# Optimal Switching Attacks and Countermeasures in Cyber-Physical Systems 

Guangyu $\mathrm{Wu}^{\oplus}$, Gang Wang ${ }^{\oplus}$, Member, IEEE, Jian Sun ${ }^{\oplus}$, Member, IEEE, and Lu Xiong


#### Abstract

The work analyzes dynamic responses of a healthy plant under optimal switching data-injection attacks on sensors and develops countermeasures from the vantage point of optimal control. This is approached in a cyber-physical system setting, 5 where the attacker can inject false data into a selected subset of sensors to maximize the quadratic cost of states and the energy consumption of the controller at a minimal effort. A 0-1 integer program is formulated, through which the adversary finds an optimal sequence of sets of sensors to attack at optimal switching instants. Specifically, the number of compromised sensors per instant is kept fixed, yet their locations can be dynamic. Leveraging the embedded transformation and mathematical programming, an analytical solution is obtained, which includes an algebraic switching condition determining the optimal sequence of attack locations (compromised sensor sets), along with an optimal state-feedback-based data-injection law. To thwart the adversary, however, a resilient control approach is put forward for stabilizing the compromised system under arbitrary switching attacks constructed based on a set of state-feedback laws, each of which corresponds to a compromised sensor set. Finally, an application using power generators in a cyber-enabled smart grid is provided to corroborate the effectiveness of the resilient control scheme and the practical merits of the theory.


Index Terms—Data-injection attacks, dynamic set, resilient 5 control, switching condition.

## I. Introduction

CYBER-PHYSICAL systems (CPSs) inherit the communication structure of the Internet of Things (IoT), yet they place more emphasis on the monitoring and control of entities

Manuscript received March 26, 2019; revised July 27, 2019; accepted September 24, 2019. The work of G. Wu and J. Sun was supported in part by NSFC under Grant 61522303, Grant U1509215, and Grant 61621063, and in part by the Program for Changjiang Scholars and Innovative Research Team in University under Grant IRT1208. The work of G. Wang was supported by NSF under Grant 1514056 and Grant 1711471. The work of L. Xiong was supported in part by NSFC under Grant 51975414, and in part by the National Key Research and Development Program of China 2018 under Grant YFB0105101. This article was recommended by Associate Editor Y. Zhao. (Corresponding author: Gang Wang.)
G. Wu and L. Xiong are with the Clean Energy Automotive Engineering Center, School of Automotive Studies, Tongji University, Shanghai 201804, China (e-mail: wuguangyu@tongji.edu.cn; xiong_lu@tongji.edu.cn).
G. Wang is with the Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455 USA (e-mail: gangwang@umn.edu).
J. Sun is with the State Key Laboratory of Intelligent Control and Decision of Complex Systems, Beijing Institute of Technology, Beijing 100081, China, and also with the School of Automation, Beijing Institute of Technology, Beijing 100081, China (e-mail: sunjian@bit.edu.cn).

Color versions of one or more of the figures in this article are available online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMC.2019.2945067
in the physical world [1]. These systems are typically composed of a set of networked agents, that includes sensors, actuators, controllers, and communication devices. Heterogeneous devices are connected to collaboratively control the physical processes over high-speed communication networks [2]. CPSs realize the feedback and information exchange between the cyberspace and the physical world. Nonetheless, the deep integration of physical and information systems brings potential threats too [3]. Real-world applications are safety-critical: their failure can cause irreparable harm to the physical system being controlled and to people who rely on it. As a typical application of CPSs, the cyber-enabled smart grid comprises a large number of servers, computers, meters, phasor measurement units, generators, and so on. By blocking the information exchange between the users and the electricity sectors or destroying the data integrity [4], [5], the adversary can affect the electricity price and increase the energy consumption of generators [6].
To enhance the security of CPSs, the defender should be aware of diverse attack behaviors that the CPS may suffer as well as understand the attacker's intention [7]. Malicious attacks on CPSs can be launched at the physical layer, network layer [8], and application layer [9]. A common way to enhance the resilience of CPSs is to implement defense strategies against known attack patterns [10]. The resilient control or estimation focuses on mitigating the normal operation of attacked systems or restoring the actual state variables with certain acceptable error bounds [11]. Most advances impose assumptions on the attacker's abilities [12] or on its behavior patterns [13]. The resilient controller under fixed delay or out-of-order transmissions was proposed to optimize the worst-case performance [14]. An output-feedback controller under deception attacks with stochastic characteristics was designed to guarantee the prescribed security in probability while obtaining an upper bound of a quadratic cost criterion [15].

On the other hand, studying the adversary's optimal attack schedule can in turn offer insight on devising effective defense strategies [16]. A family of cyber attacks with switching behaviors has attracted attention, which can be categorized into two groups: 1) location-switching attacks and 2) signalswitching attacks. The attack signal can be, for instance, a switching signal turning on or off electrical devices and change the network topology [17] or a continuous false signal injected into controllers or actuators. State recovery under location switching attacks with known or unknown switching frequencies was studied in [18]. Stochastic linear

77
systems under attacks were modeled as switching systems with unknown inputs, followed by a multiple model approach for resilient state estimation [19]. Precisely, the attacker decides when and where to launch an attack based on a Markov process. Switching DoS attacks on multiple communication lines with limited attacking times were examined [20]. The optimal switching sequence can be found by solving an integer program using an exhaustive search.
Despite the considerable success on switching attacks, the response of dynamic systems under switching data-injection attacks that can alter system dynamics (rather than estimation error or network topology) has not been studied. There are two critical challenges: Q1) Whether and how one can design an optimal switching data-injection law to maximize damage to the control system from the vantage point of the attacker? and Q2) How can one design an enhanced feedback control law to restore stability and maintain control performance of the system under such switching data-injection attacks? We answer these two questions in this article considering switching data-injection attacks on sensors. In our previous works [21], [22], attacks on actuators were considered, that aim at maximizing a quadratic state cost. In contrast, this article takes the standpoint of the attacker and focuses on designing attacks to maximize the controller's effort. Last but not least, a defense framework to stabilize the compromised system is proposed here. Specifically, the optimal switching data-injection attack design problem is formulated as a $0-1$ integer programming problem [22], for which we develop an analytical solution of optimizing a nonlinear fractional function of the switching input.
This article studies the data-injection attacks that aim at manipulating the control signal and corrupting the system dynamics. Typically, CPSs comprise a large amount of sensing devices that are distributed in an unprotected, or even harmful environment. The malicious attacker can perform the node capture attack to crack the communication code, and manipulate purposefully the information exchanged with neighboring nodes or with the control center. To "benchmark" the worst-case performance due to comprised control signals, the sequence of optimal attack locations (namely, set of sensors) along with the corresponding optimal data-injection law over an attack duration is addressed. In this context, the set of attack locations is also termed as a compromised set. In a nutshell, the main contributions of this article are summarized as follows.
c1) We formulate the optimal switching data-injection attack design problem as a $0-1$ integer programming problem. An analytical solution is established, including an algebraic switching condition along with a state-feedbackbased data-injection law.
c2) We develop a novel resilient control scheme to mitigate the effect of attacks and enhance the closed-loop system, that entails identifying uncertainty matrices associated with different compromised sets and designing output-feedback controller gains. Our proposed control law can stabilize systems under even the worst-case attacks, while ensuring a bounded control cost.

The rest of this article is organized as follows. In Section II, ${ }_{135}$ the attack model is given. In Section III, the optimal switch- ${ }^{136}$ ing attack design problem is formulated and studied. In ${ }^{137}$ Section IV, a resilient control scheme is put forward to ${ }^{138}$ defend against the switching attack with arbitrary switch- ${ }^{139}$ ing sequences. Numerical tests using power generators are ${ }_{140}$ presented in Section V, while this article is concluded in ${ }_{14}$ Section VI.

## II. Attack Model

We consider a healthy but possibly unstable plant described ${ }_{144}$ by a linear time-invariant (LTI) system

$$
\begin{align*}
\dot{\boldsymbol{x}}(t) & =\boldsymbol{A} \boldsymbol{x}(t)+\boldsymbol{B} \boldsymbol{u}(t)  \tag{1a}\\
\boldsymbol{y}(t) & =\boldsymbol{C} \boldsymbol{x}(t)  \tag{lb}\\
\boldsymbol{u}(t) & =\boldsymbol{K} \boldsymbol{y}(t) \tag{1c}
\end{align*}
$$

where $\boldsymbol{x}(t) \in \mathbb{R}^{n}$ is the state vector, $\boldsymbol{u}(t) \in \mathbb{R}^{k}$ is the con- ${ }_{149}$ trol input, and $(\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C})$ are the system matrices of suitable 150 dimensions. To stabilize the LTI system, the output-feedback 151 control with some gain matrix $\boldsymbol{K} \in \mathbb{R}^{k \times m}$ is considered. In the ${ }_{152}$ context of switching attacks, the plant is supposed to com- ${ }^{153}$ prise a large number of sensor nodes; that is, $m$ is large. At ${ }_{154}$ time $t$, each node sends its measurement to a central con- 155 troller via a vulnerable wireless network. Before characterizing 156 the worst-case attack consequence, we make several stan- ${ }^{157}$ dard assumptions on the knowledge and attack ability of the ${ }_{158}$ adversary.
Assumption 1: The adversary has perfect knowledge of the 160 system parameters in (1), namely, $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$, and $\boldsymbol{K}$ matrices. 161

Assumption 2: The adversary can capture the target sen- 162 sor nodes and crack the passwords of their communication ${ }_{163}$ channels before launching attacks.
Assumption 3: When an attack occurs, the adversary injects ${ }_{165}$ datum $d_{a, j}^{0} u_{a}(t)$ into compromised sensor $j \in \mathcal{S}(t) \subseteq{ }_{166}$ $\{1, \ldots, m\}$, where $\mathcal{S}(t)$ collects the indices of all attacked sen- ${ }^{167}$ sors at time $t ; u_{a}(t)$ is a global component that the attacker can ${ }_{168}$ optimize over, yet the local components $d_{a, j}^{0}$ can be different ${ }_{169}$ across sensors, which are arbitrarily selected by the adver- 170 sary a priori and kept fixed throughout the attack. After the ${ }_{171}$ attack, the aggregated signal $\boldsymbol{y}(t)+\boldsymbol{d}_{a}(t) u_{a}(t)$ is transmitted ${ }_{172}$ to the controller, where $\boldsymbol{d}_{a}(t):=\left[\begin{array}{llll}d_{a, 1}(t) & \cdots & d_{a, m}(t)\end{array}\right]^{\top}$ with ${ }_{173}$ $d_{a, j}(t)=d_{a, j}^{0}$ if $j \in \mathcal{S}$ and $d_{a, j}(t)=0$ otherwise. Moreover, ${ }^{174}$ $\boldsymbol{d}_{a}$ can be viewed as an "indicator" vector, which signifies the ${ }_{175}$ locations of the attacked sensors.
Following conventions, we use accordingly symbols $\boldsymbol{x}_{c}, \boldsymbol{y}_{c},{ }_{17}$ and $\boldsymbol{u}_{c}$ to denote the state, measurement, and control vectors ${ }_{178}$ of the (compromised) LTI system under attack. Precisely, the 179 attacked system can be described as

$$
\begin{align*}
\dot{\boldsymbol{x}}_{c}(t) & =\boldsymbol{A} \boldsymbol{x}_{c}(t)+\boldsymbol{B} \boldsymbol{u}_{c}(t)  \tag{2a}\\
\boldsymbol{y}_{c}(t) & =\boldsymbol{C} \boldsymbol{x}_{c}(t)+\boldsymbol{d}_{a}(t) u_{a}(t)  \tag{2b}\\
\boldsymbol{u}_{c}(t) & =\boldsymbol{K} \boldsymbol{y}_{c}(t) . \tag{2c}
\end{align*}
$$

For ease of understanding, consider the setup described ${ }_{184}$ in Fig. 1, where the system consists of three sensor nodes. ${ }^{185}$ Suppose that the adversary can compromise only one node at ${ }_{186}$ a time. If the adversary compromises Sensor 1 at time $t_{1}$, ${ }^{187}$


Fig. 1. Switching data-injection attack framework.
it holds that $\boldsymbol{d}_{a}\left(t_{1}\right)=\left[\begin{array}{lll}d_{a, 1}^{0} & 0 & 0\end{array}\right]^{\top}$ with attack component $d_{a, 1}^{0}$ determined by the attacker at the starting time $t_{0}$; and if Sensor 3 is attacked at time $t_{2}$, then $\boldsymbol{d}_{a}\left(t_{2}\right)=\left[\begin{array}{lll}0 & 0 & d_{a, 3}^{0}\end{array}\right]^{\top}$. Correspondingly, the false data $\boldsymbol{d}_{a}\left(t_{1}\right) u_{a}\left(t_{1}\right)$ and $\boldsymbol{d}_{a}\left(t_{2}\right) u_{a}\left(t_{2}\right)$ are injected into the measurement vectors $\boldsymbol{y}\left(t_{1}\right)=\boldsymbol{C} \boldsymbol{x}_{c}\left(t_{1}\right)$ and $\boldsymbol{y}\left(t_{2}\right)=\boldsymbol{C} \boldsymbol{x}_{c}\left(t_{2}\right)$ [see (1b)] to yield the compromised measurement vectors $\boldsymbol{y}_{c}\left(t_{1}\right)$ and $\boldsymbol{y}_{c}\left(t_{2}\right)$ [see (2b)].

In the traditional linear quadratic regulator (LQR) control, the goal of the system operator is to minimize the standard quadratic cost function involving the state variables and the controller effort over a fixed horizon; see standard textbook, e.g., [23]. On the contrary, the goal of the attacker is to maximize the aforementioned quadratic cost of the controller, therefore degrading the control performance, by choosing a sequence of instants to inject false data into a subset of sensors while maintaining a low attack cost.

On the other hand, the injected data can be understood as an adversarial interference produced by certain electrical equipment in a dynamic system. Due to physical limitations however, these equipment cannot produce an arbitrarily large interference signal, so the amplitude of $u_{a}(t)$ should be kept as small as possible. Considering any finite-time horizon $\left[t_{0}, t_{f}\right]$, two meaningful objective functions for optimal attack design are given by

$$
\begin{equation*}
J_{a}=\frac{1}{2} \boldsymbol{x}_{c}^{\top}\left(t_{f}\right) \boldsymbol{G} \boldsymbol{x}_{c}\left(t_{f}\right)+\frac{1}{2} \int_{t_{0}}^{t_{f}}\left[\boldsymbol{u}_{c}^{\top}(t) \boldsymbol{Q} \boldsymbol{u}_{c}(t)-\gamma u_{a}^{2}(t)\right] d t \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
J_{b}=\frac{1}{2} \boldsymbol{x}_{c}^{\top}\left(t_{f}\right) \boldsymbol{G} \boldsymbol{x}_{c}\left(t_{f}\right)+\frac{1}{2} \int_{t_{0}}^{t_{f}}\left[\boldsymbol{x}_{c}^{\top}(t) \boldsymbol{Q} \boldsymbol{x}_{c}(t)-\gamma u_{a}^{2}(t)\right] d t \tag{4}
\end{equation*}
$$

where $\boldsymbol{G}$ and $\boldsymbol{Q}$ are symmetric, positive semidefinite matrices of suitable dimensions, and $\gamma>0$ is a weighting coefficient, both chosen by the attacker. Their values tradeoff between the damage to the healthy plant and the attack cost. Specifically, too large (eigenvalues of) $\boldsymbol{Q}$ or too small $\gamma$ values may incur instability of the plant under attack. If the adversary prefers a minimal energy cost and selects a larger $\gamma$ value relative to (eigenvalues of) $\boldsymbol{Q}$, then the resultant $u_{a}(t)$ is able to render the system states to deviate from their actual values, and the stability of the attacked system may not lose.

Upon plugging (2b) and (2c) into (3), the objective function ${ }_{225}$ $J_{a}$ can be rewritten as

$$
\begin{gather*}
J_{a}=\frac{1}{2} \boldsymbol{x}_{c}^{\top}\left(t_{f}\right) \boldsymbol{G} \boldsymbol{x}_{c}\left(t_{f}\right)+\frac{1}{2} \int_{t_{0}}^{t_{f}}\left[\boldsymbol{x}_{c}^{\top}(t) \tilde{\boldsymbol{Q}} \boldsymbol{x}_{c}(t)+2 u_{a}(t) \boldsymbol{s}^{\top}(t) \boldsymbol{x}_{c}(t)\right. \\
\left.+\tilde{\gamma}(t) u_{a}^{2}(t)\right] d t \tag{5}
\end{gather*}
$$

where the coefficients are given by

$$
\begin{array}{rlrl}
\tilde{\boldsymbol{Q}} & :=\boldsymbol{C}^{\top} \boldsymbol{K}^{\top} \boldsymbol{Q K C} \\
\boldsymbol{s}(t) & :=\boldsymbol{C}^{\top} \boldsymbol{K}^{\top} \boldsymbol{Q K} \boldsymbol{d}_{a}(t) & & \text { (6a) }{ }_{230} \\
\tilde{\gamma}(t) & :=\boldsymbol{d}_{a}^{\top}(t) \boldsymbol{K}^{\top} \boldsymbol{Q} \boldsymbol{K} \boldsymbol{d}_{a}(t)-\gamma . & & \text { (6c) }{ }_{232}
\end{array}
$$

To guarantee existence of an optimal solution, the adversary ${ }^{233}$ needs to design $\boldsymbol{Q}$ and $\gamma$ such that $\tilde{\gamma}(t)<0$ [23]. It is ${ }^{234}$ clear from (5) that maximizing the controller energy consump- ${ }^{235}$ tion in $J_{a}$ amounts to maximizing integrations of both the ${ }_{236}$ state quadratic $\boldsymbol{x}_{c}^{\top}(t) \tilde{\boldsymbol{Q}} \boldsymbol{x}_{c}(t)$ and the cross term $u_{a}(t) \boldsymbol{s}^{\top}(t) \boldsymbol{x}_{c}(t){ }^{237}$ (between $u_{a}$ and $\boldsymbol{x}_{c}$ ). In comparison, only the integration of ${ }_{238}$ the state quadratic is maximized in $J_{b}$. In other words, if the ${ }^{239}$ adversary is solely interested in damaging the system state, 240 the objective function $J_{b}$ is preferred; but if the control cost ${ }_{241}$ of the attacked system is of interest too, then, $J_{a}$ is preferred. ${ }^{242}$

## III. Optimal Switching Attack Design

In a large-scale CPS setting, compromising all communica- ${ }^{244}$ tion channels necessarily requires a large amount of energy. ${ }^{245}$ The adversary with limited budget is instead inclined to attack ${ }_{246}$ only few sensors, possibly those of lowest security levels or ${ }_{247}$ with most vulnerable communication channels. Due to the lim- ${ }_{248}$ ited computing resources and channel cracking capabilities, 249 this article focuses on a practical setting where the adversary 250 can attack a fixed number of sensors at a time. On the other ${ }_{251}$ hand, it is also not wise or optimal for the attacker to con- ${ }^{252}$ stantly attack a fixed set of sensors. A smart yet affordable ${ }^{253}$ strategy is to select a size-fixed set of sensors to effect attacks ${ }^{254}$ at every attack instant, to yield the worst-case system response. ${ }^{255}$ This dynamic attack strategy is to switch the attack among ${ }_{256}$ multiple sensor sets from time to time.

The goal of the attacker is to determine an optimal switching ${ }_{258}$ sequence of sensor sets to attack with an optimal data-injection ${ }^{259}$ law, so as to maximize the objective value $J_{a}$ or $J_{b}$. When there ${ }_{260}$ are $m$ sensors and the adversary can attack say $\ell \ll m$ sensors ${ }_{261}$ at a time, the total number of candidate attacks (i.e., size- $\ell{ }^{262}$ sensor sets) is $M:=\binom{m}{\ell}$. With slight abuse of notation, the ${ }^{263}$ $M$ sensor sets (namely, the $M$ sets of $\ell$-sensor combinations) ${ }_{264}$ can be represented by the indicator vectors $\left\{\boldsymbol{d}_{a}^{i}\right\}_{i=1}^{M}$ defined in ${ }_{265}$ Assumption 3.

Example 1: If $m=3$ and $\ell=2$, there are $M=\binom{3}{2}^{267}$ sensor sets; that is, $\{1,2\},\{1,3\}$, and $\{2,3\}$ collecting the 268 indices of the attacked sensors. Each of the three sensor 269 sets can be uniquely represented by $\boldsymbol{d}_{a}^{1}:=\left[\begin{array}{lll}d_{a, 1}^{0} & d_{a, 2}^{0} & 0\end{array}\right]^{\top}$, ${ }^{270}$ $\boldsymbol{d}_{a}^{2}:=\left[\begin{array}{lll}d_{a, 1}^{0} & 0 & d_{a, 3}^{0}\end{array}\right]^{\top}$, and $\boldsymbol{d}_{a}^{3}:=\left[\begin{array}{lll}0 & d_{a, 2}^{0} & d_{a, 3}^{0}\end{array}\right]^{\top}$.

