information exchange between 35

the cyberspace and the physical world. Nonetheless, the deep 36

integration of physical and information systems brings poten- 37

tial threats too [3]. Real-world applications are safety-critical: 38

their failure can cause irreparable harm to the physical system 39

being controlled and to people who rely on it. As a typical 40

application of CPSs, the cyber-enabled smart grid comprises a 41

large number of servers, computers, meters, phasor measure- 42

ment units, generators, and so on. By blocking the information 43

exchange between the users and the electricity sectors or 44

destroying the data integrity [4], [5], the adversary can affect 45

the electricity price and increase the energy consumption of 46

generators [6]. 47

To enhance the security of CPSs, the defender should be 48

aware of diverse attack behaviors that the CPS may suffer 49

as well as understand the attacker’s intention [7]. Malicious 50

attacks on CPSs can be launched at the physical layer, 51

network layer [8], and application layer [9]. A common way 52

to enhance the resilience of CPSs is to implement defense 53

strategies against known attack patterns [10]. The resilient 54

control or estimation focuses on mitigating the normal opera- 55

tion of attacked systems or restoring the actual state variables 56

with certain acceptable error bounds [11]. Most advances 57

impose assumptions on the attacker’s abilities [12] or on its 58

behavior patterns [13]. The resilient controller under fixed 59

delay or out-of-order transmissions was proposed to optimize 60

the worst-case performance [14]. An output-feedback con- 61

troller under deception attacks with stochastic characteristics 62

was designed to guarantee the prescribed security in prob- 63

ability while obtaining an upper bound of a quadratic cost 64

criterion [15]. 65

On the other hand, studying the adversary’s optimal attack 66

schedule can in turn offer insight on devising effective defense 67

strategies [16]. A family of cyber attacks with switching 68

behaviors has attracted attention, which can be categorized 69

into two groups: 1) location-switching attacks and 2) signal- 70

switching attacks. The attack signal can be, for instance, 71

a switching signal turning on or off electrical devices and 72

change the network topology [17] or a continuous false 73

signal injected into controllers or actuators. State recovery 74

under location switching attacks with known or unknown 75

switching frequencies was studied in [18]. Stochastic linear 76

2168-2216 c© 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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systems under attacks were modeled as switching systems with77