From Fig. 1, if the input to the controller is compromised, ${ }^{272}$ the control signal (output of the controller) will be disturbed, ${ }^{273}$ so will the system dynamics. The control signal under the ${ }^{274}$

276

75 described switching data-injection attacks can be given by

$$
\boldsymbol{u}_{c}(t)=\boldsymbol{K}\left[\boldsymbol{C} \boldsymbol{x}_{c}(t)+\sum_{j=1}^{M} w_{j}(t) \boldsymbol{d}_{a}^{j} u_{a}(t)\right]
$$

where the switch input vector $\boldsymbol{w}:=\left[\begin{array}{lll}w_{1} & \cdots & w_{M}\end{array}\right]$ belongs to

$$
\begin{equation*}
\mathcal{W}_{0}:=\left\{\boldsymbol{w}(t) \mid \sum_{j=1}^{M} w_{j}(t)=1, \text { and } w_{j}(t) \in\{0,1\} \quad \forall j\right\} \tag{8}
\end{equation*}
$$

Per attack instant $t \geq t_{0}$, since only one sensor set (namely, $\boldsymbol{d}_{a}^{j}$ for some $j$ ) is to be chosen, its corresponding switch input $w_{j}(t)$ is set 1 , while the others are set 0 . Observe that the components of $\boldsymbol{d}_{a}^{j}$ are time invariant and known to the attacker. Therefore, the values of $\boldsymbol{w}(t):=\left[\begin{array}{lll}w_{1}(t) & \ldots & w_{M}(t)\end{array}\right]^{\top}$ at different $t$ signify the compromised sensor sets at corresponding instants. If two consecutive compromised sets (i.e., before and after some instant $t$ ) are different, then instant $t$ is a switching instant, namely, the time at which the value of $\boldsymbol{w}(t)$ changes. The compromised sets at all switching instants define the so-called switching sequence

$$
\begin{equation*}
\zeta:=\left\{\left(\boldsymbol{w}\left(t_{0}\right), u_{a}\left(t_{0}\right)\right), \ldots,\left(\boldsymbol{w}\left(t_{N}\right), u_{a}\left(t_{N}\right)\right)\right\} \tag{9}
\end{equation*}
$$

where $t_{0} \leq t_{1} \leq \cdots \leq t_{N} \leq t_{f}$, the set $\left\{t_{1}, \ldots, t_{N}\right\}$ collects all switching instants, and $N$ is the total number of switching operations.

In general, the attacker can assume the same objective function for all sensor sets. In certain settings of practical interest, the attacker may prefer different objective functions when different sensor sets are compromised. In Example 1, if the attacker aims to induce a larger deviation to state $x_{c, 1}$ $\left(\boldsymbol{x}_{c}=\left[\begin{array}{lll}x_{c, 1} & x_{c, 2} & x_{c, 3}\end{array}\right]^{\top}\right)$ when sensor set $\{1,2\}$ is attacked, the attacker can simply use a diagonal matrix $Q_{1}$ with entry $Q_{1}(1,1)$ greater than $Q_{1}(2,2)$ and $Q_{1}(3,3)$, where $\boldsymbol{Q}_{1}$ belongs to the objective function for set $\{1,2\}$. This prompts us to choose an objective function that sums the excited local objective functions at every instant, that is

$$
\begin{equation*}
\widehat{J}_{a}=\sum_{j=1}^{M} w_{j} J_{a}^{j} \text { and } \widehat{J}_{b}=\sum_{j=1}^{M} w_{j} J_{b}^{j} \tag{10}
\end{equation*}
$$

where $J_{a}^{j}$ or $J_{b}^{j}$ is obtained by replacing $\boldsymbol{Q}$ and $\gamma$ in (3) or (4) with $\boldsymbol{Q}_{j}$ and $\gamma_{j}$.

Putting (2), (7), and (10) together, the optimal switching data-injection attack design problem is to find $\boldsymbol{w}(t)$ and $u_{a}(t)$ that

$$
\begin{array}{ll}
\max & \widehat{J}_{a} \text { or } \widehat{J}_{b} \\
\text { s.t. } & \dot{\boldsymbol{x}}_{c}(t)=\boldsymbol{A}_{a} \boldsymbol{x}_{c}(t)+\sum_{j=1}^{M} w_{j}(t) \boldsymbol{b}_{a}^{j} u_{a}(t) \\
& \boldsymbol{u}_{c}(t)=\boldsymbol{K}\left[\boldsymbol{C} \boldsymbol{x}_{c}(t)+\sum_{j=1}^{M} w_{j}(t) \boldsymbol{d}_{a}^{j} u_{a}(t)\right] \\
& \boldsymbol{w}(t) \in \mathcal{W}_{0} \forall t \tag{11d}
\end{array}
$$

where the coefficients $\boldsymbol{A}_{a}:=\boldsymbol{A}+\boldsymbol{B K} \boldsymbol{C}$ and $\boldsymbol{b}_{a}^{j}:=\boldsymbol{B} \boldsymbol{K} \boldsymbol{d}_{a}^{j}$ for all $j=1, \ldots, M$. In (11), the optimal switching data-injection attack design problem is formulated as a 0-1 integer program.

If the binary variables $\left\{w_{j}(t)\right\}_{j=1}^{M}$ and the corresponding con- ${ }^{318}$ straint (11d) are not present, (11) is LQR, whose optimal ${ }^{319}$ solution can be readily obtained in the closed-form lever- ${ }_{320}$ aging Pontryagin's maximum principle (see [23]). In fact, ${ }^{321}$ constraint (11d) renders (11) nonconvex and NP-hard in gen- ${ }_{322}$ eral [24]. Fortunately, but if an optimal solution of $\boldsymbol{w}(t)$ is ${ }^{323}$ successfully found, then the optimal switching sequence $\zeta$ can ${ }^{324}$ be easily recovered.

325
Interestingly enough, if we view the attacked system (2) ${ }^{326}$ as a linear switched system (see [25] for related definitions), ${ }_{327}$ the problem of optimal switch data-injection attack design on ${ }^{328}$ an LTI system in (11) can be treated as the optimal control ${ }^{329}$ problem of a linear switched system. As far as optimal con- ${ }^{3} \mathbf{0}$ trol of switched systems is concerned, there is no closed-form ${ }_{331}$ solution in general, even for linear ones [26]. Recent efforts ${ }_{332}$ have primarily focused on the open-loop systems. Specifically, ${ }^{33}$ minimizing a quadratic cost on the state variables, an algebraic ${ }_{334}$ switching condition was developed for the open-loop linear ${ }_{335}$ switched systems [27], by leveraging the so-termed embedded ${ }_{336}$ transformation [28]. This result was further generalized to the ${ }_{337}$ multiple objective case [29]. For general closed-loop systems, ${ }_{338}$ whether and how one can obtain a closed-form expression of ${ }^{339}$ the switching condition remains unclear. Indeed, the attacked ${ }_{340}$ system (2) constitutes a special closed-loop system involv- ${ }_{341}$ ing scalar control (instead of vector) $u_{a}(t)$, which prompts ${ }_{342}$ us to exploit the embedded transformation as well as recent ${ }^{343}$ mathematical programming advances to hopefully tackle (11). ${ }_{344}$ The idea of the embedded transformation is to relax each ${ }_{345}$ binary constraint $w_{j}(t) \in\{0,1\}$ to a box one $w_{j}(t) \in[0,1],{ }_{346}$ followed by solving a convex problem. Rather than dealing ${ }_{347}$ with constraint (11d), we consider the switch input vector $\boldsymbol{w}(t){ }_{348}$ belonging to the following convex set:

$$
\begin{equation*}
\mathcal{W}_{1}:=\left\{\boldsymbol{w}(t) \mid \sum_{j=1}^{M} w_{j}(t)=1, \text { and } 0 \leq w_{j}(t) \leq 1 \quad \forall j\right\} \tag{12}
\end{equation*}
$$

After replacing the last constraint $\boldsymbol{w}(t) \in \mathcal{W}_{0}$ with $\boldsymbol{w}(t) \in{ }_{351}$ $\mathcal{W}_{1}$ in (11), we arrive at the following embedded switching ${ }^{352}$ data-injection attack design problem:

$$
\begin{align*}
\max & (11 \mathrm{a}) \\
\text { s.t. } & (11 \mathrm{~b}),(11 \mathrm{c}), \text { and } \boldsymbol{w}(t) \in \mathcal{W}_{1}
\end{align*}
$$

which boils down to an optimal control problem of $\mathrm{LQR}{ }^{356}$ type and whose optimal solution can be obtained leveraging ${ }^{357}$ Pontryagin's maximum principle. If luckily, the optimal solu- ${ }^{358}$ tion of $\boldsymbol{w}(t)$ in (13) takes values at $\boldsymbol{w}(t) \in \mathcal{W}_{0}$ for all $t$, one can ${ }^{359}$ verify that the resulting solution is also the optimal solution of 360 the original problem (11). To see this, we discuss the following ${ }_{361}$ two cases depending on whether $J_{a}$ or $J_{b}$ is maximized. 362

## A. Maximizing $\widehat{J}_{a}$ <br> 363

Before applying the embedded transformation, we first ${ }_{364}$ simplify $\widehat{J}_{a}$. According to (10), $\widehat{J}_{a}$ can be written as ${ }_{365}$

$$
\begin{align*}
\widehat{J}_{a}= & \frac{1}{2} \boldsymbol{x}_{c}^{\top}\left(t_{f}\right) \boldsymbol{G} \boldsymbol{x}_{c}\left(t_{f}\right) \\
& +\frac{1}{2} \sum_{j=1}^{M} w_{j} \int_{t_{0}}^{t_{f}}\left[\boldsymbol{u}_{c}^{\top}(t) \boldsymbol{Q}_{j} \boldsymbol{u}_{c}(t)-\gamma_{j} u_{a}^{2}(t)\right] d t \tag{}
\end{align*}
$$

${ }_{368}$ For notational brevity, the dependence on $t$ will be neglected. ${ }_{369}$ Since $\boldsymbol{w} \in \mathcal{W}_{0}$, it can be easily checked that
${ }_{370}\left(\sum_{j=1}^{M} w_{j} \boldsymbol{d}_{a}^{j}\right)^{\top} \boldsymbol{K}^{\top}\left(\sum_{j=1}^{M} w_{j} \boldsymbol{Q}_{j}\right) \sum_{j=1}^{M} w_{j} \boldsymbol{K} \boldsymbol{d}_{a}^{j}=\sum_{j=1}^{M} w_{j} \boldsymbol{d}_{a}^{j} \boldsymbol{K}^{\top} \boldsymbol{Q}_{j} \boldsymbol{K} \boldsymbol{d}_{a}^{j}$
371 and
${ }^{372}\left(\sum_{j=1}^{M} w_{j} \boldsymbol{d}_{a}^{j}\right)^{\top} \boldsymbol{K}^{\top}\left(\sum_{j=1}^{M} w_{j} \boldsymbol{Q}_{j}\right) \boldsymbol{K} \boldsymbol{C} \boldsymbol{x}_{c}=\sum_{j=1}^{M} w_{j} \boldsymbol{d}_{a}^{j} \boldsymbol{K}^{\top} \boldsymbol{Q}_{j} \boldsymbol{K} \boldsymbol{C} \boldsymbol{x}_{c}$.
${ }_{77}$ Expanding (14), $\widehat{J}_{a}$ can be further simplified into

$$
\begin{equation*}
\dot{\lambda}(t)=-\tilde{\boldsymbol{Q}}_{i(t)} \boldsymbol{x}_{c}(t)-u_{a}(t) \boldsymbol{s}_{i(t)}-\boldsymbol{A}_{a}^{\top} \lambda(t) \tag{20}
\end{equation*}
$$

99 with the boundary condition $\lambda\left(t_{f}\right)=\boldsymbol{G} \boldsymbol{x}\left(t_{f}\right)$.
Proof: Our proof starts with Pontryagin's maximum principle for the relaxed problem (13) (see [23]), which is followed by showing that the optimal solution of $\boldsymbol{w}$ is always achieved at one of the vertices of the polytope $\mathcal{W}_{1}$. Hence, the relaxation is tight, which recovers the optimal solution of the original challenging nonconvex problem (11). Toward this objective and using (21), the Hamilton function for (13) is given by

$$
\begin{align*}
H= & \boldsymbol{x}_{c}^{\top} \sum_{j=1}^{M} w_{j} \tilde{\boldsymbol{Q}}_{j} \boldsymbol{x}_{c}+2 \boldsymbol{x}_{c}^{\top} \sum_{j=1}^{M} w_{j} \boldsymbol{s}_{j} u_{a}+\sum_{j=1}^{M} w_{j} \tilde{\gamma}_{j} u_{a}^{2} \\
& -\lambda^{\top}\left(\boldsymbol{A}_{a} \boldsymbol{x}_{c}+\sum_{j=1}^{M} w_{j} \boldsymbol{b}_{a}^{j} u_{a}\right) . \tag{21}
\end{align*}
$$

To ensure existence of a meaningful solution, the adjustable ${ }_{404}$ parameters $\boldsymbol{Q}_{j}, \gamma_{j}$, and $\left\{\boldsymbol{d}_{a}^{j}\right\}_{j=1}^{M}$ should be designed such that
$\partial^{2} H / \partial u_{a}^{2}<0$ [30]. Upon defining $\tilde{\gamma}:=\left[\begin{array}{lll}\tilde{\gamma}_{1} & \cdots & \tilde{\gamma}_{M}\end{array}\right]^{\top}$, we 405 deduce that for all $\boldsymbol{w} \in \mathcal{W}_{1}$, the following holds:

$$
\begin{equation*}
\partial^{2} H / \partial u_{a}^{2}=\sum_{j=1}^{M} w_{j} \boldsymbol{d}_{a}^{j} \boldsymbol{K}^{\top} \boldsymbol{Q}_{j} \boldsymbol{K} \boldsymbol{d}_{a}^{j}-\gamma_{j}=\boldsymbol{w}^{\top} \tilde{\boldsymbol{\gamma}}<0 \tag{22}
\end{equation*}
$$

That is, function $H$ is strictly concave with a unique maximum 408 given by the stationary point of the gradient in $u_{a}$. By setting 409 $\partial H / \partial u_{a}=0$, we arrive at

$$
\begin{equation*}
u_{a}=-\sum_{j=1}^{M} w_{j} \frac{\boldsymbol{s}_{j}^{\top \boldsymbol{x}_{c}}+\boldsymbol{b}_{a}^{j \top} \boldsymbol{\lambda}}{\boldsymbol{d}_{a}^{j^{\top}} \boldsymbol{K}^{\top} \boldsymbol{Q}_{j} \boldsymbol{K} \boldsymbol{d}_{a}^{j}-\gamma_{j}}=-\sum_{j=1}^{M} w_{j} \frac{f_{j}}{\tilde{\gamma}_{j}} \tag{4}
\end{equation*}
$$

By the co-state equation $\dot{\lambda}=-\partial H / \partial \boldsymbol{x}_{c}$, we have that

$$
\begin{equation*}
\dot{\lambda}=-\sum_{j=1}^{M} w_{j} \tilde{Q}_{j} \boldsymbol{x}_{c}-\sum_{j=1}^{M} w_{j} \boldsymbol{s}_{j} u_{a}-\boldsymbol{A}_{a}^{\top} \lambda \tag{413}
\end{equation*}
$$

Let $\boldsymbol{f}:=\left[\begin{array}{lll}f_{1} & \cdots & f_{M}\end{array}\right]^{\top}$ and $\boldsymbol{q}:=\left[\begin{array}{lll}q_{1} & \cdots & q_{M}\end{array}\right]^{\top}$. Plugging (23) 414 into (21) yields

415

$$
H=\lambda^{\top} \boldsymbol{A}_{a} \boldsymbol{x}_{c}+\frac{\boldsymbol{w}^{\top} \boldsymbol{q}}{2}-\frac{\left(\boldsymbol{w}^{\top} \boldsymbol{f}\right)^{2}}{2 \boldsymbol{w}^{\top} \tilde{\gamma}}
$$

where $q_{i}=\boldsymbol{x}_{c}^{\top} \tilde{\boldsymbol{Q}} \boldsymbol{x}_{c}$. Evidently, as only the last two terms in $H_{417}$ depend on $\boldsymbol{w}$, maximizing $H$ with respect to $\boldsymbol{w} \in \mathcal{W}_{1}$ is equiv- ${ }_{418}$ alent to maximize the following reduced Hamilton function 419 over $\mathcal{W}_{1}$ :

$$
\bar{H}:=\frac{\boldsymbol{w}^{\top} \boldsymbol{q}}{2}-\frac{\left(\boldsymbol{w}^{\top} \boldsymbol{f}\right)^{2}}{2 \boldsymbol{w}^{\top} \tilde{\gamma}}:=\frac{\varphi(\boldsymbol{w})}{2}-\frac{\psi^{2}(\boldsymbol{w})}{2 \phi(\boldsymbol{w})} .
$$

The derivatives of $\phi(\boldsymbol{w})$ and $\psi(\boldsymbol{w})$ with respect to $w_{j}$ are ${ }_{422}$ given by

$$
\begin{equation*}
\dot{\phi}=\tilde{\gamma}_{j}, \quad \text { and } \quad \dot{\psi}=f_{j} . \tag{24}
\end{equation*}
$$

The second derivative of $\bar{H}$ with respect to $w_{j}$ is

$$
\begin{equation*}
\frac{\partial^{2} \bar{H}}{\partial w_{j}^{2}}=-\frac{\left(f_{j} \phi-\tilde{\gamma}_{j} \psi\right)^{2}}{\phi^{3}} \geq 0 \tag{25}
\end{equation*}
$$

Likewise, the second partial derivative of $\bar{H}$ with respect to $w_{j}{ }^{427}$ and $w_{k}$ can be found as

428

$$
\begin{equation*}
\frac{\partial \bar{H}}{\partial w_{j} \partial w_{k}}=-\frac{\left(f_{j} \phi-\tilde{\gamma}_{j} \psi\right)\left(f_{k} \phi-\tilde{\gamma}_{k} \psi\right)}{\phi^{3}} \tag{26}
\end{equation*}
$$

Define $z:=\left[\begin{array}{lll}z_{1} & \cdots & z_{M}\end{array}\right]^{\top}$ with entries given by $z_{j}=f_{j} \phi-{ }_{430}$ $\tilde{\gamma}_{j} \psi$. Then, based on (25) and (26), the Hessian matrix of $\bar{H}{ }^{431}$ can be written as follows:

432

$$
\frac{\partial^{2} \bar{H}}{\partial \boldsymbol{w}^{2}}=-\frac{1}{\phi^{3}}\left[\begin{array}{cccc}
z_{1}^{2} & z_{1} z_{2} & \cdots & z_{1} z_{M} \\
z_{2} z_{1} & z_{2}^{2} & \cdots & z_{2} z_{M} \\
\vdots & \vdots & \ddots & \vdots \\
z_{M} z_{1} & z_{M} z_{2} & \cdots & z_{M}^{2}
\end{array}\right]=\frac{z z^{\top}}{-\phi^{3}} \succeq \mathbf{0}
$$

which confirms that function $\bar{H}$ is convex over $\mathcal{W}_{1}$.
434
Maximizing $H$ over $\boldsymbol{w} \in \mathcal{W}_{1}$ reduces to maximizing convex ${ }_{435}$ $\bar{H}$ over a convex feasibility set $\boldsymbol{w} \in \mathcal{W}_{1}$. In this case, the min- ${ }_{436}$ imum is always attained at one of the vertices of the polytope ${ }^{437}$ determined by the $M$ box constraints in $\mathcal{W}_{1}$ [31]. It is evident ${ }_{438}$

```
Algorithm 1: Optimal Switching Data-Injection Attack
Algorithm
    Determine \(\boldsymbol{d}_{a}^{j}\) for all compromised sensor sets \(j \in\{1, \ldots, M\}\).
    Set: \(\boldsymbol{G}, \boldsymbol{Q}_{j}\), and \(\gamma_{j}\) according to the attacker's preference.
    for \(i=1, \ldots, M\) do
        Solve (29);
    end
    Initialize: attack horizon \(\left[t_{0}, t_{f}\right]\), and \(\mathcal{S}\left(t_{0}\right)\).
    Estimate: initial state \(\boldsymbol{x}_{c}\left(t_{0}\right)\).
    while \(t \leq t_{f}\) do
        for \(i=1, \ldots, M\) do
            Compute (19);
            Evaluate \(\beta_{j}(t)=q_{j}(t)-f_{j}^{2}(t) / \tilde{\gamma}_{j} ;\)
        end
        if \(i:=\arg \max _{j}\left\{\beta_{j}\right\}\) then
            Compute (28);
            \(\dot{\boldsymbol{x}}_{c}(t)=\boldsymbol{A}_{a} \boldsymbol{x}_{c}(t)+\boldsymbol{b}_{a}^{i} u_{a}(t) ;\)
            \(\lambda(t)=\boldsymbol{P}_{i} \boldsymbol{x}_{c}(t) ;\)
        end
    end
```

Remark 3: To find $u_{a}\left(t_{0}\right)$ in (28), the adversary has to esti-
that the vertices of $\mathcal{W}_{1}$ coincide with the standard basis vectors $\boldsymbol{w}_{j} \in \mathbb{R}^{M}$ (whose $j$ th entry is one, and remaining entries are zero), satisfying $\boldsymbol{w}_{j} \in \mathcal{W}_{0}$. Hence, the optimal solution of the relaxed problem recovers the optimal solution of the original nonconvex problem. Concretely, we have that

$$
\begin{equation*}
\max _{\boldsymbol{w} \in \mathcal{W}_{1}} \bar{H}(\boldsymbol{w})=\max _{j \in\{1, \ldots, M\}} q_{j}(t)-f_{j}^{2}(t) / \tilde{\gamma}_{j} \tag{27}
\end{equation*}
$$

and the optimal switching instants are given by the time when $\boldsymbol{w}^{*}(t)$ changes. This completing the proof.
Regarding Theorem 1, we have the following observations. Remark 1: By simply comparing the values $\left\{q_{j}(t)-\right.$ $\left.f_{j}^{2}(t) / \tilde{\gamma}_{j}\right\}$ for all sensor sets at each instant, the attacker achieves an optimal switch input.

Remark 2: In the steady state, the optimal data-injection law is a state-feedback signal given by

$$
\begin{equation*}
u_{a}(t)=-\frac{1}{\tilde{\gamma}_{i}}\left(\boldsymbol{s}_{i}^{\top}+\boldsymbol{b}_{a}^{i} \boldsymbol{P}_{i}\right) \boldsymbol{x}_{c}(t) \tag{28}
\end{equation*}
$$

where $\boldsymbol{P}_{i} \in \mathbb{S}_{+}^{n \times n}$ is the solution of the Riccati equation mate the initial state $\boldsymbol{x}_{c}\left(t_{0}\right)$ from sensor measurements $\boldsymbol{y}(t)$ of the healthy plant for $t \leq t_{0}$, using, e.g., a Luenberger observer, before launching attacks.

## B. Maximizing $J_{b}$

According to (10), $\widehat{J}_{b}$ can be written as

$$
\begin{align*}
\widehat{\boldsymbol{J}}_{b}= & \frac{1}{2} \boldsymbol{x}_{c}^{\top}\left(t_{f}\right) \boldsymbol{G} \boldsymbol{x}_{c}\left(t_{f}\right) \\
& +\frac{1}{2} \sum_{j=1}^{M} w_{j} \int_{t_{0}}^{t_{f}}\left[\boldsymbol{x}_{c}^{\top}(t) \boldsymbol{Q}_{j} \boldsymbol{x}_{c}(t)-\gamma_{j} u_{a}^{2}(t)\right] d t . \tag{30}
\end{align*}
$$

If the objective function $\widehat{J}_{b}$ is adopted, we have the following theorem.

Theorem 2: The optimal switching condition of the switch- ${ }_{466}$ ing attack that maximizes the performance index (30) for the ${ }_{467}$ attacked system (2) is given by

$$
\begin{equation*}
i(t):=\arg \max _{j \in\{1, \ldots, M\}} \boldsymbol{x}_{c}^{\top} \boldsymbol{Q}_{j} \boldsymbol{x}_{c}+\frac{1}{\gamma_{j}}\left(\boldsymbol{b}_{a}^{j^{\top}} \boldsymbol{\lambda}\right)^{2} \tag{31}
\end{equation*}
$$

with the optimal data-injection law being

$$
\begin{equation*}
u_{a}(t):=\frac{1}{\gamma_{i}} \boldsymbol{b}_{a}^{j}{ }^{\top} \lambda(t) \tag{32}
\end{equation*}
$$

where $\lambda(t)$ is the solution of

$$
\begin{equation*}
\dot{\lambda}(t)=-\boldsymbol{Q}_{i} \boldsymbol{x}_{c}(t)-\boldsymbol{A}_{a}^{\top} \lambda(t) \tag{33}
\end{equation*}
$$

with the boundary condition $\boldsymbol{\lambda}\left(t_{f}\right)=\boldsymbol{G} \boldsymbol{x}\left(t_{f}\right)$. ${ }_{474}$
Proof: Appealing again to the Pontryagin's maximum prin- 475 ciple, the Hamilton function is given by

$$
\begin{align*}
H= & \frac{1}{2} \sum_{j=1}^{M} w_{j}\left[\boldsymbol{x}_{c}^{\top}(t) \boldsymbol{Q}_{j} \boldsymbol{x}_{c}(t)-\gamma_{j} u_{a}^{2}(t)\right] \\
& +\lambda^{\top}(t)\left[\boldsymbol{A}_{a} \boldsymbol{x}_{c}(t)+\sum_{j=1}^{M} w_{j} \boldsymbol{b}_{a}^{j} u_{a}(t)\right] . \tag{34}
\end{align*}
$$

$$
\begin{equation*}
\dot{\lambda}(t)=-\sum_{j=1}^{M} w_{j} \boldsymbol{Q}_{j} \boldsymbol{x}_{c}(t)-\boldsymbol{A}_{a}^{\top} \boldsymbol{\lambda}(t) \tag{35}
\end{equation*}
$$

and by means of the coupled equation, it further holds that ${ }_{481}$

$$
\begin{equation*}
u_{a}(t)=\sum_{j=1}^{M} \frac{w_{j}}{\gamma_{j}} \boldsymbol{b}_{a}^{j}{ }^{\top} \lambda(t) \tag{36}
\end{equation*}
$$

Substituting (36) into (34) yields

$$
\begin{equation*}
\bar{H}=\sum_{j=1}^{M} w_{j} \boldsymbol{x}_{c}^{\top \boldsymbol{Q}_{j}} \boldsymbol{x}_{c}+\sum_{j=1}^{M} \sum_{j=1}^{M} \frac{w_{j} w_{k}}{\gamma_{j} \gamma_{k}}\left(\lambda^{\top} \boldsymbol{b}_{a}^{j}\right)\left(\lambda^{\top \boldsymbol{b}_{a}^{k}}\right) . \tag{484}
\end{equation*}
$$

Maximizing $\bar{H}$ over $\boldsymbol{w}(t) \in \mathcal{W}_{1}$ now boils down to solving the ${ }_{485}$ following quadratic programming problem:

$$
\begin{array}{cl}
\underset{\boldsymbol{w}}{\operatorname{maximize}} & \boldsymbol{w}^{\top} \boldsymbol{H} \boldsymbol{w}+\boldsymbol{w}^{\top} \boldsymbol{q} \\
\text { subject to } & \boldsymbol{w} \in \mathcal{W}_{1} \tag{37b}
\end{array}
$$

where $\boldsymbol{H}:=\boldsymbol{h} \boldsymbol{h}^{\top}$ with $\boldsymbol{h}:=\left[\left(\boldsymbol{\lambda}^{\top} \boldsymbol{b}_{a}^{1}\right) / \gamma_{1} \cdots\left(\boldsymbol{\lambda}^{\top} \boldsymbol{b}_{a}^{M}\right) / \gamma_{M}\right]^{\top}$ and 489 $\boldsymbol{q}:=\left[\left(\boldsymbol{x}_{c}^{\top \boldsymbol{Q}_{1}} \boldsymbol{x}_{c}\right) \cdots\left(x_{c}^{\top \boldsymbol{Q}_{M}} \boldsymbol{x}_{c}\right)\right]^{\top}$.

490
Evidently, function $\bar{H}$ is convex in $\boldsymbol{w}$. Again, the optimal 491 solution of maximizing $\bar{H}(\boldsymbol{w})$ over $\boldsymbol{w} \in \mathcal{W}_{1}$ is attained (at 492 least) at one of the vertices of the polytope determined by $\mathcal{W}_{1},{ }^{493}$ hence proving that the switch input $\boldsymbol{w}(t)$ obtains its optimal ${ }_{494}$ solution in $\mathcal{W}_{0}$. Concretely, we have that 495

$$
\begin{equation*}
\max _{\boldsymbol{w} \in \mathcal{W}_{1}} \bar{H}(\boldsymbol{w})=\max _{j \in\{1, \ldots, M\}} \boldsymbol{x}_{c}^{\top} \boldsymbol{Q}_{j} \boldsymbol{x}_{c}+\frac{1}{\gamma_{j}}\left(\lambda^{\top \boldsymbol{b}_{a}^{j}}\right)^{2} \tag{38}
\end{equation*}
$$

completing the proof.

## IV. Countermeasure Design

After exploiting the attack strategy from the perspective of the adversary, it is of paramount importance to pursue defense schemes (countermeasures) to mitigate the attacks. The problem of interest is to design an enhanced outputfeedback controller to stabilize the attacked system, such that the control performance is preserved in a well-defined sense.

The countermeasure against switching attacks has mainly focused on the network topology attack and the DoS attack [20]. The resilient control against location switching attacks has not been investigated in the literature. Compared with the existing efforts that use cover network information, or have a subset of sensors immune to attacks destroying the feasibility of stealthy attacks [32], this article develops a resilient control scheme that tolerates intrusions. In general, resilience means that the operator maintains an acceptable level of operational normalcy despite attacks. Before presenting the countermeasure design, we start by introducing the definition of a resilient control scheme.

Definition 1: A feedback control law $\tilde{\boldsymbol{u}}$ is said to be resilient if it can stabilize the plant under a sequence of attacks arbitrarily constructed based on a set of state-feedback laws, while guaranteeing an acceptable cost, that is, for some given bound $\tilde{J}$, the following holds:

$$
\begin{equation*}
\tilde{J} \leq \tilde{J}^{*} \tag{39}
\end{equation*}
$$

The operator has the freedom to select the two weighting matrices $\tilde{\boldsymbol{Q}} \succ \mathbf{0}$ and $\tilde{\boldsymbol{R}} \succ \mathbf{0}$ to compensate for the control performance degradation of the healthy plant. The state of the healthy system can be reconstructed using, e.g., a Luenberger observer [33]. If the attacker injects false data into a set of sensors over a period of time, the reconstruction error $\boldsymbol{e}_{c}(t)$ may diverge and the alarm will be triggered if it exceeds a threshold

$$
\begin{gathered}
\left\{\begin{array}{l}
\dot{\hat{x}}(t)=\boldsymbol{A} \hat{\boldsymbol{x}}(t)+\boldsymbol{B} u_{c}(t)+\boldsymbol{L}\left[\boldsymbol{y}_{c}(t)-\hat{\boldsymbol{y}}(t)\right] \\
\hat{\boldsymbol{y}}(t)=\boldsymbol{C} \hat{\boldsymbol{x}}(t)
\end{array}\right. \\
\dot{\boldsymbol{e}}_{c}(t)=(\boldsymbol{A}-\boldsymbol{L C}) \boldsymbol{e}_{c}(t)+\boldsymbol{L} \boldsymbol{d}_{a} u_{a}(t)
\end{gathered}
$$

where $\boldsymbol{e}_{c}(t):=\boldsymbol{x}_{c}(t)-\hat{\boldsymbol{x}}(t)$ and $\boldsymbol{L}$ is a gain matrix.
The attacked system can be modeled as a switched system consisting of $M$ modes

$$
\text { Mode } j: \dot{\boldsymbol{x}}_{c, j}(t)=\left(\boldsymbol{A}_{a}+\boldsymbol{B} \boldsymbol{K} \Delta \boldsymbol{K}_{j}\right) \boldsymbol{x}_{c, j}(t), j=1, \ldots, M
$$

Consider for example, if $J_{a}$ is maximized, substituting (28) into (11b), we have

$$
\begin{equation*}
\Delta \boldsymbol{K}_{j}=-\frac{1}{\tilde{\gamma}_{j j}}\left[\boldsymbol{d}_{a}^{j}\left(\boldsymbol{s}_{j}^{\top}+\boldsymbol{B}_{a}^{j}{ }^{\top} \boldsymbol{P}_{j}\right)\right] . \tag{41}
\end{equation*}
$$

The attacker uses matrices $\Delta \boldsymbol{K}_{j}$ at time $t_{j}$ and switches to $\Delta \boldsymbol{K}_{j^{\prime}}$ at $t_{j^{\prime}}$. The attacker may change the attack locations randomly according to a stochastic model, or optimally with respect to an unknown criterion. As such, matrices $\Delta \boldsymbol{K}_{j}$ can be treated as a switching uncertainty of the healthy plant. The guaranteed cost control approach can be adopted to mitigate the attacks [34].

Once the detector detects an attack, or that the system response ${ }_{548}$ is considerably altered such that the attack is exposed, the ${ }_{549}$ defender needs to estimate the sensor links that have been ${ }_{550}$ compromised, as well as identify the uncertainty matrices $\Delta \boldsymbol{K}_{j}$. ${ }_{551}$ Recent advances on identifying the attack set from sensor mea- ${ }_{552}$ surements (e.g., [35]) assume attacks on the state equations, ${ }^{553}$ and do not utilize the information of the attacked state $\boldsymbol{x}_{c} .{ }_{554}$ The proposed identification problem is generally NP-hard, and ${ }_{555}$ reducing-complexity algorithms are presented. We adopt the ${ }_{556}$ following steps to defend against switching attacks. ${ }_{557}$

Step 1 (Attack Extraction): As the false data injected into ${ }_{558}$ sensor measurements

$$
\begin{equation*}
\boldsymbol{f}_{a}(t)=u_{a}(t) \boldsymbol{d}_{a}^{j} . \tag{42}
\end{equation*}
$$

The defender should find historical false data $f_{a}(t):={ }_{561}$ $\left[f_{a}^{1}(t) \cdots f_{a}^{n}(t)\right]^{\top}$ to identify the uncertainty matrix $\Delta \boldsymbol{K}_{j}$. The ${ }_{562}$ goal of this step is to extract $f_{a}(t)$ and sort the timestamp ${ }^{563}$ of $\boldsymbol{f}_{a}(t)$ into $M$ parts, namely, $\boldsymbol{O}_{1}, \ldots, \boldsymbol{O}_{M}$, each of which ${ }_{564}$ corresponds to a compromised sensor set. In Example 1, if 565 $f_{a}^{1}(t)<\delta$, where $\delta>0$ is a preselected threshold to account ${ }_{566}$ for computation and measurement inaccuracies, then $t \in \boldsymbol{O}_{3}{ }^{567}$ (referring to set $\{2,3\}$ ); if $f_{a}^{2}(t)<\delta, t \in \boldsymbol{O}_{2}$ (referring to set ${ }_{568}$ $\{1,3\}$ ). If $f_{a}^{3}(t)<\delta$, then $t \in \boldsymbol{O}_{1}$ (referring to set $\{1,2\}$ ). In this ${ }_{569}$ article, we assume that the control center is able to reset the 570 attacked system under a known initial condition, and compare 571 the attacked sensor measurements with $\boldsymbol{y}_{v}(t)$ from a virtual ${ }_{572}$ healthy system, namely 573

$$
\begin{align*}
\dot{\boldsymbol{x}}_{v}(t) & =\boldsymbol{A}_{a} \boldsymbol{x}_{v}(t)  \tag{43a}\\
\boldsymbol{y}_{v}(t) & =\boldsymbol{C} \boldsymbol{x}_{v}(t) . \tag{43b}
\end{align*}
$$

Upon defining

$$
\begin{aligned}
& \boldsymbol{e}_{x}=\boldsymbol{x}_{c}-\boldsymbol{x}_{v} \\
& \boldsymbol{e}_{y}=\boldsymbol{y}_{c}-\boldsymbol{y}_{v}
\end{aligned}
$$

we obtain that

$$
\begin{align*}
\dot{\boldsymbol{e}}_{x}(t) & =\boldsymbol{A}_{a} \boldsymbol{e}_{x}(t)+\boldsymbol{B K} \boldsymbol{f}_{a}(t)  \tag{44a}\\
\boldsymbol{e}_{y}(t) & =\boldsymbol{C} \boldsymbol{e}_{x}(t)+\boldsymbol{f}_{a}(t) \tag{44b}
\end{align*}
$$

where $\boldsymbol{e}_{x}(0)=\mathbf{0}$. Vector $\boldsymbol{f}_{a}(t)$ can be calculated by the compar- 582 ison result $\boldsymbol{e}_{y}(t)$, and once $\boldsymbol{f}_{a}(t)$ is recovered, the compromised ${ }^{583}$ sensors are found.

Step 2 (Attack Identification): The defender makes use of ${ }_{585}$ the data whose timestamp was collected in $\boldsymbol{O}_{j}$ to identify the ${ }_{586}$ unknown parameter matrices $\Delta \boldsymbol{K}_{j}$, using the common least- ${ }^{587}$ squares algorithm by solving

$$
\begin{equation*}
\min _{\Delta \boldsymbol{K}_{j}} \sum_{t \in \boldsymbol{O}_{j}}\left\|\boldsymbol{f}_{a}(t)-\Delta \boldsymbol{K}_{j} \boldsymbol{x}_{c}(t)\right\|_{2}^{2} \tag{45}
\end{equation*}
$$

In practice, $\boldsymbol{e}_{y}$ can be induced by, e.g., link failures in system ${ }_{590}$ components, noise in communication channels, or intentional 591 attacks. If the online identification algorithm converges, there ${ }_{592}$ exists a state-feedback data-injection attack [36] (different ${ }^{593}$ from random attacks [37] or constant switching attacks [38]). 594

Step 3 (Resilient Control): To circumvent switching attacks, 595 the controller needs to be redesigned in a way to be ${ }_{596}$ resilient. The system implements a feedback control law $\tilde{\boldsymbol{u}}{ }^{597}$ on the attacked system, which is obtained according to the 598

$$
\begin{equation*}
\dot{\boldsymbol{x}}_{c}(t)=\sum_{j=1}^{M} w_{j}(t) \tilde{\boldsymbol{A}}_{j} \boldsymbol{x}_{c}(t) \tag{46}
\end{equation*}
$$

is asymptotically stable, and $\tilde{J}$ satisfies

$$
\begin{equation*}
\tilde{J} \leq \boldsymbol{x}_{0}^{\top} \tilde{\boldsymbol{P}} \boldsymbol{x}_{0} \tag{47}
\end{equation*}
$$

${ }^{11}$ if there exist a symmetric matrix $\tilde{\boldsymbol{P}} \succ \mathbf{0}$ and a scalar $\bar{\gamma}>0$ 12

613

14 where $\boldsymbol{x}_{0}$ is the initial state, and $\tilde{\boldsymbol{A}}_{j}:=\boldsymbol{A}+\boldsymbol{B} \tilde{\boldsymbol{K}}\left(\boldsymbol{C}+\Delta \boldsymbol{K}_{j}\right)$ for 15
${ }_{18}$ for some symmetric matrix $\tilde{\boldsymbol{P}} \succ \mathbf{0}$. The time derivative of $V(x)$ ${ }^{19}$ can be found as

620

621

25 then

626

$$
\begin{aligned}
\dot{V}(x) & =\dot{\boldsymbol{x}}_{c}^{\top}(t) \tilde{\boldsymbol{P}} \boldsymbol{x}_{c}(t)+\boldsymbol{x}_{c}^{\top}(t) \tilde{\boldsymbol{P}} \dot{\boldsymbol{x}}_{c}(t) \\
& =\boldsymbol{x}_{c}^{\top}(t) \sum_{j=1}^{M} w_{j}(t)\left(\tilde{\boldsymbol{A}}_{j}^{\top} \tilde{\boldsymbol{P}}+\tilde{\boldsymbol{P}} \tilde{\boldsymbol{A}}_{j}\right) \boldsymbol{x}_{c}(t)
\end{aligned}
$$

By the common Lyapunov function method, if the following holds:

$$
\begin{equation*}
\boldsymbol{x}_{c}^{\top}(t)\left(\tilde{\boldsymbol{A}}_{j}^{\top} \tilde{\boldsymbol{P}}+\tilde{\boldsymbol{P}}_{j} \tilde{\boldsymbol{A}}_{j}+\tilde{\boldsymbol{Q}}+\tilde{\boldsymbol{K}}^{\top} \tilde{\boldsymbol{R}} \tilde{\boldsymbol{K}}\right) \boldsymbol{x}_{c}(t) \leq 0 \tag{50}
\end{equation*}
$$

$$
\begin{equation*}
\dot{V}(x) \leq-\boldsymbol{x}_{c}^{\top}(t)\left(\tilde{\boldsymbol{Q}}+\tilde{\boldsymbol{K}}^{\top} \tilde{\boldsymbol{R}} \tilde{\boldsymbol{K}}\right) \boldsymbol{x}_{c}(t) \leq 0 \tag{51}
\end{equation*}
$$

${ }_{627}$ for $w_{j}(t) \in\{0,1\} \forall j$. That is, the attacked system is asymptot628

629

$$
\begin{equation*}
\boldsymbol{x}_{c}^{\top} \tilde{\boldsymbol{Q}} \boldsymbol{x}_{c}+\tilde{\boldsymbol{u}}^{\top} \tilde{\boldsymbol{R}} \tilde{\boldsymbol{u}} \leq-\dot{V}(x) . \tag{52}
\end{equation*}
$$

${ }_{\text {зо }}$ Since $\boldsymbol{x}_{c}(\infty)=\mathbf{0}$ holds for the stable closed-loop system, we ${ }_{31}$ deduce that

632

$$
\begin{equation*}
\tilde{J} \leq-\int_{0}^{\infty} \dot{V}(x) d t=\boldsymbol{x}_{0}^{\top} \tilde{\boldsymbol{P}} \boldsymbol{x}_{0} . \tag{53}
\end{equation*}
$$

${ }_{6}{ }^{6}$ The Schur compliment further confirms that (50) is equivalent ${ }_{34}$ to the LMI in (48), which completes the proof.

## V. Illustrative Examples

In this section, we provide several numerical tests to show- ${ }_{636}$ case the effectiveness of the proposed resilient control scheme ${ }_{637}$ as well as the practical merits of our theory.