unknown inputs, followed by a multiple model approach for78

resilient state estimation [19]. Precisely, the attacker decides79

when and where to launch an attack based on a Markov80

process. Switching DoS attacks on multiple communication81

lines with limited attacking times were examined [20]. The82

optimal switching sequence can be found by solving an integer83

program using an exhaustive search.84

Despite the considerable success on switching attacks, the85

response of dynamic systems under switching data-injection86

attacks that can alter system dynamics (rather than estima-87

tion error or network topology) has not been studied. There88

are two critical challenges: Q1) Whether and how one can89

design an optimal switching data-injection law to maximize90

damage to the control system from the vantage point of the91

attacker? and Q2) How can one design an enhanced feed-92

back control law to restore stability and maintain control93

performance of the system under such switching data-injection94

attacks? We answer these two questions in this article con-95

sidering switching data-injection attacks on sensors. In our96

previous works [21], [22], attacks on actuators were consid-97

ered, that aim at maximizing a quadratic state cost. In contrast,98

this article takes the standpoint of the attacker and focuses on99

designing attacks to maximize the controller’s effort. Last but100

not least, a defense framework to stabilize the compromised101

system is proposed here. Specifically, the optimal switching102

data-injection attack design problem is formulated as a 0-1103

integer programming problem [22], for which we develop104

an analytical solution of optimizing a nonlinear fractional105

function of the switching input.106

This article studies the data-injection attacks that aim at107

manipulating the control signal and corrupting the system108

dynamics. Typically, CPSs comprise a large amount of sens-109

ing devices that are distributed in an unprotected, or even110

harmful environment. The malicious attacker can perform111

the node capture attack to crack the communication code,112

and manipulate purposefully the information exchanged with113

neighboring nodes or with the control center. To “benchmark”114

the worst-case performance due to comprised control signals,115

the sequence of optimal attack locations (namely, set of sen-116

sors) along with the corresponding optimal data-injection law117

over an attack duration is addressed. In this context, the set118

of attack locations is also termed as a compromised set. In a119

nutshell, the main contributions of this article are summarized120

as follows.121

c1) We formulate the optimal switching data-injection attack122

design problem as a 0-1 integer programming problem.123

An analytical solution is established, including an alge-124

braic switching condition along with a state-feedback-125

based data-injection law.126

c2) We develop a novel resilient control scheme to miti-127

gate the effect of attacks and enhance the closed-loop128

system, that entails identifying uncertainty matrices129

associated with different compromised sets and design-130

ing output-feedback controller gains. Our proposed131

control law can stabilize systems under even the132

worst-case attacks, while ensuring a bounded control133

cost.134

The rest of this article is organized as follows. In Section II, 135

the attack model is given. In Section III, the optimal switch- 136

ing attack design problem is formulated and studied. In 137

Section IV, a resilient control scheme is put forward to 138

defend against the switching attack with arbitrary switch- 139

ing sequences. Numerical tests using power generators are 140

presented in Section V, while this article is concluded in 141

Section VI. 142

II. ATTACK MODEL 143

We consider a healthy but possibly unstable plant described 144

by a linear time-invariant (LTI) system 145

ẋ(t) = Ax(t)+ Bu(t) (1a) 146

y(t) = Cx(t) (1b) 147

u(t) = Ky(t) (1c) 148

where x(t) ∈ R
n is the state vector, u(t) ∈ R

k is the con- 149

trol input, and (A, B, C) are the system matrices of suitable 150

dimensions. To stabilize the LTI system, the output-feedback 151

control with some gain matrix K ∈ R
k×m is considered. In the 152

context of switching attacks, the plant is supposed to com- 153

prise a large number of sensor nodes; that is, m is large. At 154

time t, each node sends its measurement to a central con- 155

troller via a vulnerable wireless network. Before characterizing 156

the worst-case attack consequence, we make several stan- 157

dard assumptions on the knowledge and attack ability of the 158

adversary. 159

Assumption 1: The adversary has perfect knowledge of the 160

system parameters in (1), namely, A, B, C, and K matrices. 161

Assumption 2: The adversary can capture the target sen- 162

sor nodes and crack the passwords of their communication 163

channels before launching attacks. 164

Assumption 3: When an attack occurs, the adversary injects 165

datum d0
a,jua(t) into compromised sensor j ∈ S(t) ⊆ 166

{1, . . . ,m}, where S(t) collects the indices of all attacked sen- 167

sors at time t; ua(t) is a global component that the attacker can 168

optimize over, yet the local components d0
a,j can be different 169

across sensors, which are arbitrarily selected by the adver- 170

sary a priori and kept fixed throughout the attack. After the 171

attack, the aggregated signal y(t) + da(t)ua(t) is transmitted 172

to the controller, where da(t) := [da,1(t) · · · da,m(t)]� with 173

da,j(t) = d0
a,j if j ∈ S and da,j(t) = 0 otherwise. Moreover, 174

da can be viewed as an “indicator” vector, which signifies the 175

locations of the attacked sensors. 176

Following conventions, we use accordingly symbols xc, yc, 177

and uc to denote the state, measurement, and control vectors 178

of the (compromised) LTI system under attack. Precisely, the 179

attacked system can be described as 180

ẋc(t) = Axc(t)+ Buc(t) (2a) 181

yc(t) = Cxc(t)+ da(t)ua(t) (2b) 182

uc(t) = Kyc(t). (2c) 183

For ease of understanding, consider the setup described 184

in Fig. 1, where the system consists of three sensor nodes. 185

Suppose that the adversary can compromise only one node at 186

a time. If the adversary compromises Sensor 1 at time t1, 187
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Fig. 1. Switching data-injection attack framework.

it holds that da(t1) = [d0
a,1 0 0]� with attack component188

d0
a,1 determined by the attacker at the starting time t0; and189

if Sensor 3 is attacked at time t2, then da(t2) = [0 0 d0
a,3]�.190

Correspondingly, the false data da(t1)ua(t1) and da(t2)ua(t2)191

are injected into the measurement vectors y(t1) = Cxc(t1)192

and y(t2) = Cxc(t2) [see (1b)] to yield the compromised193

measurement vectors yc(t1) and yc(t2) [see (2b)].194

In the traditional linear quadratic regulator (LQR) control,195

the goal of the system operator is to minimize the standard196

quadratic cost function involving the state variables and the197

controller effort over a fixed horizon; see standard textbook,198

e.g., [23]. On the contrary, the goal of the attacker is to199

maximize the aforementioned quadratic cost of the controller,200

therefore degrading the control performance, by choosing a201

sequence of instants to inject false data into a subset of sensors202

while maintaining a low attack cost.203

On the other hand, the injected data can be understood204

as an adversarial interference produced by certain electrical205

equipment in a dynamic system. Due to physical limitations206

however, these equipment cannot produce an arbitrarily large207

interference signal, so the amplitude of ua(t) should be kept as208

small as possible. Considering any finite-time horizon [t0, tf ],209

two meaningful objective functions for optimal attack design210

are given by211

Ja = 1

2
x�

c (tf )Gxc(tf )+ 1

2

∫ tf

t0

[
u�

c (t)Quc(t)− γ u2
a(t)

]
dt (3)212

and213

Jb = 1

2
x�

c (tf )Gxc(tf )+ 1

2

∫ tf

t0

[
x�

c (t)Qxc(t)− γ u2
a(t)

]
dt (4)214

where G and Q are symmetric, positive semidefinite matrices215

of suitable dimensions, and γ > 0 is a weighting coefficient,216

both chosen by the attacker. Their values tradeoff between the217

damage to the healthy plant and the attack cost. Specifically,218

too large (eigenvalues of) Q or too small γ values may incur219

instability of the plant under attack. If the adversary prefers220

a minimal energy cost and selects a larger γ value relative to221

(eigenvalues of) Q, then the resultant ua(t) is able to render222

the system states to deviate from their actual values, and the223

stability of the attacked system may not lose.224

Upon plugging (2b) and (2c) into (3), the objective function 225

Ja can be rewritten as 226

Ja = 1

2
x�

c (tf )Gxc(tf )+ 1

2

∫ tf

t0

[
x�

c (t)Q̃xc(t)+ 2ua(t)s�(t)xc(t) 227

+ γ̃ (t)u2
a(t)