## A. Power Generator

Consider a remotely controlled power generator described 640 by the following normalized swing equation [39]:

$$
\begin{align*}
\dot{\delta}(t) & =\omega(t)  \tag{54a}\\
M \dot{\omega}(t) & =-D \omega(t)-P_{f}(t)+u(t) \tag{54b}
\end{align*}
$$

where $\delta$ and $\omega$ denote the phase angle and frequency deviation ${ }_{644}$ of the generator (rotor), respectively; $u(t)$ is the mechan- ${ }_{645}$ ical power provided for the generator; and $M$ and $D$ are ${ }_{646}$ the inertia and damping coefficients, respectively. The term ${ }_{647}$ $P_{f}(t)=b \sin (\delta(t))$ represents the electric power flow from ${ }_{648}$ the generator to the bus, where $b$ is the susceptance of the ${ }_{649}$ transmission line. Upon linearizing the model at the nominal 650 point $\omega=\delta=0$ with $M=D=b=1$, and defining the ${ }_{651}$ state $\boldsymbol{x}:=[\delta \omega]^{\top}$, we obtain an LTI system as in (1) whose ${ }_{652}$ parameters are given by

$$
\begin{aligned}
& \boldsymbol{A}=\left[\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right], \quad \boldsymbol{B}=\left[\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right] \\
& \boldsymbol{C}=\boldsymbol{I}, \quad \boldsymbol{K}=-\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] .
\end{aligned}
$$

We consider a practical scenario where the adversary can alter ${ }_{656}$ the mechanical power supplied to the generator, through break- ${ }_{657}$ ing the integrity of the sensor signal measuring $\delta$ and $\omega$ of the ${ }^{658}$ generator. Specifically, the adversary injects a state-feedback 659 signal into the control signal, which will make the generator 660 increase its power generation, and correspondingly, increase 661 the power flow $P_{f}$ along the transmission line. Choose with- ${ }_{662}$ out loss of generality that $\boldsymbol{Q}_{1}=\boldsymbol{Q}_{2}=\boldsymbol{I}$ and $\gamma_{1}=\gamma_{2}=6$. ${ }^{663}$ The attack vectors are $\boldsymbol{d}_{a}^{1}=\left[\begin{array}{ll}1 & 0\end{array}\right]^{\top}$ and $\boldsymbol{d}_{a}^{2}=\left[\begin{array}{ll}0 & 1\end{array}\right]^{\top}$, i.e., the ${ }_{664}$ attacker compromises one sensor every time. Then, one can 665 write that $s_{1}=\left[\begin{array}{ll}1 & 0\end{array}\right]$ and $s_{2}=\left[\begin{array}{ll}0 & 4\end{array}\right]$. The healthy plant under ${ }_{666}$ switching attacks becomes a switched system of two modes. ${ }_{667}$

Using Theorem 1, the switching condition (17) becomes ${ }_{668}$

$$
\begin{equation*}
i(t):=\arg \max _{j \in\{1,2\}} z_{j} \tag{55}
\end{equation*}
$$

where

$$
z_{1}=\frac{1}{4}\left|\delta-\lambda_{2}\right|, \quad \text { and } \quad z_{2}=\frac{1}{4}\left|4 \omega-2 \lambda_{2}\right| .
$$

The state trajectories of the system under switching attacks and 672 those of the health plant are presented in Fig. 2, along with ${ }^{673}$ the switching instants between the two nodes given in Fig. 3. 674 Observe that the attack stays in Mode 1 during the period ${ }_{675}$ [0.195, 0.278] s, yet it switches to Mode 2 at $t=0.278 \mathrm{~s}$, ${ }^{676}$ and stays there till $t=2.18 \mathrm{~s}$.

677
Choose $\boldsymbol{Q}_{1}=2 \boldsymbol{I}$ and keep other parameters unchanged. ${ }^{678}$ Fig. 4 compares the simulation results under the optimal 679 switching attacks and under random switching attacks subject 680 to (55) with $z_{1} \sim \mathbb{U}[0,1]$ and $z_{2}=0.8$. Their corresponding ${ }_{681}$ performance indices [see (16)] are 93.5 and 51.5 , respectively. 682


Fig. 2. State trajectories under optimal switching attacks.


Fig. 3. Optimal switching instants.


Fig. 4. Comparison results between optimal switching attacks and random switching attacks.

Invoking Theorem 3, a resilient control gain matrix can be obtained as

$$
\tilde{\boldsymbol{K}}=-\left[\begin{array}{cc}
1.59 & 0.28 \\
-0.1 & 0.89
\end{array}\right]
$$

After implementing a resilient state-feedback control scheme, the state trajectories of the plant under attacks and the healthy plant are depicted in Fig. 5, where the upper bound on the cost was $\tilde{J}^{*}=47.2$.

## B. Power Systems

Now, consider a power system comprising several power generators and load buses. Following (54), the dynamics per generator can be modeled by a set of linear swing equations:

$$
\begin{align*}
\dot{\delta}_{i}(t) & =\omega_{i}(t)  \tag{56a}\\
M_{i} \dot{\omega}_{i}(t) & =-D_{i} \omega_{i}(t)-P_{f}^{j}(t)+u_{i}(t) \tag{56b}
\end{align*}
$$



Fig. 5. State trajectories under the proposed resilient control.
for $i=1, \ldots, n_{g}$, where $n_{g}$ is the total number of generators. ${ }^{696}$ We consider a PID load frequency controller, namely

$$
\begin{equation*}
u_{i}=-\left(K_{i}^{P} \omega_{i}+K_{i}^{I} \int_{0}^{t} \omega_{i} d t+K_{i}^{D} \dot{\omega}_{i}\right) \tag{57}
\end{equation*}
$$

where the controller parameters $K_{i}^{P} \geq 0, K_{i}^{I} \geq 0$, and $K_{i}^{D} \geq 0{ }_{699}$ are the proportional gain, integral gain, and derivative gain, 700 respectively. The overall power system dynamics of $n_{g}$ gen- 701 erators can be compactly expressed as the following linear 702 descriptor system:

703

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
\boldsymbol{I} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{M}+\boldsymbol{K}^{D} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\dot{\boldsymbol{\delta}} \\
\dot{\boldsymbol{\omega}} \\
\dot{\boldsymbol{\theta}}
\end{array}\right]} \\
& =-\left[\begin{array}{ccc}
\mathbf{0} & -\boldsymbol{I} & \mathbf{0} \\
\boldsymbol{B}_{G G}+\boldsymbol{K}^{I} & \boldsymbol{D}_{G}+\boldsymbol{K}^{P} & \boldsymbol{B}_{G L} \\
\boldsymbol{B}_{L G} & \mathbf{0} & \boldsymbol{B}_{L L}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{\delta} \\
\boldsymbol{\omega} \\
\boldsymbol{\theta}
\end{array}\right]-\left[\begin{array}{c}
\mathbf{0} \\
\boldsymbol{P}_{a}^{\omega} \\
\boldsymbol{P}^{L}
\end{array}\right]{ }_{\text {(58) }}^{704}
\end{aligned}
$$

where vectors $\boldsymbol{\delta}$ and $\boldsymbol{\omega}$ collect accordingly the voltage phase 707 angles and the rotor angular frequency deviations at all gener- 708 ator buses; vectors $\boldsymbol{\theta}$ and $\boldsymbol{P}^{L}$ stack up the voltage phase angles 709 and power consumption at all load buses, respectively; and $\boldsymbol{M}{ }_{710}$ is a diagonal matrix; and likewise for matrices $\boldsymbol{D}^{G}, \boldsymbol{D}^{L}, \boldsymbol{K}^{P}, 711$ $\boldsymbol{K}^{I}$, and $\boldsymbol{K}^{D}$.

712
The attack design approach presented in Theorem 2 was ${ }_{713}$ numerically tested and verified using the IEEE 9-bus bench- 714 mark system, which has three power generators and six 715 load buses [35]. The frequency measurements obtained may 716 have already been strategically modified by a knowledgeable 717 attacker to cause system frequencies to deviate from their nom- 718 inal values. Here, we assume that the attacker can alter the ${ }_{719}$ frequencies measured at generators $g_{1}$ and $g_{2}$, and injects false 720 data $\boldsymbol{P}_{a}^{\omega}:=\boldsymbol{d}_{a}^{j} u_{a}(t)$ into the controller at victim generators. ${ }^{721}$

Upon defining the state $\boldsymbol{x}:=\left[\boldsymbol{\delta}^{\top} \boldsymbol{\omega}^{\top}\right]^{\top}$, the attacked system ${ }_{722}$ can be rewritten as

$$
\dot{\boldsymbol{x}}(t)=\boldsymbol{A}_{a} \boldsymbol{x}(t)+\boldsymbol{b}_{a}^{j} u_{a}(t)
$$

Choose

$$
\begin{aligned}
& \boldsymbol{K}^{P}=\operatorname{diag}\left(\left[\begin{array}{lll}
0.1 & 0.1 & 0.1
\end{array}\right]\right), \quad \boldsymbol{K}=\boldsymbol{I} \\
& \boldsymbol{Q}_{1}=\operatorname{diag}\left(\left[\begin{array}{llllll}
0 & 0 & 0 & 16 & 16 & 16
\end{array}\right]\right), \boldsymbol{Q}_{2}=\operatorname{diag}\left(\left[\begin{array}{lllllll}
0 & 0 & 0 & 14 & 14 & 14
\end{array}\right]\right) \quad{ }^{727} \\
& \gamma_{1}=7, \quad \gamma_{2}=11 \\
& \boldsymbol{d}_{a}^{1}=\left[\begin{array}{lll}
0.15 & 0 & 0
\end{array}\right]^{\top}, \quad \boldsymbol{d}_{a}^{2}=\left[\begin{array}{lll}
0 & 0.15 & 0
\end{array}\right]^{\top} .
\end{aligned}
$$



Fig. 6. Optimal switching instants.


Fig. 7. State trajectories under optimal switching attacks.


Fig. 8. State trajectories under nonswitching attacks.

7з0 Then
${ }^{731} \quad \boldsymbol{A}_{a}=\left[\begin{array}{cccccc}0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ -0.235 & 0.119 & 0.116 & -1.8 & 0 & 0 \\ 0.436 & -0.847 & 0.411 & 0 & -4.941 & 0 \\ 0.905 & 0.874 & -1.778 & 0 & 0 & -9.25\end{array}\right]$
become discontinuous, which gives rise to the so-called vibra- 740 tion phenomenon [40]. The attacker switched four times in the 741 simulation interval of 12 s .

## VI. Conclusion

In this article, the optimal data-injection attack with switch- 744 ing behaviors was studied. Two different objective functions 745 were suggested for the adversary to optimally determine the 746 attack strategy. One focuses on the controller energy consump- ${ }_{74}$ tion, while the other considers the quadratic integration of ${ }_{748}$ states. The optimal attack design problem was formulated as 749 an integer programming problem, which is hard to solve in 750 general. By reformulating it as an optimal control problem 751 of a linear switched system, we were able to find the optimal ${ }_{752}$ solution. A defense approach was developed to mitigate a class ${ }_{753}$ of data-injection attacks with feedback and location switching 754 characteristics. The merits and practicability of our proposed 755 strategies were shown by numerical simulations.

## REFERENCES

757
[1] A. A. Cardenas, S. Amin, and S. Sastry, "Secure control: Towards sur- 758 vivable cyber-physical systems," in Proc. Int. Conf. Distrib. Comput. 759 Syst. Workshop, Beijing, China, 2008, pp. 495-500.
[2] J. Ai, H. Chen, Z. Guo, G. Cheng, and T. Baker, "Mitigating mali- 761 cious packets attack via vulnerability-aware heterogeneous network 762 devices assignment," Future Gener. Comput. Syst., to be published, 763 doi: 10.1016/j.future.2019.04.034. 764
[3] C.-W. Ten, G. Manimaran, and C.-C. Liu, "Cybersecurity for critical 765 infrastructures: Attack and defense modeling," IEEE Trans. Syst., Man, 766 Cybern. A, Syst., Humans, vol. 40, no. 4, pp. 853-865, Jul. 2010.
[4] G. Wang, G. B. Giannakis, J. Chen, and J. Sun, "Distribution system 768 state estimation: An overview of recent developments," Front. Inf. 769 Technol. Electron. Eng., vol. 20, no. 1, pp. 4-17, Jan. 2019.
[5] G. Wang G. B. Gia system state estimation via composite optimization," IEEE Trans. Smart 772 Grid, to be published. doi: 10.1109/TSG.2019.2897100. 773
[6] C. Chen, K. Zhang, K. Yuan, L. Zhu, and M. Qian, "Novel detection 774 scheme design considering cyber attacks on load frequency control," 775 IEEE Trans. Ind. Informat., vol. 14, no. 5, pp. 1932-1941, May 2018. 776
[7] G. Wu and J. Sun, "Optimal switching integrity attacks on sensors 777 in industrial control systems," J. Syst. Sci. Complex., to be published, 778 doi: 10.1007/s11424-018-8067-y.
[8] W. Fang, W. Zhang, Y. Yang, Y. Liu, and W. Chen, "A resilient trust man- 780 agement scheme for defending against reputation time-varying attacks 781 based on beta distribution," Sci. China Inf. Sci., vol. 60, no. 4, Apr. 2017, 782 Art. no. 040305.
[9] Y. Dong et "An adaptive system for detecting malicious queries in Web attacks," Sci. China Inf. Sci., vol. 61, no. 3, Mar. 2018, 785 Art. no. 032114.

786
[10] J. Liu, Z.-G. Wu, D. Yue, and J. H. Park, "Stabilization of networked 787 control systems with hybrid-driven mechanism and probabilistic cyber 788 attacks," IEEE Trans. Syst., Man, and Cybern., Syst., to be published. 789
[11] E. Mousavinejad, F. Yang, Q.-L. Han, and L. Vlacic, "A novel cyber 790 attack detection method in networked control systems," IEEE Trans. 791 Cybern., vol. 48, no. 11, pp. 3254-3264, Nov. 2018.
[12] H. Yang, S. Ju, Y. Xia, and J. Zhang, "Predictive cloud control for net- 793 worked multiagent systems with quantized signals under DoS attacks," 794 IEEE Trans. Syst., Man, Cybern., Syst., to be published. 795
[13] J. Liu, Y. Gu, X. Xie, D. Yue, and J. H. Park, "Hybrid-driven-based $H_{\infty} \quad 796$ control for networked cascade control systems with actuator saturations 797 and stochastic cyber attacks," IEEE Trans. Syst., Man, Cybern., Syst., to 798 be published.

799
[14] Y. Pang, H. Xia, and M. J. Grimble, "Resilient nonlinear control for 800 attacked cyber-physical systems," IEEE Trans. Syst., Man, Cybern., 801 Syst., to be published.

802
[15] D. Ding, Z. Wang, Q.-L. Han, and G. Wei, "Security control for discrete- 803 time stochastic nonlinear systems subject to deception attacks," IEEE 804 Trans. Syst., Man, Cybern., Syst., vol. 48, no. 5, pp. 779-789, May 2018. 805

16] D. P. Fidler, "Was Stuxnet an act of war? Decoding a cyberattack," IEEE Security Privacy, vol. 9, no. 4, pp. 56-59, Jul. 2011.
[17] D. Zhang, S. K. Nguang, and L. Yu, "Distributed control of large-scale networked control systems with communication constraints and topology switching," IEEE Trans. Syst., Man, Cybern., Syst., vol. 47, no. 7, pp. 1746-1757, Jul. 2017.
[18] C. Liu, J. Wu, C. Long, and Y. Wang, "Dynamic state recovery for cyber-physical systems under switching location attacks," IEEE Trans. Control Netw. Syst., vol. 4, no. 1, pp. 14-22, Mar. 2017.
[19] S. Z. Yong, M. Zhu, and E. Frazzoli, "Resilient state estimation against switching attacks on stochastic cyber-physical systems," in Proc. IEEE Conf. Decis. Control, Osaka, Japan, Dec. 2015, pp. 5162-5169.
[20] H. Zhang, P. Cheng, L. Shi, and J. Chen, "Optimal DoS attack scheduling in wireless networked control system," IEEE Trans. Control Syst. Technol., vol. 24, no. 3, pp. 843-852, May 2016.
[21] G. Wu and J. Sun, "Optimal data integrity attack on actuators in cyberphysical systems," in Proc. Amer. Control Conf., Boston, MA, USA, Jul. 2016, pp. 1160-1164.
[22] G. Wu, J. Sun, and J. Chen, "Optimal data injection attacks in cyberphysical systems," IEEE Trans. Cybern., vol. 48, no. 12, pp. 3302-3312, Dec. 2018.
[23] M. M. Kogan, "Solution to the inverse problem of minimax control and worst case disturbance for linear continuous-time systems," IEEE Trans. Autom. Control, vol. 43, no. 5, pp. 670-674, May 1998.
[24] X. Xu and P. J. Antsaklis, "Optimal control of switched systems based on parameterization of the switching instants," IEEE Trans. Autom. Control, vol. 49, no. 1, pp. 2-16, Jan. 2004.
[25] D. Gorges, M. Izák, and S. Liu, "Optimal control and scheduling of switched systems," IEEE Trans. Autom. Control, vol. 56, no. 1, pp. 135-140, Jan. 2011.
[26] F. Zhu and P. J. Antsaklis, "Optimal control of hybrid switched systems: A brief survey," Discr. Event Dyn. Syst., vol. 25, no. 3, pp. 345-364, Sep. 2015.
[27] T. Das and R. Mukherjee, "Optimally switched linear systems," Automatica, vol. 44, no. 5, pp. 1437-1441, May 2008.
[28] S. C. Bengea and R. A. DeCarlo, "Optimal control of switching systems," Automatica, vol. 41, no. 1, pp. 11-27, Jan. 2005.
[29] P. Riedinger, "A switched LQ regulator design in continuous time," IEEE Trans. Autom. Control, vol. 59, no. 5, pp. 1322-1328, May 2014.
[30] W. W. Lu, G. J. Balas, and E. B. Lee, "Linear quadratic performance with worst case disturbance rejection," Int. J. Control, vol. 73, no. 16, pp. 1516-1524, Jan. 2000.
[31] A. Bemporad, F. Borrelli, and M. Morari, "Min-max control of constrained uncertain discrete-time linear systems," IEEE Trans. Autom. Control, vol. 48, no. 9, pp. 1600-1606, Sep. 2003.
[32] S. Bi and Y. J. Zhang, "Graphical methods for defense against false-data injection attacks on power system state estimation," IEEE Trans. Smart Grid, vol. 5, no. 3, pp. 1216-1227, May 2014.
[33] J. Xin, N. Zheng, and A. Sano, "Subspace-based adaptive method for estimating direction-of-arrival with Luenberger observer," IEEE Trans. Signal Process., vol. 59, no. 1, pp. 145-159, Jan. 2011.
[34] P. Jiang, H. Su, and J. Chu, "LMI approach to optimal guaranteed cost control for a class of linear uncertain discrete systems," in Proc. Amer. Control Conf., vol. 1, no. 6. Chicago, IL, USA, Jun. 2000, pp. 327-331.
[35] F. Pasqualetti, F. Dörfler, and F. Bullo, "A divide-and-conquer approach to distributed attack identification," in Proc. IEEE Conf. Decis. Control, Osaka, Japan, 2015, pp. 5801-5807.
[36] T. Hsia and V. Vimolvanich, "An on-line technique for system identification," IEEE Trans. Autom. Control, vol. AC-14, no. 1, pp. 92-96, Feb. 1969.
[37] S. Sridhar and M. Govindarasu, "Model-based attack detection and mitigation for automatic generation control," IEEE Trans. Smart Grid, vol. 5, no. 2, pp. 580-591, Mar. 2014.
[38] A. Farraj, E. Hammad, A. Al Daoud, and D. Kundur, "A game-theoretic analysis of cyber switching attacks and mitigation in smart grid systems," IEEE Trans. Smart Grid, vol. 7, no. 4, pp. 1846-1855, Jul. 2016.
[39] A. Teixeira, K. C. Sou, H. Sandberg, and K. H. Johansson, "Secure control systems: A quantitative risk management approach," IEEE Control Syst., vol. 35, no. 1, pp. 24-45, Feb. 2015.
[40] F. Pasqualetti, F. Dörfler, and F. Bullo, "Attack detection and identification in cyber-physical systems," IEEE Trans. Autom. Control, vol. 58, no. 11, pp. 2715-2729, Nov. 2013.
[41] G. Wu, J. Sun, and J. Chen, "Optimal linear quadratic regulator of switched systems," IEEE Trans. Autom. Control, vol. 64, no. 7, pp. 2898-2904, Jul. 2019.


Guangyu Wu received the Ph.D. degree in con- 881 trol theory and control engineering from the Beijing 882 Institute of Technology, Beijing, China, in 2018.883

He is currently a Post-Doctoral Research Fellow 884 with Tongji University, Shanghai, China. His cur- 885 rent research interests include optimal control 886 of switched systems, security of cyber-physical 887 systems, and event-triggered distributed control of 888 vehicle platoons.


Gang Wang (M'18) received the B.Eng. degree 890 in electrical engineering and automation from the 891 Beijing Institute of Technology, Beijing, China, in 892 2011, and the Ph.D. degree in electrical engineer- 893 ing from the University of Minnesota, Minneapolis, 894 MN, USA, in 2018.

895
He is currently a Post-Doctoral Associate with the 896 Department of Electrical and Computer Engineering, 897 University of Minnesota. His current research 898 interests include statistical signal processing, con- 899 trol, optimization, and deep learning with applica- 900 tions to data science and smart grids.

901
Dr. Wang was a recipient of the National Scholarship from China in 2013, 902 the Innovation Scholarship (First Place) from China in 2017, and the Best 903 Conference Papers at the 2017 European Signal Processing Conference and 904 the 2019 IEEE Power \& Energy Society General Meeting. He is currently 905 serving on the editorial board of Signal Processing.