]
dt (5) 228

where the coefficients are given by 229

Q̃ := C�K�QKC (6a) 230

s(t) := C�K�QKda(t) (6b) 231

γ̃ (t) := d�
a (t)K

�QKda(t)− γ. (6c) 232

To guarantee existence of an optimal solution, the adversary 233

needs to design Q and γ such that γ̃ (t) < 0 [23]. It is 234

clear from (5) that maximizing the controller energy consump- 235

tion in Ja amounts to maximizing integrations of both the 236

state quadratic x�
c (t)Q̃xc(t) and the cross term ua(t)s�(t)xc(t) 237

(between ua and xc). In comparison, only the integration of 238

the state quadratic is maximized in Jb. In other words, if the 239

adversary is solely interested in damaging the system state, 240

the objective function Jb is preferred; but if the control cost 241

of the attacked system is of interest too, then, Ja is preferred. 242

III. OPTIMAL SWITCHING ATTACK DESIGN 243

In a large-scale CPS setting, compromising all communica- 244

tion channels necessarily requires a large amount of energy. 245

The adversary with limited budget is instead inclined to attack 246

only few sensors, possibly those of lowest security levels or 247

with most vulnerable communication channels. Due to the lim- 248

ited computing resources and channel cracking capabilities, 249

this article focuses on a practical setting where the adversary 250

can attack a fixed number of sensors at a time. On the other 251

hand, it is also not wise or optimal for the attacker to con- 252

stantly attack a fixed set of sensors. A smart yet affordable 253

strategy is to select a size-fixed set of sensors to effect attacks 254

at every attack instant, to yield the worst-case system response. 255

This dynamic attack strategy is to switch the attack among 256

multiple sensor sets from time to time. 257

The goal of the attacker is to determine an optimal switching 258

sequence of sensor sets to attack with an optimal data-injection 259

law, so as to maximize the objective value Ja or Jb. When there 260

are m sensors and the adversary can attack say � � m sensors 261

at a time, the total number of candidate attacks (i.e., size-� 262

sensor sets) is M := (m
�

)
. With slight abuse of notation, the 263

M sensor sets (namely, the M sets of �-sensor combinations) 264

can be represented by the indicator vectors {di
a}M

i=1 defined in 265

Assumption 3. 266

Example 1: If m = 3 and � = 2, there are M = (3
2

)
267

sensor sets; that is, {1, 2}, {1, 3}, and {2, 3} collecting the 268

indices of the attacked sensors. Each of the three sensor 269

sets can be uniquely represented by d1
a := [d0

a,1 d0
a,2 0]�, 270

d2
a := [d0

a,1 0 d0
a,3]�, and d3

a := [0 d0
a,2 d0

a,3]�. 271

From Fig. 1, if the input to the controller is compromised, 272

the control signal (output of the controller) will be disturbed, 273

so will the system dynamics. The control signal under the 274
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described switching data-injection attacks can be given by275

uc(t) = K

⎡
⎣Cxc(t)+

M∑
j=1

wj(t)dj
aua(t)

⎤
⎦ (7)276

where the switch input vector w := [w1 · · · wM] belongs to277

W0 :=
⎧⎨
⎩w(t)

∣∣∣∣
M∑

j=1

wj(t) = 1, and wj(t) ∈ {0, 1} ∀j

⎫⎬
⎭. (8)278

Per attack instant t ≥ t0, since only one sensor set (namely,279

dj
a for some j) is to be chosen, its corresponding switch input280

wj(t) is set 1, while the others are set 0. Observe that the com-281

ponents of dj
a are time invariant and known to the attacker.282

Therefore, the values of w(t) := [w1(t) . . . wM(t)]� at dif-283

ferent t signify the compromised sensor sets at corresponding284

instants. If two consecutive compromised sets (i.e., before and285

after some instant t) are different, then instant t is a switching286

instant, namely, the time at which the value of w(t) changes.287

The compromised sets at all switching instants define the288

so-called switching sequence289

ζ := {(w(t0), ua(t0)), . . . , (w(tN), ua(tN))} (9)290

where t0 ≤ t1 ≤ · · · ≤ tN ≤ tf , the set {t1, . . . , tN} collects291

all switching instants, and N is the total number of switching292

operations.293

In general, the attacker can assume the same objective294

function for all sensor sets. In certain settings of practical295

interest, the attacker may prefer different objective functions296

when different sensor sets are compromised. In Example 1,297

if the attacker aims to induce a larger deviation to state xc,1298

(xc = [xc,1 xc,2 xc,3]�) when sensor set {1, 2} is attacked,299

the attacker can simply use a diagonal matrix Q1 with entry300

Q1(1, 1) greater than Q1(2, 2) and Q1(3, 3), where Q1 belongs301

to the objective function for set {1, 2}. This prompts us302

to choose an objective function that sums the excited local303

objective functions at every instant, that is304

Ĵa =
M∑

j=1

wjJ
j
a and Ĵb =

M∑
j=1

wjJ
j
b (10)305

where Jj
a or Jj

b is obtained by replacing Q and γ in (3) or (4)306

with Qj and γj.307

Putting (2), (7), and (10) together, the optimal switching308

data-injection attack design problem is to find w(t) and ua(t)309

that310

max Ĵa or Ĵb (11a)311

s.t. ẋc(t) = Aaxc(t)+
M∑

j=1

wj(t)bj
aua(t) (11b)312

uc(t) = K

⎡
⎣Cxc(t)+

M∑
j=1

wj(t)dj
aua(t)

⎤
⎦ (11c)313

w(t) ∈ W0 ∀t (11d)314

where the coefficients Aa := A + BKC and bj
a := BKdj

a for315

all j = 1, . . . ,M. In (11), the optimal switching data-injection316

attack design problem is formulated as a 0-1 integer program.317

If the binary variables {wj(t)}M
j=1 and the corresponding con- 318

straint (11d) are not present, (11) is LQR, whose optimal 319

solution can be readily obtained in the closed-form lever- 320

aging Pontryagin’s maximum principle (see [23]). In fact, 321

constraint (11d) renders (11) nonconvex and NP-hard in gen- 322

eral [24]. Fortunately, but if an optimal solution of w(t) is 323

successfully found, then the optimal switching sequence ζ can 324

be easily recovered. 325

Interestingly enough, if we view the attacked system (2) 326

as a linear switched system (see [25] for related definitions), 327

the problem of optimal switch data-injection attack design on 328

an LTI system in (11) can be treated as the optimal control 329

problem of a linear switched system. As far as optimal con- 330

trol of switched systems is concerned, there is no closed-form 331

solution in general, even for linear ones [26]. Recent efforts 332

have primarily focused on the open-loop systems. Specifically, 333

minimizing a quadratic cost on the state variables, an algebraic 334

switching condition was developed for the open-loop linear 335

switched systems [27], by leveraging the so-termed embedded 336

transformation [28]. This result was further generalized to the 337

multiple objective case [29]. For general closed-loop systems, 338

whether and how one can obtain a closed-form expression of 339

the switching condition remains unclear. Indeed, the attacked 340

system (2) constitutes a special closed-loop system involv- 341

ing scalar control (instead of vector) ua(t), which prompts 342

us to exploit the embedded transformation as well as recent 343

mathematical programming advances to hopefully tackle (11). 344

The idea of the embedded transformation is to relax each 345

binary constraint wj(t) ∈ {0, 1} to a box one wj(t) ∈ [0, 1], 346

followed by solving a convex problem. Rather than dealing 347

with constraint (11d), we consider the switch input vector w(t) 348

belonging to the following convex set: 349

W1 :=
⎧⎨
⎩w(t)

∣∣∣
M∑

j=1

wj(t) = 1, and 0 ≤ wj(t) ≤ 1 ∀j

⎫⎬
⎭. (12) 350

After replacing the last constraint w(t) ∈ W0 with w(t) ∈ 351

W1 in (11), we arrive at the following embedded switching 352

data-injection attack design problem: 353

max (11a) (13a) 354

s.t. (11b), (11c), and w(t) ∈ W1 (13b) 355

which boils down to an optimal control problem of LQR 356

type and whose optimal solution can be obtained leveraging 357

Pontryagin’s maximum principle. If luckily, the optimal solu- 358

tion of w(t) in (13) takes values at w(t) ∈ W0 for all t, one can 359

verify that the resulting solution is also the optimal solution of 360

the original problem (11). To see this, we discuss the following 361

two cases depending on whether Ja or Jb is maximized. 362

A. Maximizing Ĵa 363

Before applying the embedded transformation, we first 364

simplify Ĵa. According to (10), Ĵa can be written as 365

Ĵa = 1

2
x�

c

(
tf
)
Gxc

(
tf
)

366

+ 1

2

M∑
j=1

wj

∫ tf

t0

[
u�

c (t)Qjuc(t)− γju
2
a(t)

]
dt. (14) 367
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For notational brevity, the dependence on t will be neglected.368

Since w ∈ W0, it can be easily checked that369 ⎛
⎝ M∑

j=1

wjdj
a

⎞
⎠

�
K�

⎛
⎝ M∑

j=1

wjQj

⎞
⎠ M∑

j=1

wjKdj
a =

M∑
j=1

wjdj
a
�

K�QjKdj
a370

and371 ⎛
⎝ M∑

j=1

wjdj
a

⎞
⎠

�
K�

⎛
⎝ M∑

j=1

wjQj

⎞
⎠KCxc =

M∑
j=1

wjdj
a
�

K�QjKCxc.372

Following (6), define for all j = 1, . . . ,M that:373

Q̃j := K�QjK (15a)374

γ̃j := dj
a
�

K�QjKdj
a − γj (15b)375

sj := C�K�QjKdj
a. (15c)376

Expanding (14), Ĵa can be further simplified into377

Ĵa = 1

2
x�

c (tf )Gxc(tf )378

+ 1

2

M∑
j=1

wj

∫ tf

t0

(
x�

c wjQ̃jxc + 2x�
c sjua + γ̃ju

2
a

)
dt. (16)379

If the objective function Ĵa in (10) is adopted, we have the380

following result.381

Theorem 1: Consider the performance index (16) for the382

attacked system (2). Then, the optimal switching condition of383

the switching attack for the original design problem (11) is384

given by385

i(t) := arg max
j∈{1,...,M} qi(t)− f 2

j (t)/γ̃j (17)386

and the optimal data-injection law387

ua(t) := −fi(t)/γ̃i(t) (18)388

where389

fj(t) := s�xc
j (t)+ bj

a
�
(t)λ(t) ∀j = 1, . . . ,M (19)390

and λ(t) := [λ1(t) · · · λn(t)]� is the solution of391

λ̇(t) = −Q̃i(t)xc(t)− ua(t)si(t) − A�
a λ(t) (20)392

with the boundary condition λ(tf ) = Gx(tf ).393

Proof: Our proof starts with Pontryagin’s maximum princi-394

ple for the relaxed problem (13) (see [23]), which is followed395

by showing that the optimal solution of w is always achieved at396

one of the vertices of the polytope W1. Hence, the relaxation397

is tight, which recovers the optimal solution of the original398

challenging nonconvex problem (11). Toward this objective399

and using (21), the Hamilton function for (13) is given by400

H = x�
c

M∑
j=1

wjQ̃jxc + 2x�
c

M∑
j=1

wjsjua +
M∑

j=1

wjγ̃ju
2
a401

− λ�
⎛
⎝Aaxc +

M∑
j=1

wjbj
aua

⎞
⎠. (21)402

To ensure existence of a meaningful solution, the adjustable403

parameters Qj, γj, and {dj
a}M

j=1 should be designed such that404

∂2H/∂u2
a < 0 [30]. Upon defining γ̃ := [γ̃1 · · · γ̃M]�, we 405

deduce that for all w ∈ W1, the following holds: 406

∂2H/∂u2
a =

M∑
j=1

wjdj
a
�

K�QjKdj
a − γj = w�γ̃ < 0. (22) 407

That is, function H is strictly concave with a unique maximum 408

given by the stationary point of the gradient in ua. By setting 409

∂H/∂ua = 0, we arrive at 410

ua = −
M∑

j=1

wj
s�xc

j + bj
a
�
λ

dj
a
�

K�QjKdj
a − γj

= −
M∑

j=1

wj
fj
γ̃j
. (23) 411

By the co-state equation λ̇ = −∂H/∂xc, we have that 412

λ̇ = −
M∑

j=1

wjQ̃jxc −
M∑

j=1

wjsjua − A�
a λ. 413

Let f := [f1 · · · fM]� and q := [q1 · · · qM]�. Plugging (23) 414

into (21) yields 415

H = λ�Aaxc + w�q
2

−
(
w�f

)2

2w�γ̃
416

where qi = x�
c Q̃xc. Evidently, as only the last two terms in H 417

depend on w, maximizing H with respect to w ∈ W1 is equiv- 418

alent to maximize the following reduced Hamilton function 419

over W1: 420

H̄ := w�q
2

−
(
w�f

)2

2w�γ̃
:= ϕ(w)