Jian Sun (M'10) received the bachelor's degree in 907 automation and electric engineering from the Jilin 908 Institute of Technology, Changchun, China, in 2001, 909 the master's degree in mechanical and electronic 910 engineering from the Fine Mechanics and Physics, 911 Chinese Academy of Sciences (CAS), Changchun, 912 in 2004, and the Ph.D. degree in control theory and 913 engineering from CAS, Beijing, China, in 2007. 914
He was a Research Fellow with the Faculty of 915 Advanced Technology, University of Glamorgan, 916 Pontypridd, U.K., from 2008 to 2009. He was a Post- 917 Doctoral Research Fellow with the Beijing Institute of Technology, Beijing, 918 from 2007 to 2010. In 2010, he joined the School of Automation, Beijing 919 Institute of Technology, where he has been a Professor since 2013. His cur- 920 rent research interests include networked control systems, time-delay systems, 921 and security of cyber-physical systems.

Prof. Sun is an Editorial Board Member of the IEEE Transactions on 923 Systems, Man and Cybernetics: Systems, Journal of Systems Science 924 and Complexity, and Acta Automatica Sinica.


Lu Xiong received the Ph .D. degree in vehicle engi- 926 neering from Tongji University, Shanghai, China, in 927 2005.

928
He was a Post-Doctoral Researcher with the 929 University of Stuttgart, Stuttgart, Germany, from 930 2008 to 2009. He is currently a Professor with the 931 School of Automotive Studies, Tongji University. 932 His current research interests include vehicle system 933 dynamics and control, side-wheel/in-wheel motor 934 drive electric vehicle control, design and control of 935 electro-hydraulic brake system, and motion control 936 of an intelligent/unmanned vehicle.

937

# Optimal Switching Attacks and Countermeasures in Cyber-Physical Systems 

Guangyu $\mathrm{Wu}^{\circledR}$, Gang $\mathrm{Wang}^{\circledR}$, Member, IEEE, Jian Sun ${ }^{\circledR}$, Member, IEEE, and Lu Xiong


#### Abstract

The work analyzes dynamic responses of a healthy plant under optimal switching data-injection attacks on sensors and develops countermeasures from the vantage point of optimal control. This is approached in a cyber-physical system setting, 5 where the attacker can inject false data into a selected subset of sensors to maximize the quadratic cost of states and the energy consumption of the controller at a minimal effort. A 0-1 integer program is formulated, through which the adversary finds an optimal sequence of sets of sensors to attack at optimal switching instants. Specifically, the number of compromised sensors per instant is kept fixed, yet their locations can be dynamic. Leveraging the embedded transformation and mathematical programming, an analytical solution is obtained, which includes an algebraic switching condition determining the optimal sequence of attack locations (compromised sensor sets), along with an optimal state-feedback-based data-injection law. To thwart the adversary, however, a resilient control approach is put forward for stabilizing the compromised system under arbitrary switching attacks constructed based on a set of state-feedback laws, each of which corresponds to a compromised sensor set. Finally, an application using power generators in a cyber-enabled smart grid is provided to corroborate the effectiveness of the resilient control scheme and the practical merits of the theory.


Index Terms—Data-injection attacks, dynamic set, resilient 5 control, switching condition.

## I. Introduction

CYBER-PHYSICAL systems (CPSs) inherit the communication structure of the Internet of Things (IoT), yet they place more emphasis on the monitoring and control of entities

Manuscript received March 26, 2019; revised July 27, 2019; accepted September 24, 2019. The work of G. Wu and J. Sun was supported in part by NSFC under Grant 61522303, Grant U1509215, and Grant 61621063, and in part by the Program for Changjiang Scholars and Innovative Research Team in University under Grant IRT1208. The work of G. Wang was supported by NSF under Grant 1514056 and Grant 1711471. The work of L. Xiong was supported in part by NSFC under Grant 51975414, and in part by the National Key Research and Development Program of China 2018 under Grant YFB0105101. This article was recommended by Associate Editor Y. Zhao. (Corresponding author: Gang Wang.)
G. Wu and L. Xiong are with the Clean Energy Automotive Engineering Center, School of Automotive Studies, Tongji University, Shanghai 201804, China (e-mail: wuguangyu@tongji.edu.cn; xiong_lu@tongji.edu.cn).
G. Wang is with the Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455 USA (e-mail: gangwang@umn.edu).
J. Sun is with the State Key Laboratory of Intelligent Control and Decision of Complex Systems, Beijing Institute of Technology, Beijing 100081, China, and also with the School of Automation, Beijing Institute of Technology, Beijing 100081, China (e-mail: sunjian@bit.edu.cn).

Color versions of one or more of the figures in this article are available online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMC.2019.2945067
in the physical world [1]. These systems are typically composed of a set of networked agents, that includes sensors, actuators, controllers, and communication devices. Heterogeneous devices are connected to collaboratively control the physical processes over high-speed communication networks [2]. CPSs realize the feedback and information exchange between the cyberspace and the physical world. Nonetheless, the deep integration of physical and information systems brings potential threats too [3]. Real-world applications are safety-critical: their failure can cause irreparable harm to the physical system being controlled and to people who rely on it. As a typical application of CPSs, the cyber-enabled smart grid comprises a large number of servers, computers, meters, phasor measurement units, generators, and so on. By blocking the information exchange between the users and the electricity sectors or destroying the data integrity [4], [5], the adversary can affect the electricity price and increase the energy consumption of generators [6].
To enhance the security of CPSs, the defender should be aware of diverse attack behaviors that the CPS may suffer as well as understand the attacker's intention [7]. Malicious attacks on CPSs can be launched at the physical layer, network layer [8], and application layer [9]. A common way to enhance the resilience of CPSs is to implement defense strategies against known attack patterns [10]. The resilient control or estimation focuses on mitigating the normal operation of attacked systems or restoring the actual state variables with certain acceptable error bounds [11]. Most advances impose assumptions on the attacker's abilities [12] or on its behavior patterns [13]. The resilient controller under fixed delay or out-of-order transmissions was proposed to optimize the worst-case performance [14]. An output-feedback controller under deception attacks with stochastic characteristics was designed to guarantee the prescribed security in probability while obtaining an upper bound of a quadratic cost criterion [15].

On the other hand, studying the adversary's optimal attack schedule can in turn offer insight on devising effective defense strategies [16]. A family of cyber attacks with switching behaviors has attracted attention, which can be categorized into two groups: 1) location-switching attacks and 2) signalswitching attacks. The attack signal can be, for instance, a switching signal turning on or off electrical devices and change the network topology [17] or a continuous false signal injected into controllers or actuators. State recovery under location switching attacks with known or unknown switching frequencies was studied in [18]. Stochastic linear
systems under attacks were modeled as switching systems with unknown inputs, followed by a multiple model approach for resilient state estimation [19]. Precisely, the attacker decides when and where to launch an attack based on a Markov process. Switching DoS attacks on multiple communication lines with limited attacking times were examined [20]. The optimal switching sequence can be found by solving an integer program using an exhaustive search.
Despite the considerable success on switching attacks, the response of dynamic systems under switching data-injection attacks that can alter system dynamics (rather than estimation error or network topology) has not been studied. There are two critical challenges: Q1) Whether and how one can design an optimal switching data-injection law to maximize damage to the control system from the vantage point of the attacker? and Q2) How can one design an enhanced feedback control law to restore stability and maintain control performance of the system under such switching data-injection attacks? We answer these two questions in this article considering switching data-injection attacks on sensors. In our previous works [21], [22], attacks on actuators were considered, that aim at maximizing a quadratic state cost. In contrast, this article takes the standpoint of the attacker and focuses on designing attacks to maximize the controller's effort. Last but not least, a defense framework to stabilize the compromised system is proposed here. Specifically, the optimal switching data-injection attack design problem is formulated as a $0-1$ integer programming problem [22], for which we develop an analytical solution of optimizing a nonlinear fractional function of the switching input.
This article studies the data-injection attacks that aim at manipulating the control signal and corrupting the system dynamics. Typically, CPSs comprise a large amount of sensing devices that are distributed in an unprotected, or even harmful environment. The malicious attacker can perform the node capture attack to crack the communication code, and manipulate purposefully the information exchanged with neighboring nodes or with the control center. To "benchmark" the worst-case performance due to comprised control signals, the sequence of optimal attack locations (namely, set of sensors) along with the corresponding optimal data-injection law over an attack duration is addressed. In this context, the set of attack locations is also termed as a compromised set. In a nutshell, the main contributions of this article are summarized as follows.
c1) We formulate the optimal switching data-injection attack design problem as a $0-1$ integer programming problem. An analytical solution is established, including an algebraic switching condition along with a state-feedbackbased data-injection law.
c2) We develop a novel resilient control scheme to mitigate the effect of attacks and enhance the closed-loop system, that entails identifying uncertainty matrices associated with different compromised sets and designing output-feedback controller gains. Our proposed control law can stabilize systems under even the worst-case attacks, while ensuring a bounded control cost.

The rest of this article is organized as follows. In Section II, ${ }_{135}$ the attack model is given. In Section III, the optimal switch- ${ }^{136}$ ing attack design problem is formulated and studied. In ${ }^{137}$ Section IV, a resilient control scheme is put forward to ${ }^{138}$ defend against the switching attack with arbitrary switch- ${ }^{139}$ ing sequences. Numerical tests using power generators are ${ }_{140}$ presented in Section V, while this article is concluded in ${ }_{14}$ Section VI.

## II. Attack Model

We consider a healthy but possibly unstable plant described ${ }_{144}$ by a linear time-invariant (LTI) system

$$
\begin{align*}
\dot{\boldsymbol{x}}(t) & =\boldsymbol{A} \boldsymbol{x}(t)+\boldsymbol{B} \boldsymbol{u}(t)  \tag{1a}\\
\boldsymbol{y}(t) & =\boldsymbol{C} \boldsymbol{x}(t)  \tag{1b}\\
\boldsymbol{u}(t) & =\boldsymbol{K} \boldsymbol{y}(t) \tag{1c}
\end{align*}
$$

where $\boldsymbol{x}(t) \in \mathbb{R}^{n}$ is the state vector, $\boldsymbol{u}(t) \in \mathbb{R}^{k}$ is the con- ${ }_{149}$ trol input, and $(\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C})$ are the system matrices of suitable 150 dimensions. To stabilize the LTI system, the output-feedback 151 control with some gain matrix $\boldsymbol{K} \in \mathbb{R}^{k \times m}$ is considered. In the ${ }_{152}$ context of switching attacks, the plant is supposed to com- ${ }^{153}$ prise a large number of sensor nodes; that is, $m$ is large. At ${ }_{154}$ time $t$, each node sends its measurement to a central con- 155 troller via a vulnerable wireless network. Before characterizing ${ }_{156}$ the worst-case attack consequence, we make several stan- ${ }^{157}$ dard assumptions on the knowledge and attack ability of the ${ }_{158}$ adversary.
Assumption 1: The adversary has perfect knowledge of the 160 system parameters in (1), namely, $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$, and $\boldsymbol{K}$ matrices. 161

Assumption 2: The adversary can capture the target sen- 162 sor nodes and crack the passwords of their communication ${ }_{163}$ channels before launching attacks.
Assumption 3: When an attack occurs, the adversary injects ${ }_{165}$ datum $d_{a, j}^{0} u_{a}(t)$ into compromised sensor $j \in \mathcal{S}(t) \subseteq{ }_{166}$ $\{1, \ldots, m\}$, where $\mathcal{S}(t)$ collects the indices of all attacked sen- ${ }^{167}$ sors at time $t ; u_{a}(t)$ is a global component that the attacker can ${ }_{168}$ optimize over, yet the local components $d_{a, j}^{0}$ can be different ${ }_{169}$ across sensors, which are arbitrarily selected by the adver- 170 sary a priori and kept fixed throughout the attack. After the ${ }_{171}$ attack, the aggregated signal $\boldsymbol{y}(t)+\boldsymbol{d}_{a}(t) u_{a}(t)$ is transmitted ${ }_{172}$ to the controller, where $\boldsymbol{d}_{a}(t):=\left[\begin{array}{llll}d_{a, 1}(t) & \cdots & d_{a, m}(t)\end{array}\right]^{\top}$ with ${ }_{173}$ $d_{a, j}(t)=d_{a, j}^{0}$ if $j \in \mathcal{S}$ and $d_{a, j}(t)=0$ otherwise. Moreover, ${ }^{174}$ $\boldsymbol{d}_{a}$ can be viewed as an "indicator" vector, which signifies the ${ }_{175}$ locations of the attacked sensors.
Following conventions, we use accordingly symbols $\boldsymbol{x}_{c}, \boldsymbol{y}_{c},{ }_{17}$ and $\boldsymbol{u}_{c}$ to denote the state, measurement, and control vectors ${ }_{178}$ of the (compromised) LTI system under attack. Precisely, the 179 attacked system can be described as

$$
\begin{align*}
\dot{\boldsymbol{x}}_{c}(t) & =\boldsymbol{A} \boldsymbol{x}_{c}(t)+\boldsymbol{B} \boldsymbol{u}_{c}(t)  \tag{2a}\\
\boldsymbol{y}_{c}(t) & =\boldsymbol{C} \boldsymbol{x}_{c}(t)+\boldsymbol{d}_{a}(t) u_{a}(t)  \tag{2b}\\
\boldsymbol{u}_{c}(t) & =\boldsymbol{K} \boldsymbol{y}_{c}(t) . \tag{2c}
\end{align*}
$$

For ease of understanding, consider the setup described ${ }_{184}$ in Fig. 1, where the system consists of three sensor nodes. ${ }^{185}$ Suppose that the adversary can compromise only one node at ${ }_{186}$ a time. If the adversary compromises Sensor 1 at time $t_{1}$, ${ }^{187}$


Fig. 1. Switching data-injection attack framework.
it holds that $\boldsymbol{d}_{a}\left(t_{1}\right)=\left[\begin{array}{ccc}d_{a, 1}^{0} & 0 & 0\end{array}\right]^{\top}$ with attack component $d_{a, 1}^{0}$ determined by the attacker at the starting time $t_{0}$; and if Sensor 3 is attacked at time $t_{2}$, then $\boldsymbol{d}_{a}\left(t_{2}\right)=\left[\begin{array}{lll}0 & 0 & d_{a, 3}^{0}\end{array}\right]^{\top}$. Correspondingly, the false data $\boldsymbol{d}_{a}\left(t_{1}\right) u_{a}\left(t_{1}\right)$ and $\boldsymbol{d}_{a}\left(t_{2}\right) u_{a}\left(t_{2}\right)$ are injected into the measurement vectors $\boldsymbol{y}\left(t_{1}\right)=\boldsymbol{C x}\left(t_{1}\right)$ and $\boldsymbol{y}\left(t_{2}\right)=\boldsymbol{C x}\left(t_{2}\right)$ [see (1b)] to yield the compromised measurement vectors $\boldsymbol{y}_{c}\left(t_{1}\right)$ and $\boldsymbol{y}_{c}\left(t_{2}\right)$ [see (2b)].
In the traditional linear quadratic regulator (LQR) control, the goal of the system operator is to minimize the standard quadratic cost function involving the state variables and the controller effort over a fixed horizon; see standard textbook, e.g., [23]. On the contrary, the goal of the attacker is to maximize the aforementioned quadratic cost of the controller, therefore degrading the control performance, by choosing a sequence of instants to inject false data into a subset of sensors while maintaining a low attack cost.
On the other hand, the injected data can be understood as an adversarial interference produced by certain electrical equipment in a dynamic system. Due to physical limitations however, these equipment cannot produce an arbitrarily large interference signal, so the amplitude of $u_{a}(t)$ should be kept as small as possible. Considering any finite-time horizon $\left[t_{0}, t_{f}\right]$, two meaningful objective functions for optimal attack design are given by

$$
\begin{equation*}
J_{a}=\frac{1}{2} \boldsymbol{x}_{c}^{\top}\left(t_{f}\right) \boldsymbol{G} \boldsymbol{x}_{c}\left(t_{f}\right)+\frac{1}{2} \int_{t_{0}}^{t_{f}}\left[\boldsymbol{u}_{c}^{\top}(t) \boldsymbol{Q} \boldsymbol{u}_{c}(t)-\gamma u_{a}^{2}(t)\right] d t \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
J_{b}=\frac{1}{2} \boldsymbol{x}_{c}^{\top}\left(t_{f}\right) \boldsymbol{G} \boldsymbol{x}_{c}\left(t_{f}\right)+\frac{1}{2} \int_{t_{0}}^{t_{f}}\left[\boldsymbol{x}_{c}^{\top}(t) \boldsymbol{Q} \boldsymbol{x}_{c}(t)-\gamma u_{a}^{2}(t)\right] d t \tag{4}
\end{equation*}
$$

where $\boldsymbol{G}$ and $\boldsymbol{Q}$ are symmetric, positive semidefinite matrices of suitable dimensions, and $\gamma>0$ is a weighting coefficient, both chosen by the attacker. Their values tradeoff between the damage to the healthy plant and the attack cost. Specifically, too large (eigenvalues of) $\boldsymbol{Q}$ or too small $\gamma$ values may incur instability of the plant under attack. If the adversary prefers a minimal energy cost and selects a larger $\gamma$ value relative to (eigenvalues of) $\boldsymbol{Q}$, then the resultant $u_{a}(t)$ is able to render the system states to deviate from their actual values, and the stability of the attacked system may not lose.

Upon plugging (2b) and (2c) into (3), the objective function ${ }_{225}$ $J_{a}$ can be rewritten as

$$
\begin{array}{r}
J_{a}=\frac{1}{2} \boldsymbol{x}_{c}^{\top}\left(t_{f}\right) \boldsymbol{G} \boldsymbol{x}_{c}\left(t_{f}\right)+\frac{1}{2} \int_{t_{0}}^{t_{f}}\left[\boldsymbol{x}_{c}^{\top}(t) \tilde{\boldsymbol{Q}} \boldsymbol{x}_{c}(t)+2 u_{a}(t) \boldsymbol{s}^{\top}(t) \boldsymbol{x}_{c}(t){ }_{227}\right. \\
\left.+\tilde{\gamma}(t) u_{a}^{2}(t)\right] d t \tag{5}
\end{array}
$$

where the coefficients are given by

$$
\begin{align*}
\tilde{\boldsymbol{Q}} & :=\boldsymbol{C}^{\top} \boldsymbol{K}^{\top} \boldsymbol{Q} \boldsymbol{K} \boldsymbol{C} & & \text { (6a) }{ }_{230} \\
\boldsymbol{s}(t) & :=\boldsymbol{C}^{\top} \boldsymbol{K}^{\top} \boldsymbol{Q} \boldsymbol{K} \boldsymbol{d}_{a}(t) & & \text { (6b) }{ }^{231}  \tag{6b}\\
\tilde{\gamma}(t) & : \boldsymbol{d}_{a}^{\top}(t) \boldsymbol{K}^{\top} \boldsymbol{Q} \boldsymbol{K} \boldsymbol{d}_{a}(t)-\gamma . & & \text { (6c) }{ }^{232}
\end{align*}
$$

To guarantee existence of an optimal solution, the adversary ${ }^{233}$ needs to design $Q$ and $\gamma$ such that $\tilde{\gamma}(t)<0$ [23]. It is ${ }^{234}$ clear from (5) that maximizing the controller energy consump- ${ }^{235}$ tion in $J_{a}$ amounts to maximizing integrations of both the ${ }_{236}$ state quadratic $\boldsymbol{x}_{c}^{\top}(t) \tilde{\boldsymbol{Q}}_{\boldsymbol{x}_{c}}(t)$ and the cross term $u_{a}(t) \boldsymbol{s}^{\top}(t) \boldsymbol{x}_{c}(t){ }^{237}$ (between $u_{a}$ and $\boldsymbol{x}_{c}$ ). In comparison, only the integration of ${ }_{238}$ the state quadratic is maximized in $J_{b}$. In other words, if the ${ }^{239}$ adversary is solely interested in damaging the system state, ${ }^{240}$ the objective function $J_{b}$ is preferred; but if the control cost ${ }_{241}$ of the attacked system is of interest too, then, $J_{a}$ is preferred. ${ }^{242}$

## III. Optimal Switching Attack Design

In a large-scale CPS setting, compromising all communica- ${ }^{244}$ tion channels necessarily requires a large amount of energy. ${ }^{245}$ The adversary with limited budget is instead inclined to attack ${ }^{246}$ only few sensors, possibly those of lowest security levels or ${ }_{247}$ with most vulnerable communication channels. Due to the lim- ${ }_{248}$ ited computing resources and channel cracking capabilities, ${ }^{249}$ this article focuses on a practical setting where the adversary ${ }_{250}$ can attack a fixed number of sensors at a time. On the other ${ }^{251}$ hand, it is also not wise or optimal for the attacker to con- ${ }^{252}$ stantly attack a fixed set of sensors. A smart yet affordable ${ }^{253}$ strategy is to select a size-fixed set of sensors to effect attacks ${ }^{254}$ at every attack instant, to yield the worst-case system response. ${ }^{255}$ This dynamic attack strategy is to switch the attack among ${ }^{256}$ multiple sensor sets from time to time.

The goal of the attacker is to determine an optimal switching ${ }^{258}$ sequence of sensor sets to attack with an optimal data-injection ${ }_{259}$ law, so as to maximize the objective value $J_{a}$ or $J_{b}$. When there ${ }_{260}$ are $m$ sensors and the adversary can attack say $\ell \ll m$ sensors ${ }_{261}$ at a time, the total number of candidate attacks (i.e., size- $\ell{ }^{262}$ sensor sets) is $M:=\binom{m}{\ell}$. With slight abuse of notation, the ${ }^{263}$ $M$ sensor sets (namely, the $M$ sets of $\ell$-sensor combinations) ${ }^{264}$ can be represented by the indicator vectors $\left\{\boldsymbol{d}_{a}^{i}\right\}_{i=1}^{M}$ defined in ${ }_{265}$ Assumption 3.

Example 1: If $m=3$ and $\ell=2$, there are $M=\binom{3}{2}^{267}$ sensor sets; that is, $\{1,2\},\{1,3\}$, and $\{2,3\}$ collecting the ${ }_{268}$ indices of the attacked sensors. Each of the three sensor 269 sets can be uniquely represented by $\boldsymbol{d}_{a}^{1}:=\left[\begin{array}{lll}d_{a, 1}^{0} & d_{a, 2}^{0} & 0\end{array}\right]^{\top}$, ${ }^{270}$ $\boldsymbol{d}_{a}^{2}:=\left[\begin{array}{lll}d_{a, 1}^{0} & 0 & d_{a, 3}^{0}\end{array}\right]^{\top}$, and $\boldsymbol{d}_{a}^{3}:=\left[\begin{array}{lll}0 & d_{a, 2}^{0} & d_{a, 3}^{0}\end{array}\right]^{\top}$.

From Fig. 1, if the input to the controller is compromised, 272 the control signal (output of the controller) will be disturbed, ${ }^{273}$ so will the system dynamics. The control signal under the ${ }^{274}$

276

75 described switching data-injection attacks can be given by

$$
\boldsymbol{u}_{c}(t)=\boldsymbol{K}\left[\boldsymbol{C} \boldsymbol{x}_{c}(t)+\sum_{j=1}^{M} w_{j}(t) \boldsymbol{d}_{a}^{j} u_{a}(t)\right]
$$

where the switch input vector $\boldsymbol{w}:=\left[\begin{array}{lll}w_{1} & \cdots & w_{M}\end{array}\right]$ belongs to

$$
\begin{equation*}
\mathcal{W}_{0}:=\left\{\boldsymbol{w}(t) \mid \sum_{j=1}^{M} w_{j}(t)=1, \text { and } w_{j}(t) \in\{0,1\} \quad \forall j\right\} \tag{8}
\end{equation*}
$$

Per attack instant $t \geq t_{0}$, since only one sensor set (namely, $\boldsymbol{d}_{a}^{j}$ for some $j$ ) is to be chosen, its corresponding switch input $w_{j}(t)$ is set 1 , while the others are set 0 . Observe that the components of $\boldsymbol{d}_{a}^{j}$ are time invariant and known to the attacker. Therefore, the values of $\boldsymbol{w}(t):=\left[w_{1}(t) \ldots w_{M}(t)\right]^{\top}$ at different $t$ signify the compromised sensor sets at corresponding instants. If two consecutive compromised sets (i.e., before and after some instant $t$ ) are different, then instant $t$ is a switching instant, namely, the time at which the value of $\boldsymbol{w}(t)$ changes. The compromised sets at all switching instants define the so-called switching sequence

$$
\begin{equation*}
\zeta:=\left\{\left(\boldsymbol{w}\left(t_{0}\right), u_{a}\left(t_{0}\right)\right), \ldots,\left(\boldsymbol{w}\left(t_{N}\right), u_{a}\left(t_{N}\right)\right)\right\} \tag{9}
\end{equation*}
$$

where $t_{0} \leq t_{1} \leq \cdots \leq t_{N} \leq t_{f}$, the set $\left\{t_{1}, \ldots, t_{N}\right\}$ collects all switching instants, and $N$ is the total number of switching operations.

In general, the attacker can assume the same objective function for all sensor sets. In certain settings of practical interest, the attacker may prefer different objective functions when different sensor sets are compromised. In Example 1, if the attacker aims to induce a larger deviation to state $x_{c, 1}$ $\left(\boldsymbol{x}_{c}=\left[\begin{array}{lll}x_{c, 1} & x_{c, 2} & x_{c, 3}\end{array}\right]^{\top}\right)$ when sensor set $\{1,2\}$ is attacked, the attacker can simply use a diagonal matrix $Q_{1}$ with entry $Q_{1}(1,1)$ greater than $Q_{1}(2,2)$ and $Q_{1}(3,3)$, where $Q_{1}$ belongs to the objective function for set $\{1,2\}$. This prompts us to choose an objective function that sums the excited local objective functions at every instant, that is

$$
\begin{equation*}
\widehat{J}_{a}=\sum_{j=1}^{M} w_{j} J_{a}^{j} \text { and } \widehat{J}_{b}=\sum_{j=1}^{M} w_{j} J_{b}^{j} \tag{10}
\end{equation*}
$$

where $J_{a}^{j}$ or $J_{b}^{j}$ is obtained by replacing $\boldsymbol{Q}$ and $\gamma$ in (3) or (4) with $\boldsymbol{Q}_{j}$ and $\gamma_{j}$.

Putting (2), (7), and (10) together, the optimal switching data-injection attack design problem is to find $\boldsymbol{w}(t)$ and $u_{a}(t)$ that

$$
\begin{array}{ll}
\max & \widehat{J}_{a} \text { or } \widehat{J}_{b} \\
\text { s.t. } & \dot{\boldsymbol{x}}_{c}(t)=\boldsymbol{A}_{a} \boldsymbol{x}_{c}(t)+\sum_{j=1}^{M} w_{j}(t) \boldsymbol{b}_{a}^{j} u_{a}(t) \\
& \boldsymbol{u}_{c}(t)=\boldsymbol{K}\left[\boldsymbol{C} \boldsymbol{x}_{c}(t)+\sum_{j=1}^{M} w_{j}(t) \boldsymbol{d}_{a}^{j} u_{a}(t)\right] \\
& \boldsymbol{w}(t) \in \mathcal{W}_{0} \forall t \tag{11d}
\end{array}
$$

where the coefficients $\boldsymbol{A}_{a}:=\boldsymbol{A}+\boldsymbol{B} \boldsymbol{K} \boldsymbol{C}$ and $\boldsymbol{b}_{a}^{j}:=\boldsymbol{B} \boldsymbol{K} \boldsymbol{d}_{a}^{j}$ for all $j=1, \ldots, M$. In (11), the optimal switching data-injection attack design problem is formulated as a 0-1 integer program.

If the binary variables $\left\{w_{j}(t)\right\}_{j=1}^{M}$ and the corresponding con- ${ }_{318}$ straint (11d) are not present, (11) is LQR, whose optimal 319 solution can be readily obtained in the closed-form lever- ${ }_{320}$ aging Pontryagin's maximum principle (see [23]). In fact, ${ }_{321}$ constraint (11d) renders (11) nonconvex and NP-hard in gen- 322 eral [24]. Fortunately, but if an optimal solution of $\boldsymbol{w}(t)$ is ${ }^{32}$ successfully found, then the optimal switching sequence $\zeta$ can ${ }_{324}$ be easily recovered.

325
Interestingly enough, if we view the attacked system (2) 326 as a linear switched system (see [25] for related definitions), 327 the problem of optimal switch data-injection attack design on 328 an LTI system in (11) can be treated as the optimal control ${ }_{329}$ problem of a linear switched system. As far as optimal con- ${ }_{330}$ trol of switched systems is concerned, there is no closed-form 331 solution in general, even for linear ones [26]. Recent efforts 332 have primarily focused on the open-loop systems. Specifically, ззз minimizing a quadratic cost on the state variables, an algebraic ${ }_{334}$ switching condition was developed for the open-loop linear ${ }_{335}$ switched systems [27], by leveraging the so-termed embedded ${ }_{336}$ transformation [28]. This result was further generalized to the ${ }_{337}$ multiple objective case [29]. For general closed-loop systems, 338 whether and how one can obtain a closed-form expression of ${ }_{339}$ the switching condition remains unclear. Indeed, the attacked 340 system (2) constitutes a special closed-loop system involv- ${ }_{341}$ ing scalar control (instead of vector) $u_{a}(t)$, which prompts $3_{342}$ us to exploit the embedded transformation as well as recent ${ }_{343}$ mathematical programming advances to hopefully tackle (11). 344 The idea of the embedded transformation is to relax each 345 binary constraint $w_{j}(t) \in\{0,1\}$ to a box one $w_{j}(t) \in[0,1],{ }_{346}$ followed by solving a convex problem. Rather than dealing 347 with constraint (11d), we consider the switch input vector $\boldsymbol{w}(t){ }_{348}$ belonging to the following convex set:

$$
\begin{equation*}
\mathcal{W}_{1}:=\left\{\boldsymbol{w}(t) \mid \sum_{j=1}^{M} w_{j}(t)=1, \text { and } 0 \leq w_{j}(t) \leq 1 \quad \forall j\right\} \tag{12}
\end{equation*}
$$

After replacing the last constraint $\boldsymbol{w}(t) \in \mathcal{W}_{0}$ with $\boldsymbol{w}(t) \in{ }_{351}$ $\mathcal{W}_{1}$ in (11), we arrive at the following embedded switching ${ }_{352}$ data-injection attack design problem:

$$
\begin{align*}
\max & (11 \mathrm{a}) \\
\text { s.t. } & (11 \mathrm{~b}),(11 \mathrm{c}), \text { and } \boldsymbol{w}(t) \in \mathcal{W}_{1} \tag{13b}
\end{align*}
$$

$$
(13 a) 354
$$

which boils down to an optimal control problem of LQR ${ }_{356}$ type and whose optimal solution can be obtained leveraging ${ }_{357}$ Pontryagin's maximum principle. If luckily, the optimal solu- 358 tion of $\boldsymbol{w}(t)$ in (13) takes values at $\boldsymbol{w}(t) \in \mathcal{W}_{0}$ for all $t$, one can ${ }_{359}$ verify that the resulting solution is also the optimal solution of 360 the original problem (11). To see this, we discuss the following 361 two cases depending on whether $J_{a}$ or $J_{b}$ is maximized. 362

## A. Maximizing $\widehat{J}_{a}$ <br> 363

Before applying the embedded transformation, we first 364 simplify $\widehat{J}_{a}$. According to (10), $\widehat{J}_{a}$ can be written as

$$
\begin{align*}
\widehat{J}_{a}= & \frac{1}{2} \boldsymbol{x}_{c}^{\top}\left(t_{f}\right) \boldsymbol{G} \boldsymbol{x}_{c}\left(t_{f}\right) \\
& +\frac{1}{2} \sum_{j=1}^{M} w_{j} \int_{t_{0}}^{t_{f}}\left[\boldsymbol{u}_{c}^{\top}(t) \boldsymbol{Q}_{j} \boldsymbol{u}_{c}(t)-\gamma_{j} u_{a}^{2}(t)\right] d t \tag{14}
\end{align*}
$$

${ }_{368}$ For notational brevity, the dependence on $t$ will be neglected. ${ }_{369}$ Since $\boldsymbol{w} \in \mathcal{W}_{0}$, it can be easily checked that
${ }_{370}\left(\sum_{j=1}^{M} w_{j} \boldsymbol{d}_{a}^{j}\right)^{\top} \boldsymbol{K}^{\top}\left(\sum_{j=1}^{M} w_{j} \boldsymbol{Q}_{j}\right) \sum_{j=1}^{M} w_{j} \boldsymbol{K} \boldsymbol{d}_{a}^{j}=\sum_{j=1}^{M} w_{j} \boldsymbol{d}_{a}^{j} \boldsymbol{K}^{\top} \boldsymbol{Q}_{j} \boldsymbol{K} \boldsymbol{d}_{a}^{j}$
371 and
${ }^{372}\left(\sum_{j=1}^{M} w_{j} \boldsymbol{d}_{a}^{j}\right)^{\top} \boldsymbol{K}^{\top}\left(\sum_{j=1}^{M} w_{j} \boldsymbol{Q}_{j}\right) \boldsymbol{K} \boldsymbol{C} \boldsymbol{x}_{c}=\sum_{j=1}^{M} w_{j} \boldsymbol{d}_{a}^{j} \boldsymbol{K}^{\top} \boldsymbol{Q}_{j} \boldsymbol{K} \boldsymbol{C} \boldsymbol{x}_{c}$.
${ }_{77}$ Expanding (14), $\widehat{J}_{a}$ can be further simplified into

$$
\begin{equation*}
\dot{\lambda}(t)=-\tilde{\boldsymbol{Q}}_{i(t)} \boldsymbol{x}_{c}(t)-u_{a}(t) \boldsymbol{s}_{i(t)}-\boldsymbol{A}_{a}^{\top} \lambda(t) \tag{20}
\end{equation*}
$$

99 with the boundary condition $\lambda\left(t_{f}\right)=\boldsymbol{G} \boldsymbol{x}\left(t_{f}\right)$.
Proof: Our proof starts with Pontryagin's maximum principle for the relaxed problem (13) (see [23]), which is followed by showing that the optimal solution of $\boldsymbol{w}$ is always achieved at one of the vertices of the polytope $\mathcal{W}_{1}$. Hence, the relaxation is tight, which recovers the optimal solution of the original challenging nonconvex problem (11). Toward this objective and using (21), the Hamilton function for (13) is given by

$$
\begin{align*}
H= & \boldsymbol{x}_{c}^{\top} \sum_{j=1}^{M} w_{j} \tilde{\boldsymbol{Q}}_{j} \boldsymbol{x}_{c}+2 \boldsymbol{x}_{c}^{\top} \sum_{j=1}^{M} w_{j} \boldsymbol{s}_{j} u_{a}+\sum_{j=1}^{M} w_{j} \tilde{\gamma}_{j} u_{a}^{2} \\
& -\lambda^{\top}\left(\boldsymbol{A}_{a} \boldsymbol{x}_{c}+\sum_{j=1}^{M} w_{j} \boldsymbol{b}_{a}^{j} u_{a}\right) . \tag{21}
\end{align*}
$$

To ensure existence of a meaningful solution, the adjustable ${ }_{404}$ parameters $\boldsymbol{Q}_{j}, \gamma_{j}$, and $\left\{\boldsymbol{d}_{a}^{j}\right\}_{j=1}^{M}$ should be designed such that
$\partial^{2} H / \partial u_{a}^{2}<0$ [30]. Upon defining $\tilde{\gamma}:=\left[\begin{array}{lll}\tilde{\gamma}_{1} & \cdots & \tilde{\gamma}_{M}\end{array}\right]^{\top}$, we 405 deduce that for all $\boldsymbol{w} \in \mathcal{W}_{1}$, the following holds:

$$
\begin{equation*}
\partial^{2} H / \partial u_{a}^{2}=\sum_{j=1}^{M} w_{j} \boldsymbol{d}_{a}^{j} \boldsymbol{K}^{\top} \boldsymbol{Q}_{j} \boldsymbol{K} \boldsymbol{d}_{a}^{j}-\gamma_{j}=\boldsymbol{w}^{\top} \tilde{\boldsymbol{\gamma}}<0 \tag{22}
\end{equation*}
$$

That is, function $H$ is strictly concave with a unique maximum 408 given by the stationary point of the gradient in $u_{a}$. By setting 409 $\partial H / \partial u_{a}=0$, we arrive at

$$
\begin{equation*}
u_{a}=-\sum_{j=1}^{M} w_{j} \frac{\boldsymbol{s}_{j}^{\top \boldsymbol{x}_{c}}+\boldsymbol{b}_{a}^{j \top} \boldsymbol{\lambda}}{\boldsymbol{d}_{a}^{j^{\top}} \boldsymbol{K}^{\top} \boldsymbol{Q}_{j} \boldsymbol{K} \boldsymbol{d}_{a}^{j}-\gamma_{j}}=-\sum_{j=1}^{M} w_{j} \frac{f_{j}}{\tilde{\gamma}_{j}} \tag{4}
\end{equation*}
$$

By the co-state equation $\dot{\lambda}=-\partial H / \partial \boldsymbol{x}_{c}$, we have that

$$
\begin{equation*}
\dot{\lambda}=-\sum_{j=1}^{M} w_{j} \tilde{Q}_{j} \boldsymbol{x}_{c}-\sum_{j=1}^{M} w_{j} \boldsymbol{s}_{j} u_{a}-\boldsymbol{A}_{a}^{\top} \lambda \tag{413}
\end{equation*}
$$

Let $\boldsymbol{f}:=\left[\begin{array}{lll}f_{1} & \cdots & f_{M}\end{array}\right]^{\top}$ and $\boldsymbol{q}:=\left[\begin{array}{lll}q_{1} & \cdots & q_{M}\end{array}\right]^{\top}$. Plugging (23) 414 into (21) yields

415

$$
H=\lambda^{\top} \boldsymbol{A}_{a} \boldsymbol{x}_{c}+\frac{\boldsymbol{w}^{\top} \boldsymbol{q}}{2}-\frac{\left(\boldsymbol{w}^{\top} \boldsymbol{f}\right)^{2}}{2 \boldsymbol{w}^{\top} \tilde{\gamma}}
$$

where $q_{i}=\boldsymbol{x}_{c}^{\top} \tilde{\boldsymbol{Q}} \boldsymbol{x}_{c}$. Evidently, as only the last two terms in $H_{417}$ depend on $\boldsymbol{w}$, maximizing $H$ with respect to $\boldsymbol{w} \in \mathcal{W}_{1}$ is equiv- ${ }_{418}$ alent to maximize the following reduced Hamilton function 419 over $\mathcal{W}_{1}$ :

$$
\bar{H}:=\frac{\boldsymbol{w}^{\top} \boldsymbol{q}}{2}-\frac{\left(\boldsymbol{w}^{\top} \boldsymbol{f}\right)^{2}}{2 \boldsymbol{w}^{\top} \tilde{\gamma}}:=\frac{\varphi(\boldsymbol{w})}{2}-\frac{\psi^{2}(\boldsymbol{w})}{2 \phi(\boldsymbol{w})} .
$$

The derivatives of $\phi(\boldsymbol{w})$ and $\psi(\boldsymbol{w})$ with respect to $w_{j}$ are ${ }_{422}$ given by

$$
\begin{equation*}
\dot{\phi}=\tilde{\gamma}_{j}, \quad \text { and } \quad \dot{\psi}=f_{j} . \tag{24}
\end{equation*}
$$

The second derivative of $\bar{H}$ with respect to $w_{j}$ is

$$
\begin{equation*}
\frac{\partial^{2} \bar{H}}{\partial w_{j}^{2}}=-\frac{\left(f_{j} \phi-\tilde{\gamma}_{j} \psi\right)^{2}}{\phi^{3}} \geq 0 \tag{25}
\end{equation*}
$$

Likewise, the second partial derivative of $\bar{H}$ with respect to $w_{j}{ }^{427}$ and $w_{k}$ can be found as

428

$$
\begin{equation*}
\frac{\partial \bar{H}}{\partial w_{j} \partial w_{k}}=-\frac{\left(f_{j} \phi-\tilde{\gamma}_{j} \psi\right)\left(f_{k} \phi-\tilde{\gamma}_{k} \psi\right)}{\phi^{3}} \tag{26}
\end{equation*}
$$

Define $z:=\left[\begin{array}{lll}z_{1} & \cdots & z_{M}\end{array}\right]^{\top}$ with entries given by $z_{j}=f_{j} \phi-{ }_{430}$ $\tilde{\gamma}_{j} \psi$. Then, based on (25) and (26), the Hessian matrix of $\bar{H}{ }^{431}$ can be written as follows:

432

$$
\frac{\partial^{2} \bar{H}}{\partial \boldsymbol{w}^{2}}=-\frac{1}{\phi^{3}}\left[\begin{array}{cccc}
z_{1}^{2} & z_{1} z_{2} & \cdots & z_{1} z_{M} \\
z_{2} z_{1} & z_{2}^{2} & \cdots & z_{2} z_{M} \\
\vdots & \vdots & \ddots & \vdots \\
z_{M} z_{1} & z_{M} z_{2} & \cdots & z_{M}^{2}
\end{array}\right]=\frac{z z^{\top}}{-\phi^{3}} \succeq \mathbf{0}
$$

which confirms that function $\bar{H}$ is convex over $\mathcal{W}_{1}$.
434
Maximizing $H$ over $\boldsymbol{w} \in \mathcal{W}_{1}$ reduces to maximizing convex ${ }_{435}$ $\bar{H}$ over a convex feasibility set $\boldsymbol{w} \in \mathcal{W}_{1}$. In this case, the min- ${ }_{436}$ imum is always attained at one of the vertices of the polytope ${ }^{437}$ determined by the $M$ box constraints in $\mathcal{W}_{1}$ [31]. It is evident ${ }_{438}$

```
Algorithm 1: Optimal Switching Data-Injection Attack
Algorithm
    Determine \(\boldsymbol{d}_{a}^{j}\) for all compromised sensor sets \(j \in\{1, \ldots, M\}\).
    Set: \(\boldsymbol{G}, \boldsymbol{Q}_{j}\), and \(\gamma_{j}\) according to the attacker's preference.
    for \(i=1, \ldots, M\) do
        Solve (29);
    end
    Initialize: attack horizon \(\left[t_{0}, t_{f}\right]\), and \(\mathcal{S}\left(t_{0}\right)\).
    Estimate: initial state \(\boldsymbol{x}_{c}\left(t_{0}\right)\).
    while \(t \leq t_{f}\) do
        for \(i=1, \ldots, M\) do
            Compute (19);
            Evaluate \(\beta_{j}(t)=q_{j}(t)-f_{j}^{2}(t) / \tilde{\gamma}_{j} ;\)
        end
        if \(i:=\arg \max _{j}\left\{\beta_{j}\right\}\) then
            Compute (28);
            \(\dot{\boldsymbol{x}}_{c}(t)=\boldsymbol{A}_{a} \boldsymbol{x}_{c}(t)+\boldsymbol{b}_{a}^{i} u_{a}(t) ;\)
            \(\lambda(t)=\boldsymbol{P}_{i} \boldsymbol{x}_{c}(t) ;\)
        end
    end
``` 465

Remark 3: To find \(u_{a}\left(t_{0}\right)\) in (28), the adversary has to esti-
\({ }^{464}\) If the objective function \(\widehat{J}_{b}\) is adopted, we have the following
that the vertices of \(\mathcal{W}_{1}\) coincide with the standard basis vectors \(\boldsymbol{w}_{j} \in \mathbb{R}^{M}\) (whose \(j\) th entry is one, and remaining entries are zero), satisfying \(\boldsymbol{w}_{j} \in \mathcal{W}_{0}\). Hence, the optimal solution of the relaxed problem recovers the optimal solution of the original nonconvex problem. Concretely, we have that
\[
\begin{equation*}
\max _{\boldsymbol{w} \in \mathcal{W}_{1}} \bar{H}(\boldsymbol{w})=\max _{j \in\{1, \ldots, M\}} q_{j}(t)-f_{j}^{2}(t) / \tilde{\gamma}_{j} \tag{27}
\end{equation*}
\]
and the optimal switching instants are given by the time when \(\boldsymbol{w}^{*}(t)\) changes. This completing the proof.
Regarding Theorem 1, we have the following observations. Remark 1: By simply comparing the values \(\left\{q_{j}(t)-\right.\) \(\left.f_{j}^{2}(t) / \tilde{\gamma}_{j}\right\}\) for all sensor sets at each instant, the attacker achieves an optimal switch input.