2
− ψ2(w)

2φ(w)
. 421

The derivatives of φ(w) and ψ(w) with respect to wj are 422

given by 423

φ̇ = γ̃j, and ψ̇ = fj. (24) 424

The second derivative of H̄ with respect to wj is 425

∂2H̄

∂w2
j

= −
(
fjφ − γ̃jψ

)2

φ3
≥ 0. (25) 426

Likewise, the second partial derivative of H̄ with respect to wj 427

and wk can be found as 428

∂H̄

∂wj∂wk
= − (fjφ − γ̃jψ)(fkφ − γ̃kψ)

φ3
. (26) 429

Define z := [z1 · · · zM]� with entries given by zj = fjφ − 430

γ̃jψ . Then, based on (25) and (26), the Hessian matrix of H̄ 431

can be written as follows: 432

∂2H̄

∂w2
= − 1

φ3

⎡
⎢⎢⎢⎣

z2
1 z1z2 · · · z1zM

z2z1 z2
2 · · · z2zM

...
...

. . .
...

zMz1 zMz2 · · · z2
M

⎤
⎥⎥⎥⎦ = zz�

−φ3

 0 433

which confirms that function H̄ is convex over W1. 434

Maximizing H over w ∈ W1 reduces to maximizing convex 435

H̄ over a convex feasibility set w ∈ W1. In this case, the min- 436

imum is always attained at one of the vertices of the polytope 437

determined by the M box constraints in W1 [31]. It is evident 438



IEE
E P

ro
of

6 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Algorithm 1: Optimal Switching Data-Injection Attack
Algorithm

1 Determine dj
a for all compromised sensor sets j ∈ {1, . . . ,M}.

2 Set: G, Qj, and γj according to the attacker’s preference.
3 for i = 1, . . . ,M do
4 Solve (29);
5 end
6 Initialize: attack horizon [t0, tf ], and S(t0).
7 Estimate: initial state xc(t0).
8 while t ≤ tf do
9 for i = 1, . . . ,M do

10 Compute (19);
11 Evaluate βj(t) = qj(t)− f 2

j (t)/γ̃j;
12 end
13 if i := arg maxj{βj} then
14 Compute (28);
15 ẋc(t) = Aaxc(t)+ bi

aua(t);
16 λ(t) = Pixc(t);
17 end
18 end

that the vertices of W1 coincide with the standard basis vectors439

wj ∈ R
M (whose jth entry is one, and remaining entries are440

zero), satisfying wj ∈ W0. Hence, the optimal solution of the441

relaxed problem recovers the optimal solution of the original442

nonconvex problem. Concretely, we have that443

max
w∈W1

H̄(w) = max
j∈{1,...,M} qj(t)− f 2

j (t)/γ̃j (27)444

and the optimal switching instants are given by the time when445

w∗(t) changes. This completing the proof.446

Regarding Theorem 1, we have the following observations.447

Remark 1: By simply comparing the values {qj(t) −448

f 2
j (t)/γ̃j} for all sensor sets at each instant, the attacker449

achieves an optimal switch input.450

Remark 2: In the steady state, the optimal data-injection451

law is a state-feedback signal given by452

ua(t) = − 1

γ̃i

(
s�

i + bi
a
�

Pi

)
xc(t) (28)453

where Pi ∈ S
n×n+ is the solution of the Riccati equation454

PiAa + A�
a Pi − 1

γ̃i

(
Pibi

a + si
)(

bi
a
�

Pi + s�
i

)
+ Qi = 0. (29)455

Remark 3: To find ua(t0) in (28), the adversary has to esti-456

mate the initial state xc(t0) from sensor measurements y(t) of457

the healthy plant for t ≤ t0, using, e.g., a Luenberger observer,458

before launching attacks.459

B. Maximizing Jb460

According to (10), Ĵb can be written as461

Ĵb = 1

2
x�

c (tf )Gxc(tf )462

+ 1

2

M∑
j=1

wj

∫ tf

t0

[
x�

c (t)Qjxc(t)− γju
2
a(t)

]
dt. (30)463

If the objective function Ĵb is adopted, we have the following464

theorem.465

Theorem 2: The optimal switching condition of the switch- 466

ing attack that maximizes the performance index (30) for the 467

attacked system (2) is given by 468

i(t) := arg max
j∈{1,...,M} x�

c Qjxc + 1

γj

(
bj

a
�
λ
)2

(31) 469

with the optimal data-injection law being 470

ua(t) := 1

γi
bj

a
�
λ(t) (32) 471

where λ(t) is the solution of 472

λ̇(t) = −Qixc(t)− A�
a λ(t) (33) 473

with the boundary condition λ(tf ) = Gx(tf ). 474

Proof: Appealing again to the Pontryagin’s maximum prin- 475

ciple, the Hamilton function is given by 476

H = 1

2

M∑
j=1

wj

[
x�

c (t)Qjxc(t)− γju
2
a(t)

]
477

+ λ�(t)

⎡
⎣Aaxc(t)+

M∑
j=1

wjbj
aua(t)