Remark 2: In the steady state, the optimal data-injection law is a state-feedback signal given by
\[
\begin{equation*}
u_{a}(t)=-\frac{1}{\tilde{\gamma}_{i}}\left(\boldsymbol{s}_{i}^{\top}+\boldsymbol{b}_{a}^{i}{ }^{\top} \boldsymbol{P}_{i}\right) \boldsymbol{x}_{c}(t) \tag{28}
\end{equation*}
\]
where \(\boldsymbol{P}_{i} \in \mathbb{S}_{+}^{n \times n}\) is the solution of the Riccati equation mate the initial state \(\boldsymbol{x}_{c}\left(t_{0}\right)\) from sensor measurements \(\boldsymbol{y}(t)\) of the healthy plant for \(t \leq t_{0}\), using, e.g., a Luenberger observer, before launching attacks.

\section*{B. Maximizing \(J_{b}\)}

According to (10), \(\widehat{J}_{b}\) can be written as
\[
\begin{align*}
\widehat{\boldsymbol{J}}_{b}= & \frac{1}{2} \boldsymbol{x}_{c}^{\top}\left(t_{f}\right) \boldsymbol{G} \boldsymbol{x}_{c}\left(t_{f}\right) \\
& +\frac{1}{2} \sum_{j=1}^{M} w_{j} \int_{t_{0}}^{t_{f}}\left[\boldsymbol{x}_{c}^{\top}(t) \boldsymbol{Q}_{j} \boldsymbol{x}_{c}(t)-\gamma_{j} u_{a}^{2}(t)\right] d t . \tag{30}
\end{align*}
\]
theorem.

Theorem 2: The optimal switching condition of the switch- \({ }_{466}\) ing attack that maximizes the performance index (30) for the \({ }_{467}\) attacked system (2) is given by
\[
\begin{equation*}
i(t):=\arg \max _{j \in\{1, \ldots, M\}} \boldsymbol{x}_{c}^{\top} \boldsymbol{Q}_{j} \boldsymbol{x}_{c}+\frac{1}{\gamma_{j}}\left(\boldsymbol{b}_{a}^{j^{\top}} \boldsymbol{\lambda}\right)^{2} \tag{31}
\end{equation*}
\]
with the optimal data-injection law being
\[
\begin{equation*}
u_{a}(t):=\frac{1}{\gamma_{i}} \boldsymbol{b}_{a}^{j}{ }^{\top} \lambda(t) \tag{32}
\end{equation*}
\]
where \(\lambda(t)\) is the solution of
\[
\begin{equation*}
\dot{\lambda}(t)=-\boldsymbol{Q}_{i} \boldsymbol{x}_{c}(t)-\boldsymbol{A}_{a}^{\top} \lambda(t) \tag{33}
\end{equation*}
\]
with the boundary condition \(\boldsymbol{\lambda}\left(t_{f}\right)=\boldsymbol{G} \boldsymbol{x}\left(t_{f}\right)\). \({ }_{474}\)
Proof: Appealing again to the Pontryagin's maximum prin- 475 ciple, the Hamilton function is given by
\[
\begin{align*}
H= & \frac{1}{2} \sum_{j=1}^{M} w_{j}\left[\boldsymbol{x}_{c}^{\top}(t) \boldsymbol{Q}_{j} \boldsymbol{x}_{c}(t)-\gamma_{j} u_{a}^{2}(t)\right] \\
& +\lambda^{\top}(t)\left[\boldsymbol{A}_{a} \boldsymbol{x}_{c}(t)+\sum_{j=1}^{M} w_{j} \boldsymbol{b}_{a}^{j} u_{a}(t)\right] . \tag{34}
\end{align*}
\]
\[
\begin{equation*}
\dot{\lambda}(t)=-\sum_{j=1}^{M} w_{j} \boldsymbol{Q}_{j} \boldsymbol{x}_{c}(t)-\boldsymbol{A}_{a}^{\top} \boldsymbol{\lambda}(t) \tag{35}
\end{equation*}
\]
and by means of the coupled equation, it further holds that \({ }_{481}\)
\[
\begin{equation*}
u_{a}(t)=\sum_{j=1}^{M} \frac{w_{j}}{\gamma_{j}} \boldsymbol{b}_{a}^{j}{ }^{\top} \lambda(t) \tag{36}
\end{equation*}
\]

Substituting (36) into (34) yields
\[
\begin{equation*}
\bar{H}=\sum_{j=1}^{M} w_{j} \boldsymbol{x}_{c}^{\top \boldsymbol{Q}_{j}} \boldsymbol{x}_{c}+\sum_{j=1}^{M} \sum_{j=1}^{M} \frac{w_{j} w_{k}}{\gamma_{j} \gamma_{k}}\left(\lambda^{\top} \boldsymbol{b}_{a}^{j}\right)\left(\lambda^{\top \boldsymbol{b}_{a}^{k}}\right) . \tag{484}
\end{equation*}
\]

Maximizing \(\bar{H}\) over \(\boldsymbol{w}(t) \in \mathcal{W}_{1}\) now boils down to solving the \({ }_{485}\) following quadratic programming problem:
\[
\begin{array}{cl}
\underset{\boldsymbol{w}}{\operatorname{maximize}} & \boldsymbol{w}^{\top} \boldsymbol{H} \boldsymbol{w}+\boldsymbol{w}^{\top} \boldsymbol{q} \\
\text { subject to } & \boldsymbol{w} \in \mathcal{W}_{1} \tag{37b}
\end{array}
\]
where \(\boldsymbol{H}:=\boldsymbol{h} \boldsymbol{h}^{\top}\) with \(\boldsymbol{h}:=\left[\left(\boldsymbol{\lambda}^{\top} \boldsymbol{b}_{a}^{1}\right) / \gamma_{1} \cdots\left(\boldsymbol{\lambda}^{\top} \boldsymbol{b}_{a}^{M}\right) / \gamma_{M}\right]^{\top}\) and 489 \(\boldsymbol{q}:=\left[\left(\boldsymbol{x}_{c}^{\top \boldsymbol{Q}_{1}} \boldsymbol{x}_{c}\right) \cdots\left(x_{c}^{\top \boldsymbol{Q}_{M}} \boldsymbol{x}_{c}\right)\right]^{\top}\).

490
Evidently, function \(\bar{H}\) is convex in \(\boldsymbol{w}\). Again, the optimal 491 solution of maximizing \(\bar{H}(\boldsymbol{w})\) over \(\boldsymbol{w} \in \mathcal{W}_{1}\) is attained (at 492 least) at one of the vertices of the polytope determined by \(\mathcal{W}_{1},{ }^{493}\) hence proving that the switch input \(\boldsymbol{w}(t)\) obtains its optimal \({ }_{494}\) solution in \(\mathcal{W}_{0}\). Concretely, we have that 495
\[
\begin{equation*}
\max _{\boldsymbol{w} \in \mathcal{W}_{1}} \bar{H}(\boldsymbol{w})=\max _{j \in\{1, \ldots, M\}} \boldsymbol{x}_{c}^{\top} \boldsymbol{Q}_{j} \boldsymbol{x}_{c}+\frac{1}{\gamma_{j}}\left(\lambda^{\top \boldsymbol{b}_{a}^{j}}\right)^{2} \tag{38}
\end{equation*}
\]
completing the proof.

\section*{IV. Countermeasure Design}

After exploiting the attack strategy from the perspective of the adversary, it is of paramount importance to pursue defense schemes (countermeasures) to mitigate the attacks. The problem of interest is to design an enhanced outputfeedback controller to stabilize the attacked system, such that the control performance is preserved in a well-defined sense.

The countermeasure against switching attacks has mainly focused on the network topology attack and the DoS attack [20]. The resilient control against location switching attacks has not been investigated in the literature. Compared with the existing efforts that use cover network information, or have a subset of sensors immune to attacks destroying the feasibility of stealthy attacks [32], this article develops a resilient control scheme that tolerates intrusions. In general, resilience means that the operator maintains an acceptable level of operational normalcy despite attacks. Before presenting the countermeasure design, we start by introducing the definition of a resilient control scheme.

Definition 1: A feedback control law \(\tilde{\boldsymbol{u}}\) is said to be resilient if it can stabilize the plant under a sequence of attacks arbitrarily constructed based on a set of state-feedback laws, while guaranteeing an acceptable cost, that is, for some given bound \(\tilde{J}\), the following holds:
\[
\begin{equation*}
\tilde{J} \leq \tilde{J}^{*} \tag{39}
\end{equation*}
\]

The operator has the freedom to select the two weighting matrices \(\tilde{\boldsymbol{Q}} \succ \mathbf{0}\) and \(\tilde{\boldsymbol{R}} \succ \mathbf{0}\) to compensate for the control performance degradation of the healthy plant. The state of the healthy system can be reconstructed using, e.g., a Luenberger observer [33]. If the attacker injects false data into a set of sensors over a period of time, the reconstruction error \(\boldsymbol{e}_{c}(t)\) may diverge and the alarm will be triggered if it exceeds a threshold
\[
\begin{equation*}
\tilde{J}=\int_{0}^{\infty}\left(\boldsymbol{x}_{c}^{\top} \tilde{\boldsymbol{Q}} \boldsymbol{x}_{c}+\tilde{\boldsymbol{u}}^{\top} \tilde{\boldsymbol{R}} \tilde{\boldsymbol{u}}\right) d t \tag{40}
\end{equation*}
\]
\[
\begin{gathered}
\left\{\begin{array}{l}
\dot{\hat{x}}(t)=\boldsymbol{A} \hat{\boldsymbol{x}}(t)+\boldsymbol{B} u_{c}(t)+\boldsymbol{L}\left[\boldsymbol{y}_{c}(t)-\hat{\boldsymbol{y}}(t)\right] \\
\hat{\boldsymbol{y}}(t)=\boldsymbol{C} \hat{\boldsymbol{x}}(t)
\end{array}\right. \\
\dot{\boldsymbol{e}}_{c}(t)=(\boldsymbol{A}-\boldsymbol{L C}) \boldsymbol{e}_{c}(t)+\boldsymbol{L d _ { a } u _ { a } ( t )}
\end{gathered}
\]
where \(\boldsymbol{e}_{c}(t):=\boldsymbol{x}_{c}(t)-\hat{\boldsymbol{x}}(t)\) and \(\boldsymbol{L}\) is a gain matrix.
The attacked system can be modeled as a switched system consisting of \(M\) modes
\[
\text { Mode } j: \dot{\boldsymbol{x}}_{c, j}(t)=\left(\boldsymbol{A}_{a}+\boldsymbol{B} \boldsymbol{K} \Delta \boldsymbol{K}_{j}\right) \boldsymbol{x}_{c, j}(t), j=1, \ldots, M
\]

Consider for example, if \(J_{a}\) is maximized, substituting (28) into (11b), we have
\[
\begin{equation*}
\Delta \boldsymbol{K}_{j}=-\frac{1}{\tilde{\gamma}_{j j}}\left[\boldsymbol{d}_{a}^{j}\left(\boldsymbol{s}_{j}^{\top}+\boldsymbol{B}_{a}^{j}{ }^{\top} \boldsymbol{P}_{j}\right)\right] . \tag{41}
\end{equation*}
\]

The attacker uses matrices \(\Delta \boldsymbol{K}_{j}\) at time \(t_{j}\) and switches to \(\Delta \boldsymbol{K}_{j^{\prime}}\) at \(t_{j^{\prime}}\). The attacker may change the attack locations randomly according to a stochastic model, or optimally with respect to an unknown criterion. As such, matrices \(\Delta \boldsymbol{K}_{j}\) can be treated as a switching uncertainty of the healthy plant. The guaranteed cost control approach can be adopted to mitigate the attacks [34].

Once the detector detects an attack, or that the system response \({ }_{548}\) is considerably altered such that the attack is exposed, the \({ }_{549}\) defender needs to estimate the sensor links that have been \({ }_{550}\) compromised, as well as identify the uncertainty matrices \(\Delta \boldsymbol{K}_{j}\). \({ }^{551}\) Recent advances on identifying the attack set from sensor mea- \({ }_{552}\) surements (e.g., [35]) assume attacks on the state equations, \({ }^{553}\) and do not utilize the information of the attacked state \(\boldsymbol{x}_{c} .{ }_{554}\) The proposed identification problem is generally NP-hard, and \({ }_{555}\) reducing-complexity algorithms are presented. We adopt the \({ }_{556}\) following steps to defend against switching attacks. \({ }_{557}\)

Step 1 (Attack Extraction): As the false data injected into \({ }_{558}\) sensor measurements
\[
\begin{equation*}
\boldsymbol{f}_{a}(t)=u_{a}(t) \boldsymbol{d}_{a}^{j} . \tag{42}
\end{equation*}
\]

The defender should find historical false data \(f_{a}(t):={ }_{561}\) \(\left[f_{a}^{1}(t) \cdots f_{a}^{n}(t)\right]^{\top}\) to identify the uncertainty matrix \(\Delta \boldsymbol{K}_{j}\). The \({ }_{562}\) goal of this step is to extract \(f_{a}(t)\) and sort the timestamp \({ }^{563}\) of \(\boldsymbol{f}_{a}(t)\) into \(M\) parts, namely, \(\boldsymbol{O}_{1}, \ldots, \boldsymbol{O}_{M}\), each of which \({ }_{564}\) corresponds to a compromised sensor set. In Example 1, if 565 \(f_{a}^{1}(t)<\delta\), where \(\delta>0\) is a preselected threshold to account \({ }_{566}\) for computation and measurement inaccuracies, then \(t \in \boldsymbol{O}_{3}{ }^{567}\) (referring to set \(\{2,3\}\) ); if \(f_{a}^{2}(t)<\delta, t \in \boldsymbol{O}_{2}\) (referring to set \({ }_{568}\) \(\{1,3\}\) ). If \(f_{a}^{3}(t)<\delta\), then \(t \in \boldsymbol{O}_{1}\) (referring to set \(\{1,2\}\) ). In this \({ }_{569}\) article, we assume that the control center is able to reset the 570 attacked system under a known initial condition, and compare 571 the attacked sensor measurements with \(\boldsymbol{y}_{v}(t)\) from a virtual \({ }_{572}\) healthy system, namely 573
\[
\begin{align*}
\dot{\boldsymbol{x}}_{v}(t) & =\boldsymbol{A}_{a} \boldsymbol{x}_{v}(t)  \tag{43a}\\
\boldsymbol{y}_{v}(t) & =\boldsymbol{C} \boldsymbol{x}_{v}(t) . \tag{43b}
\end{align*}
\]

Upon defining
\[
\begin{aligned}
& \boldsymbol{e}_{x}=\boldsymbol{x}_{c}-\boldsymbol{x}_{v} \\
& \boldsymbol{e}_{y}=\boldsymbol{y}_{c}-\boldsymbol{y}_{v}
\end{aligned}
\]
we obtain that
\[
\begin{align*}
\dot{\boldsymbol{e}}_{x}(t) & =\boldsymbol{A}_{a} \boldsymbol{e}_{x}(t)+\boldsymbol{B K} \boldsymbol{f}_{a}(t)  \tag{44a}\\
\boldsymbol{e}_{y}(t) & =\boldsymbol{C} \boldsymbol{e}_{x}(t)+\boldsymbol{f}_{a}(t) \tag{44b}
\end{align*}
\]
where \(\boldsymbol{e}_{x}(0)=\mathbf{0}\). Vector \(\boldsymbol{f}_{a}(t)\) can be calculated by the compar- 582 ison result \(\boldsymbol{e}_{y}(t)\), and once \(\boldsymbol{f}_{a}(t)\) is recovered, the compromised \({ }^{583}\) sensors are found.

Step 2 (Attack Identification): The defender makes use of \({ }_{585}\) the data whose timestamp was collected in \(\boldsymbol{O}_{j}\) to identify the \({ }_{586}\) unknown parameter matrices \(\Delta \boldsymbol{K}_{j}\), using the common least- \({ }^{587}\) squares algorithm by solving
\[
\begin{equation*}
\min _{\Delta \boldsymbol{K}_{j}} \sum_{t \in \boldsymbol{O}_{j}}\left\|\boldsymbol{f}_{a}(t)-\Delta \boldsymbol{K}_{j} \boldsymbol{x}_{c}(t)\right\|_{2}^{2} \tag{45}
\end{equation*}
\]

In practice, \(\boldsymbol{e}_{y}\) can be induced by, e.g., link failures in system \({ }_{590}\) components, noise in communication channels, or intentional 591 attacks. If the online identification algorithm converges, there \({ }_{592}\) exists a state-feedback data-injection attack [36] (different \({ }^{593}\) from random attacks [37] or constant switching attacks [38]). 594

Step 3 (Resilient Control): To circumvent switching attacks, 595 the controller needs to be redesigned in a way to be \({ }_{596}\) resilient. The system implements a feedback control law \(\tilde{\boldsymbol{u}}{ }^{597}\) on the attacked system, which is obtained according to the 598
\[
\begin{equation*}
\dot{\boldsymbol{x}}_{c}(t)=\sum_{j=1}^{M} w_{j}(t) \tilde{\boldsymbol{A}}_{j} \boldsymbol{x}_{c}(t) \tag{46}
\end{equation*}
\]
is asymptotically stable, and \(\tilde{J}\) satisfies
\[
\begin{equation*}
\tilde{J} \leq \boldsymbol{x}_{0}^{\top} \tilde{\boldsymbol{P}} \boldsymbol{x}_{0} \tag{47}
\end{equation*}
\]
\({ }^{11}\) if there exist a symmetric matrix \(\tilde{\boldsymbol{P}} \succ \mathbf{0}\) and a scalar \(\bar{\gamma}>0\) 12

613

14 where \(\boldsymbol{x}_{0}\) is the initial state, and \(\tilde{\boldsymbol{A}}_{j}:=\boldsymbol{A}+\boldsymbol{B} \tilde{\boldsymbol{K}}\left(\boldsymbol{C}+\Delta \boldsymbol{K}_{j}\right)\) for 15
\({ }_{18}\) for some symmetric matrix \(\tilde{\boldsymbol{P}} \succ \mathbf{0}\). The time derivative of \(V(x)\) \({ }^{19}\) can be found as

620

621

25 then

626
\[
\begin{aligned}
\dot{V}(x) & =\dot{\boldsymbol{x}}_{c}^{\top}(t) \tilde{\boldsymbol{P}} \boldsymbol{x}_{c}(t)+\boldsymbol{x}_{c}^{\top}(t) \tilde{\boldsymbol{P}} \dot{\boldsymbol{x}}_{c}(t) \\
& =\boldsymbol{x}_{c}^{\top}(t) \sum_{j=1}^{M} w_{j}(t)\left(\tilde{\boldsymbol{A}}_{j}^{\top} \tilde{\boldsymbol{P}}+\tilde{\boldsymbol{P}} \tilde{\boldsymbol{A}}_{j}\right) \boldsymbol{x}_{c}(t)
\end{aligned}
\]

By the common Lyapunov function method, if the following holds:
\[
\begin{equation*}
\boldsymbol{x}_{c}^{\top}(t)\left(\tilde{\boldsymbol{A}}_{j}^{\top} \tilde{\boldsymbol{P}}+\tilde{\boldsymbol{P}}_{j} \tilde{\boldsymbol{A}}_{j}+\tilde{\boldsymbol{Q}}+\tilde{\boldsymbol{K}}^{\top} \tilde{\boldsymbol{R}} \tilde{\boldsymbol{K}}\right) \boldsymbol{x}_{c}(t) \leq 0 \tag{50}
\end{equation*}
\]
\[
\begin{equation*}
\dot{V}(x) \leq-\boldsymbol{x}_{c}^{\top}(t)\left(\tilde{\boldsymbol{Q}}+\tilde{\boldsymbol{K}}^{\top} \tilde{\boldsymbol{R}} \tilde{\boldsymbol{K}}\right) \boldsymbol{x}_{c}(t) \leq 0 \tag{51}
\end{equation*}
\]
\({ }_{627}\) for \(w_{j}(t) \in\{0,1\} \forall j\). That is, the attacked system is asymptot628

629
\[
\begin{equation*}
\boldsymbol{x}_{c}^{\top} \tilde{\boldsymbol{Q}} \boldsymbol{x}_{c}+\tilde{\boldsymbol{u}}^{\top} \tilde{\boldsymbol{R}} \tilde{\boldsymbol{u}} \leq-\dot{V}(x) . \tag{52}
\end{equation*}
\]
\({ }_{\text {зо }}\) Since \(\boldsymbol{x}_{c}(\infty)=\mathbf{0}\) holds for the stable closed-loop system, we \({ }_{31}\) deduce that

632
\[
\begin{equation*}
\tilde{J} \leq-\int_{0}^{\infty} \dot{V}(x) d t=\boldsymbol{x}_{0}^{\top} \tilde{\boldsymbol{P}} \boldsymbol{x}_{0} . \tag{53}
\end{equation*}
\]
\({ }_{6}{ }^{6}\) The Schur compliment further confirms that (50) is equivalent \({ }_{34}\) to the LMI in (48), which completes the proof.