⎤
⎦. (34) 478

The co-state equation confirms that 479

λ̇(t) = −
M∑

j=1

wjQjxc(t)− A�
a λ(t) (35) 480

and by means of the coupled equation, it further holds that 481

ua(t) =
M∑

j=1

wj

γj
bj

a
�
λ(t). (36) 482

Substituting (36) into (34) yields 483

H̄ =
M∑

j=1

wjx
�Qj
c xc +

M∑
j=1

M∑
j=1

wjwk

γjγk

(
λ�bj

a

)(
λ�bk

a

)
. 484

Maximizing H̄ over w(t) ∈ W1 now boils down to solving the 485

following quadratic programming problem: 486

maximize
w

w�Hw + w�q (37a) 487

subject to w ∈ W1 (37b) 488

where H := hh� with h := [(λ�b1
a)/γ1 · · · (λ�bM

a )/γM]� and 489

q := [(x�Q1
c xc) · · · (x�QM

c xc)]�. 490

Evidently, function H̄ is convex in w. Again, the optimal 491

solution of maximizing H̄(w) over w ∈ W1 is attained (at 492

least) at one of the vertices of the polytope determined by W1, 493

hence proving that the switch input w(t) obtains its optimal 494

solution in W0. Concretely, we have that 495

max
w∈W1

H̄(w) = max
j∈{1,...,M} x�

c Qjxc + 1

γj

(
λ�bj

a
)2

(38) 496

completing the proof. 497
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IV. COUNTERMEASURE DESIGN498

After exploiting the attack strategy from the perspective499

of the adversary, it is of paramount importance to pursue500

defense schemes (countermeasures) to mitigate the attacks.501

The problem of interest is to design an enhanced output-502

feedback controller to stabilize the attacked system, such that503

the control performance is preserved in a well-defined sense.504

The countermeasure against switching attacks has mainly505

focused on the network topology attack and the DoS506

attack [20]. The resilient control against location switching507

attacks has not been investigated in the literature. Compared508

with the existing efforts that use cover network information,509

or have a subset of sensors immune to attacks destroying510

the feasibility of stealthy attacks [32], this article develops511

a resilient control scheme that tolerates intrusions. In gen-512

eral, resilience means that the operator maintains an acceptable513

level of operational normalcy despite attacks. Before present-514

ing the countermeasure design, we start by introducing the515

definition of a resilient control scheme.516

Definition 1: A feedback control law ũ is said to be resilient517

if it can stabilize the plant under a sequence of attacks arbi-518

trarily constructed based on a set of state-feedback laws, while519

guaranteeing an acceptable cost, that is, for some given bound520

J̃, the following holds:521

J̃ ≤ J̃∗ (39)522

where523

J̃ =
∫ ∞

0

(
x�

c Q̃xc + ũ�R̃ũ
)

dt. (40)524

The operator has the freedom to select the two weighting525

matrices Q̃  0 and R̃  0 to compensate for the control526

performance degradation of the healthy plant. The state of the527

healthy system can be reconstructed using, e.g., a Luenberger528

observer [33]. If the attacker injects false data into a set of529

sensors over a period of time, the reconstruction error ec(t)530

may diverge and the alarm will be triggered if it exceeds a531

threshold532 { ˙̂x(t) = Ax̂(t)+ Buc(t)+ L[yc(t)− ŷ(t)]
ŷ(t) = Cx̂(t)

533

ėc(t) = (A − LC)ec(t)+ Ldaua(t)534

where ec(t) := xc(t)− x̂(t) and L is a gain matrix.535

The attacked system can be modeled as a switched system536

consisting of M modes537

Mode j: ẋc,j(t) = (
Aa + BK
Kj

)
xc,j(t), j = 1, . . . ,M.538

Consider for example, if Ja is maximized, substituting (28)539

into (11b), we have540


Kj = − 1

γ̃jj

[
dj

a

(
s�

j + Bj
a
�

Pj

)]
. (41)541

The attacker uses matrices 
Kj at time tj and switches to 
Kj′542

at tj′ . The attacker may change the attack locations randomly543

according to a stochastic model, or optimally with respect to an544

unknown criterion. As such, matrices 
Kj can be treated as a545

switching uncertainty of the healthy plant. The guaranteed cost546

control approach can be adopted to mitigate the attacks [34].547

Once the detector detects an attack, or that the system response 548

is considerably altered such that the attack is exposed, the 549

defender needs to estimate the sensor links that have been 550

compromised, as well as identify the uncertainty matrices 
Kj. 551

Recent advances on identifying the attack set from sensor mea- 552

surements (e.g., [35]) assume attacks on the state equations, 553

and do not utilize the information of the attacked state xc. 554

The proposed identification problem is generally NP-hard, and 555

reducing-complexity algorithms are presented. We adopt the 556

following steps to defend against switching attacks. 557

Step 1 (Attack Extraction): As the false data injected into 558

sensor measurements 559

f a(t) = ua(t)dj
a. (42) 560

The defender should find historical false data f a(t) := 561

[f 1
a (t) · · · f n

a (t)]
� to identify the uncertainty matrix 
Kj. The 562

goal of this step is to extract f a(t) and sort the timestamp 563

of f a(t) into M parts, namely, O1, . . . , OM , each of which 564

corresponds to a compromised sensor set. In Example 1, if 565

f 1
a (t) < δ, where δ > 0 is a preselected threshold to account 566

for computation and measurement inaccuracies, then t ∈ O3 567

(referring to set {2, 3}); if f 2
a (t) < δ, t ∈ O2 (referring to set 568

{1, 3}). If f 3
a (t) < δ, then t ∈ O1 (referring to set {1, 2}). In this 569

article, we assume that the control center is able to reset the 570

attacked system under a known initial condition, and compare 571

the attacked sensor measurements with yv(t) from a virtual 572

healthy system, namely 573

ẋv(t) = Aaxv(t) (43a) 574

yv(t) = Cxv(t). (43b) 575

Upon defining 576

ex = xc − xv 577

ey = yc − yv 578

we obtain that 579

ėx(t) = Aaex(t)+ BKf a(t) (44a) 580

ey(t) = Cex(t)+ f a(t) (44b) 581

where ex(0) = 0. Vector f a(t) can be calculated by the compar- 582

ison result ey(t), and once f a(t) is recovered, the compromised 583

sensors are found. 584

Step 2 (Attack Identification): The defender makes use of 585

the data whose timestamp was collected in Oj to identify the 586

unknown parameter matrices 
Kj, using the common least- 587

squares algorithm by solving 588

min

Kj

∑
t∈Oj

∥∥ f a(t)−
Kjxc(t)
∥∥2

2. (45) 589

In practice, ey can be induced by, e.g., link failures in system 590

components, noise in communication channels, or intentional 591

attacks. If the online identification algorithm converges, there 592

exists a state-feedback data-injection attack [36] (different 593

from random attacks [37] or constant switching attacks [38]). 594

Step 3 (Resilient Control): To circumvent switching attacks, 595

the controller needs to be redesigned in a way to be 596

resilient. The system implements a feedback control law ũ 597

on the attacked system, which is obtained according to the 598
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following design criterion. The system operator selects a599

positive-definite matrix P̃ a priori, and its objective is to600

design a resilient control gain K̃ for the switching data-601

injection attacks, by solving the linear matrix inequality (LMI)602

in (48).603

Theorem 3: The feedback control law ũ(t) = K̃yc(t)604

is resilient with respect to the cost function (40).605

That is, for arbitrary switching sequences, the attacked606

system607

ẋc(t) =
M∑

j=1

wj(t)Ãjxc(t) (46)608

is asymptotically stable, and J̃ satisfies609

J̃ ≤ x�
0 P̃x0 (47)610

if there exist a symmetric matrix P̃  0 and a scalar γ̄ > 0611

such that the following LMI holds:612

[
Ã

�
i P̄ + P̄Ãi + Q̃ K̃

�

K̃ −R̃
−1

]
≤ γ̄ I (48)613

where x0 is the initial state, and Ãj := A + BK̃(C +
Kj) for614

all j = 1, . . . ,M.615

Proof: Choose a common Lyapunov function616

V(x) = x�
c (t)P̃xc(t) (49)617

for some symmetric matrix P̃  0. The time derivative of V(x)618

can be found as619

V̇(x) = ẋ�
c (t)P̃xc(t)+ x�

c (t)P̃ẋc(t)620

= x�
c (t)

M∑
j=1

wj(t)
(

Ã
�
j P̃ + P̃Ãj

)
xc(t).621

By the common Lyapunov function method, if the following622

holds:623

x�
c (t)

(
Ã

�
j P̃ + P̃Ãj + Q̃ + K̃

�
R̃K̃

)
xc(t) ≤ 0 (50)624

then625

V̇(x) ≤ −x�
c (t)

(
Q̃ + K̃

�
R̃K̃

)
xc(t) ≤ 0 (51)626

for wj(t) ∈ {0, 1} ∀j. That is, the attacked system is asymptot-627

ically stable. From (51), it is also evident that628

x�
c Q̃xc + ũ�R̃ũ ≤ −V̇(x). (52)629

Since xc(∞) = 0 holds for the stable closed-loop system, we630

deduce that631

J̃ ≤ −
∫ ∞

0
V̇(x)dt = x�

0 P̃x0. (53)632

The Schur compliment further confirms that (50) is equivalent633

to the LMI in (48), which completes the proof.634

V. ILLUSTRATIVE EXAMPLES 635

In this section, we provide several numerical tests to show- 636

case the effectiveness of the proposed resilient control scheme 637

as well as the practical merits of our theory. 638

A. Power Generator 639

Consider a remotely controlled power generator described 640

by the following normalized swing equation [39]: 641

δ̇(t) = ω(t) (54a) 642

Mω̇(t) = −Dω(t)− Pf (t)+ u(t) (54b) 643

where δ and ω denote the phase angle and frequency deviation 644

of the generator (rotor), respectively; u(t) is the mechan- 645

ical power provided for the generator; and M and D are 646

the inertia and damping coefficients, respectively. The term 647

Pf (t) = b sin(δ(t)) represents the electric power flow from 648

the generator to the bus, where b is the susceptance of the 649

transmission line. Upon linearizing the model at the nominal 650

point ω = δ = 0 with M = D = b = 1, and defining the 651

state x := [δ ω]�, we obtain an LTI system as in (1) whose 652

parameters are given by 653

A =
[

0 1
−1 −1

]
, B =

[
0 0
1 1

]
654

C = I, K = −
[

1 0
0 2

]
. 655

We consider a practical scenario where the adversary can alter 656

the mechanical power supplied to the generator, through break- 657

ing the integrity of the sensor signal measuring δ and ω of the 658

generator. Specifically, the adversary injects a state-feedback 659

signal into the control signal, which will make the generator 660

increase its power generation, and correspondingly, increase 661

the power flow Pf along the transmission line. Choose with- 662

out loss of generality that Q1 = Q2 = I and γ1 = γ2 = 6. 663

The attack vectors are d1
a = [1 0]� and d2

a = [0 1]�, i.e., the 664

attacker compromises one sensor every time. Then, one can 665

write that s1 = [1 0] and s2 = [0 4]. The healthy plant under 666

switching attacks becomes a switched system of two modes. 667

Using Theorem 1, the switching condition (17) becomes 668

i(t) := arg max
j∈{1,2} zj (55) 669

where 670

z1 = 1

4
|δ − λ2|, and z2 = 1

4
|4ω − 2λ2|. 671

The state trajectories of the system under switching attacks and 672

those of the health plant are presented in Fig. 2, along with 673

the switching instants between the two nodes given in Fig. 3. 674

Observe that the attack stays in Mode 1 during the period 675

[0.195, 0.278] s, yet it switches to Mode 2 at t = 0.278 s, 676

and stays there till t = 2.18 s. 677

Choose Q1 = 2I and keep other parameters unchanged. 678

Fig. 4 compares the simulation results under the optimal 679

switching attacks and under random switching attacks subject 680

to (55) with z1 ∼ U[0, 1] and z2 = 0.8. Their corresponding 681

performance indices [see (16)] are 93.5 and 51.5, respectively. 682
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Fig. 2. State trajectories under optimal switching attacks.

Fig. 3. Optimal switching instants.

Fig. 4. Comparison results between optimal switching attacks and random
switching attacks.

Invoking Theorem 3, a resilient control gain matrix can be683

obtained as684

K̃ = −
[

1.59 0.28
−0.1 0.89

]
.685

After implementing a resilient state-feedback control686

scheme, the state trajectories of the plant under attacks and the687

healthy plant are depicted in Fig. 5, where the upper bound688

on the cost was J̃∗ = 47.2.689

B. Power Systems690

Now, consider a power system comprising several power691

generators and load buses. Following (54), the dynamics per692

generator can be modeled by a set of linear swing equations:693

δ̇i(t) = ωi(t) (56a)694

Miω̇i(t) = −Diωi(t)− Pj
f (t)+ ui(t) (56b)695

Fig. 5. State trajectories under the proposed resilient control.

for i = 1, . . . , ng, where ng is the total number of generators. 696

We consider a PID load frequency controller, namely 697

ui = −
(

KP
i ωi + KI

i

∫ t

0
ωi dt + KD

i ω̇i

)
(57) 698

where the controller parameters KP
i ≥ 0, KI

i ≥ 0, and KD
i ≥ 0 699

are the proportional gain, integral gain, and derivative gain, 700

respectively. The overall power system dynamics of ng gen- 701

erators can be compactly expressed as the following linear 702

descriptor system: 703⎡
⎣ I 0 0

0 M + KD 0
0 0 0

⎤
⎦
⎡
⎣ δ̇

ω̇

θ̇

⎤
⎦ 704

= −
⎡
⎣ 0 −I 0

BGG + KI DG + KP BGL

BLG 0 BLL

⎤
⎦
⎡
⎣ δ

ω

θ

⎤
⎦ −

⎡
⎣ 0

Pωa
PL

⎤
⎦ 705

(58) 706

where vectors δ and ω collect accordingly the voltage phase 707

angles and the rotor angular frequency deviations at all gener- 708

ator buses; vectors θ and PL stack up the voltage phase angles 709

and power consumption at all load buses, respectively; and M 710

is a diagonal matrix; and likewise for matrices DG, DL, KP, 711

KI , and KD. 712

The attack design approach presented in Theorem 2 was 713

numerically tested and verified using the IEEE 9-bus bench- 714

mark system, which has three power generators and six 715

load buses [35]. The frequency measurements obtained may 716

have already been strategically modified by a knowledgeable 717

attacker to cause system frequencies to deviate from their nom- 718

inal values. Here, we assume that the attacker can alter the 719

frequencies measured at generators g1 and g2, and injects false 720

data Pωa := dj
aua(t) into the controller at victim generators. 721

Upon defining the state x := [δ� ω�]�, the attacked system 722

can be rewritten as 723

ẋ(t) = Aax(t)+ bj
aua(t). 724

Choose 725

KP = diag([0.1 0.1 0.1]), K = I 726

Q1 = diag([0 0 0 16 16 16]),Q2 = diag([0 0 0 14 14 14]) 727

γ1 = 7, γ2 = 11 728

d1
a = [0.15 0 0]�, d2

a = [0 0.15 0]�. 729
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Fig. 6. Optimal switching instants.

Fig. 7. State trajectories under optimal switching attacks.

Fig. 8. State trajectories under nonswitching attacks.

Then730

Aa =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−0.235 0.119 0.116 −1.8 0 0
0.436 − 0.847 0.411 0 − 4.941 0
0.905 0.874 −1.778 0 0 −9.25

⎤
⎥⎥⎥⎥⎥⎥⎦

731

b1
a = [0 0 0 1.2 0 0]�, b2

a = [0 0 0 0 4.4 0]�.732

Appealing to Theorem 2, the optimal switching condi-733

tion (31) becomes (55) where734

z1 = 16
(

x2
4 + x2

5 + x2
6

)
+ 0.21λ2

4735

z2 = 14
(

x2
4 + x2

5 + x2
6

)
+ 1.76λ2

5.736

Fig. 8 shows the frequency deviation response of g1 and737

g2, when only g1 or g2 is under attack. Comparing Figs. 6738

and 7, it is evident that at switching instants, the curves739

become discontinuous, which gives rise to the so-called vibra- 740

tion phenomenon [40]. The attacker switched four times in the 741

simulation interval of 12 s. 742

VI. CONCLUSION 743

In this article, the optimal data-injection attack with switch- 744

ing behaviors was studied. Two different objective functions 745

were suggested for the adversary to optimally determine the 746

attack strategy. One focuses on the controller energy consump- 747

tion, while the other considers the quadratic integration of 748

states. The optimal attack design problem was formulated as 749

an integer programming problem, which is hard to solve in 750

general. By reformulating it as an optimal control problem 751

of a linear switched system, we were able to find the optimal 752

solution. A defense approach was developed to mitigate a class 753

of data-injection attacks with feedback and location switching 754

characteristics. The merits and practicability of our proposed 755

strategies were shown by numerical simulations. 756
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