\section*{V. Illustrative Examples}

In this section, we provide several numerical tests to show- \({ }_{636}\) case the effectiveness of the proposed resilient control scheme \({ }_{637}\) as well as the practical merits of our theory.

\section*{A. Power Generator}

Consider a remotely controlled power generator described 640 by the following normalized swing equation [39]:
\[
\begin{align*}
\dot{\delta}(t) & =\omega(t)  \tag{54a}\\
M \dot{\omega}(t) & =-D \omega(t)-P_{f}(t)+u(t) \tag{54b}
\end{align*}
\]
where \(\delta\) and \(\omega\) denote the phase angle and frequency deviation \({ }_{644}\) of the generator (rotor), respectively; \(u(t)\) is the mechan- \({ }_{645}\) ical power provided for the generator; and \(M\) and \(D\) are \({ }_{646}\) the inertia and damping coefficients, respectively. The term \({ }_{647}\) \(P_{f}(t)=b \sin (\delta(t))\) represents the electric power flow from \({ }_{648}\) the generator to the bus, where \(b\) is the susceptance of the \({ }_{649}\) transmission line. Upon linearizing the model at the nominal 650 point \(\omega=\delta=0\) with \(M=D=b=1\), and defining the \({ }_{651}\) state \(\boldsymbol{x}:=[\delta \omega]^{\top}\), we obtain an LTI system as in (1) whose \({ }_{652}\) parameters are given by
\[
\begin{aligned}
& \boldsymbol{A}=\left[\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right], \quad \boldsymbol{B}=\left[\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right] \\
& \boldsymbol{C}=\boldsymbol{I}, \quad \boldsymbol{K}=-\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] .
\end{aligned}
\]

We consider a practical scenario where the adversary can alter \({ }_{656}\) the mechanical power supplied to the generator, through break- \({ }_{657}\) ing the integrity of the sensor signal measuring \(\delta\) and \(\omega\) of the \({ }^{658}\) generator. Specifically, the adversary injects a state-feedback 659 signal into the control signal, which will make the generator 660 increase its power generation, and correspondingly, increase 661 the power flow \(P_{f}\) along the transmission line. Choose with- \({ }_{662}\) out loss of generality that \(\boldsymbol{Q}_{1}=\boldsymbol{Q}_{2}=\boldsymbol{I}\) and \(\gamma_{1}=\gamma_{2}=6\). \({ }^{663}\) The attack vectors are \(\boldsymbol{d}_{a}^{1}=\left[\begin{array}{ll}1 & 0\end{array}\right]^{\top}\) and \(\boldsymbol{d}_{a}^{2}=\left[\begin{array}{ll}0 & 1\end{array}\right]^{\top}\), i.e., the \({ }_{664}\) attacker compromises one sensor every time. Then, one can 665 write that \(s_{1}=\left[\begin{array}{ll}1 & 0\end{array}\right]\) and \(s_{2}=\left[\begin{array}{ll}0 & 4\end{array}\right]\). The healthy plant under \({ }_{666}\) switching attacks becomes a switched system of two modes. \({ }_{667}\)

Using Theorem 1, the switching condition (17) becomes \({ }_{668}\)
\[
\begin{equation*}
i(t):=\arg \max _{j \in\{1,2\}} z_{j} \tag{55}
\end{equation*}
\]
where
\[
z_{1}=\frac{1}{4}\left|\delta-\lambda_{2}\right|, \quad \text { and } \quad z_{2}=\frac{1}{4}\left|4 \omega-2 \lambda_{2}\right| .
\]

The state trajectories of the system under switching attacks and 672 those of the health plant are presented in Fig. 2, along with \({ }^{673}\) the switching instants between the two nodes given in Fig. 3. 674 Observe that the attack stays in Mode 1 during the period \({ }_{675}\) [0.195, 0.278] s, yet it switches to Mode 2 at \(t=0.278 \mathrm{~s}\), \({ }^{676}\) and stays there till \(t=2.18 \mathrm{~s}\).

677
Choose \(\boldsymbol{Q}_{1}=2 \boldsymbol{I}\) and keep other parameters unchanged. \({ }^{678}\) Fig. 4 compares the simulation results under the optimal 679 switching attacks and under random switching attacks subject 680 to (55) with \(z_{1} \sim \mathbb{U}[0,1]\) and \(z_{2}=0.8\). Their corresponding \({ }_{681}\) performance indices [see (16)] are 93.5 and 51.5 , respectively. 682


Fig. 2. State trajectories under optimal switching attacks.


Fig. 3. Optimal switching instants.


Fig. 4. Comparison results between optimal switching attacks and random switching attacks.

Invoking Theorem 3, a resilient control gain matrix can be obtained as
\[
\tilde{\boldsymbol{K}}=-\left[\begin{array}{cc}
1.59 & 0.28 \\
-0.1 & 0.89
\end{array}\right]
\]

After implementing a resilient state-feedback control scheme, the state trajectories of the plant under attacks and the healthy plant are depicted in Fig. 5, where the upper bound on the cost was \(\tilde{J}^{*}=47.2\).

\section*{B. Power Systems}

Now, consider a power system comprising several power generators and load buses. Following (54), the dynamics per generator can be modeled by a set of linear swing equations:
\[
\begin{align*}
\dot{\delta}_{i}(t) & =\omega_{i}(t)  \tag{56a}\\
M_{i} \dot{\omega}_{i}(t) & =-D_{i} \omega_{i}(t)-P_{f}^{j}(t)+u_{i}(t) \tag{56b}
\end{align*}
\]


Fig. 5. State trajectories under the proposed resilient control.
for \(i=1, \ldots, n_{g}\), where \(n_{g}\) is the total number of generators. \({ }^{696}\) We consider a PID load frequency controller, namely
\[
\begin{equation*}
u_{i}=-\left(K_{i}^{P} \omega_{i}+K_{i}^{I} \int_{0}^{t} \omega_{i} d t+K_{i}^{D} \dot{\omega}_{i}\right) \tag{57}
\end{equation*}
\]
where the controller parameters \(K_{i}^{P} \geq 0, K_{i}^{I} \geq 0\), and \(K_{i}^{D} \geq 0{ }_{699}\) are the proportional gain, integral gain, and derivative gain, 700 respectively. The overall power system dynamics of \(n_{g}\) gen- 701 erators can be compactly expressed as the following linear 702 descriptor system:

703
\[
\begin{aligned}
& {\left[\begin{array}{ccc}
\boldsymbol{I} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{M}+\boldsymbol{K}^{D} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\dot{\boldsymbol{\delta}} \\
\dot{\boldsymbol{\omega}} \\
\dot{\boldsymbol{\theta}}
\end{array}\right]} \\
& =-\left[\begin{array}{ccc}
\mathbf{0} & -\boldsymbol{I} & \mathbf{0} \\
\boldsymbol{B}_{G G}+\boldsymbol{K}^{I} & \boldsymbol{D}_{G}+\boldsymbol{K}^{P} & \boldsymbol{B}_{G L} \\
\boldsymbol{B}_{L G} & \mathbf{0} & \boldsymbol{B}_{L L}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{\delta} \\
\boldsymbol{\omega} \\
\boldsymbol{\theta}
\end{array}\right]-\left[\begin{array}{c}
\mathbf{0} \\
\boldsymbol{P}_{a}^{\omega} \\
\boldsymbol{P}^{L}
\end{array}\right]_{\text {(58) }}^{706}
\end{aligned}
\]
where vectors \(\boldsymbol{\delta}\) and \(\boldsymbol{\omega}\) collect accordingly the voltage phase 707 angles and the rotor angular frequency deviations at all gener- \({ }_{708}\) ator buses; vectors \(\boldsymbol{\theta}\) and \(\boldsymbol{P}^{L}\) stack up the voltage phase angles 709 and power consumption at all load buses, respectively; and \(\boldsymbol{M}{ }_{710}\) is a diagonal matrix; and likewise for matrices \(\boldsymbol{D}^{G}, \boldsymbol{D}^{L}, \boldsymbol{K}^{P}, 711\) \(\boldsymbol{K}^{I}\), and \(\boldsymbol{K}^{D}\).

712
The attack design approach presented in Theorem 2 was \({ }_{713}\) numerically tested and verified using the IEEE 9-bus bench- 714 mark system, which has three power generators and six 715 load buses [35]. The frequency measurements obtained may 716 have already been strategically modified by a knowledgeable 717 attacker to cause system frequencies to deviate from their nom- 718 inal values. Here, we assume that the attacker can alter the \({ }_{719}\) frequencies measured at generators \(g_{1}\) and \(g_{2}\), and injects false 720 data \(\boldsymbol{P}_{a}^{\omega}:=\boldsymbol{d}_{a}^{j} u_{a}(t)\) into the controller at victim generators. \({ }^{721}\)

Upon defining the state \(\boldsymbol{x}:=\left[\boldsymbol{\delta}^{\top} \boldsymbol{\omega}^{\top}\right]^{\top}\), the attacked system \({ }_{722}\) can be rewritten as
\[
\dot{\boldsymbol{x}}(t)=\boldsymbol{A}_{a} \boldsymbol{x}(t)+\boldsymbol{b}_{a}^{j} u_{a}(t)
\]

Choose
725
\[
\begin{aligned}
& \boldsymbol{K}^{P}=\operatorname{diag}\left(\left[\begin{array}{lll}
0.1 & 0.1 & 0.1
\end{array}\right]\right), \quad \boldsymbol{K}=\boldsymbol{I} \\
& \boldsymbol{Q}_{1}=\operatorname{diag}\left(\left[\begin{array}{llllll}
0 & 0 & 0 & 16 & 16 & 16
\end{array}\right]\right), \boldsymbol{Q}_{2}=\operatorname{diag}\left(\left[\begin{array}{lllllll}
0 & 0 & 0 & 14 & 14 & 14
\end{array}\right]\right) \quad{ }^{727} \\
& \gamma_{1}=7, \quad \gamma_{2}=11 \\
& \boldsymbol{d}_{a}^{1}=\left[\begin{array}{lll}
0.15 & 0 & 0
\end{array}\right]^{\top}, \quad \boldsymbol{d}_{a}^{2}=\left[\begin{array}{lll}
0 & 0.15 & 0
\end{array}\right]^{\top} .
\end{aligned}
\]


Fig. 6. Optimal switching instants.


Fig. 7. State trajectories under optimal switching attacks.


Fig. 8. State trajectories under nonswitching attacks.

7з0 Then
\({ }^{731} \quad \boldsymbol{A}_{a}=\left[\begin{array}{cccccc}0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ -0.235 & 0.119 & 0.116 & -1.8 & 0 & 0 \\ 0.436 & -0.847 & 0.411 & 0 & -4.941 & 0 \\ 0.905 & 0.874 & -1.778 & 0 & 0 & -9.25\end{array}\right]\)
become discontinuous, which gives rise to the so-called vibra- 740 tion phenomenon [40]. The attacker switched four times in the 741 simulation interval of 12 s .

\section*{VI. Conclusion}

In this article, the optimal data-injection attack with switch- 744 ing behaviors was studied. Two different objective functions 745 were suggested for the adversary to optimally determine the 746 attack strategy. One focuses on the controller energy consump- \({ }_{74}\) tion, while the other considers the quadratic integration of \({ }_{748}\) states. The optimal attack design problem was formulated as 749 an integer programming problem, which is hard to solve in 750 general. By reformulating it as an optimal control problem \({ }^{751}\) of a linear switched system, we were able to find the optimal \({ }_{752}\) solution. A defense approach was developed to mitigate a class \({ }_{753}\) of data-injection attacks with feedback and location switching 754 characteristics. The merits and practicability of our proposed 755 strategies were shown by numerical simulations.

\section*{REFERENCES}

757
[1] A. A. Cardenas, S. Amin, and S. Sastry, "Secure control: Towards sur- 758 vivable cyber-physical systems," in Proc. Int. Conf. Distrib. Comput. 759 Syst. Workshop, Beijing, China, 2008, pp. 495-500.
[2] J. Ai, H. Chen, Z. Guo, G. Cheng, and T. Baker, "Mitigating mali- 761 cious packets attack via vulnerability-aware heterogeneous network 762 devices assignment," Future Gener. Comput. Syst., to be published, 763 doi: 10.1016/j.future.2019.04.034.
[3] C.-W. Ten, G. Manimaran, and C.-C. Liu, "Cybersecurity for critical 765 infrastructures: Attack and defense modeling," IEEE Trans. Syst., Man, 766 Cybern. A, Syst., Humans, vol. 40, no. 4, pp. 853-865, Jul. 2010.
[4] G. Wang, G. B. Giannakis, J. Chen, and J. Sun, "Distribution system 768 state estimation: An overview of recent developments," Front. Inf. 769 Technol. Electron. Eng., vol. 20, no. 1, pp. 4-17, Jan. 2019.
[5] G. Wang, G. B. Gianakis, and J. Chen, system state estimation via composite optimization," IEEE Trans. Smart 772 Grid, to be published. doi: 10.1109/TSG.2019.2897100. 773
[6] C. Chen, K. Zhang, K. Yuan, L. Zhu, and M. Qian, "Novel detection 774 scheme design considering cyber attacks on load frequency control," 775 IEEE Trans. Ind. Informat., vol. 14, no. 5, pp. 1932-1941, May 2018. 776
[7] G. Wu and J. Sun, "Optimal switching integrity attacks on sensors 777 in industrial control systems," J. Syst. Sci. Complex., to be published, 778 doi: 10.1007/s11424-018-8067-y.
[8] W. Fang, W. Zhang, Y. Yang, Y. Liu, and W. Chen, "A resilient trust man- 780 agement scheme for defending against reputation time-varying attacks 781 based on beta distribution," Sci. China Inf. Sci., vol. 60, no. 4, Apr. 2017, 782 Art. no. 040305.
[9] Y. Dong et al., "An adaptive system for detecting malicious queries 784 in Web attacks," Sci. China Inf. Sci., vol. 61, no. 3, Mar. 2018, 785 Art. no. 032114.

786
[10] J. Liu, Z.-G. Wu, D. Yue, and J. H. Park, "Stabilization of networked 787 control systems with hybrid-driven mechanism and probabilistic cyber 788 attacks," IEEE Trans. Syst., Man, and Cybern., Syst., to be published. 789
[11] E. Mousavinejad, F. Yang, Q.-L. Han, and L. Vlacic, "A novel cyber 790 attack detection method in networked control systems," IEEE Trans. 791 Cybern., vol. 48, no. 11, pp. 3254-3264, Nov. 2018.
[12] H. Yang, S. Ju, Y. Xia, and J. Zhang, "Predictive cloud control for net- 793 worked multiagent systems with quantized signals under DoS attacks," 794 IEEE Trans. Syst., Man, Cybern., Syst., to be published. 795
[13] J. Liu, Y. Gu, X. Xie, D. Yue, and J. H. Park, "Hybrid-driven-based \(H_{\infty} 796\) control for networked cascade control systems with actuator saturations 797 and stochastic cyber attacks," IEEE Trans. Syst., Man, Cybern., Syst., to 798 be published.

799
[14] Y. Pang, H. Xia, and M. J. Grimble, "Resilient nonlinear control for 800 attacked cyber-physical systems," IEEE Trans. Syst., Man, Cybern., 801 Syst., to be published.

802
[15] D. Ding, Z. Wang, Q.-L. Han, and G. Wei, "Security control for discrete- 803 time stochastic nonlinear systems subject to deception attacks," IEEE 804 Trans. Syst., Man, Cybern., Syst., vol. 48, no. 5, pp. 779-789, May 2018. 805

16] D. P. Fidler, "Was Stuxnet an act of war? Decoding a cyberattack," IEEE Security Privacy, vol. 9, no. 4, pp. 56-59, Jul. 2011.
[17] D. Zhang, S. K. Nguang, and L. Yu, "Distributed control of large-scale networked control systems with communication constraints and topology switching," IEEE Trans. Syst., Man, Cybern., Syst., vol. 47, no. 7, pp. 1746-1757, Jul. 2017.
[18] C. Liu, J. Wu, C. Long, and Y. Wang, "Dynamic state recovery for cyber-physical systems under switching location attacks," IEEE Trans. Control Netw. Syst., vol. 4, no. 1, pp. 14-22, Mar. 2017.
[19] S. Z. Yong, M. Zhu, and E. Frazzoli, "Resilient state estimation against switching attacks on stochastic cyber-physical systems," in Proc. IEEE Conf. Decis. Control, Osaka, Japan, Dec. 2015, pp. 5162-5169.
[20] H. Zhang, P. Cheng, L. Shi, and J. Chen, "Optimal DoS attack scheduling in wireless networked control system," IEEE Trans. Control Syst. Technol., vol. 24, no. 3, pp. 843-852, May 2016.
[21] G. Wu and J. Sun, "Optimal data integrity attack on actuators in cyberphysical systems," in Proc. Amer. Control Conf., Boston, MA, USA, Jul. 2016, pp. 1160-1164.
[22] G. Wu, J. Sun, and J. Chen, "Optimal data injection attacks in cyberphysical systems," IEEE Trans. Cybern., vol. 48, no. 12, pp. 3302-3312, Dec. 2018.
[23] M. M. Kogan, "Solution to the inverse problem of minimax control and worst case disturbance for linear continuous-time systems," IEEE Trans. Autom. Control, vol. 43, no. 5, pp. 670-674, May 1998.
[24] X. Xu and P. J. Antsaklis, "Optimal control of switched systems based on parameterization of the switching instants," IEEE Trans. Autom. Control, vol. 49, no. 1, pp. 2-16, Jan. 2004.
[25] D. Gorges, M. Izák, and S. Liu, "Optimal control and scheduling of switched systems," IEEE Trans. Autom. Control, vol. 56, no. 1, pp. 135-140, Jan. 2011.
[26] F. Zhu and P. J. Antsaklis, "Optimal control of hybrid switched systems: A brief survey," Discr. Event Dyn. Syst., vol. 25, no. 3, pp. 345-364, Sep. 2015.
[27] T. Das and R. Mukherjee, "Optimally switched linear systems," Automatica, vol. 44, no. 5, pp. 1437-1441, May 2008.
[28] S. C. Bengea and R. A. DeCarlo, "Optimal control of switching systems," Automatica, vol. 41, no. 1, pp. 11-27, Jan. 2005.
[29] P. Riedinger, "A switched LQ regulator design in continuous time," IEEE Trans. Autom. Control, vol. 59, no. 5, pp. 1322-1328, May 2014.
[30] W. W. Lu, G. J. Balas, and E. B. Lee, "Linear quadratic performance with worst case disturbance rejection," Int. J. Control, vol. 73, no. 16, pp. 1516-1524, Jan. 2000.
[31] A. Bemporad, F. Borrelli, and M. Morari, "Min-max control of constrained uncertain discrete-time linear systems," IEEE Trans. Autom. Control, vol. 48, no. 9, pp. 1600-1606, Sep. 2003.
[32] S. Bi and Y. J. Zhang, "Graphical methods for defense against false-data injection attacks on power system state estimation," IEEE Trans. Smart Grid, vol. 5, no. 3, pp. 1216-1227, May 2014.
[33] J. Xin, N. Zheng, and A. Sano, "Subspace-based adaptive method for estimating direction-of-arrival with Luenberger observer," IEEE Trans. Signal Process., vol. 59, no. 1, pp. 145-159, Jan. 2011.
[34] P. Jiang, H. Su, and J. Chu, "LMI approach to optimal guaranteed cost control for a class of linear uncertain discrete systems," in Proc. Amer. Control Conf., vol. 1, no. 6. Chicago, IL, USA, Jun. 2000, pp. 327-331.
[35] F. Pasqualetti, F. Dörfler, and F. Bullo, "A divide-and-conquer approach to distributed attack identification," in Proc. IEEE Conf. Decis. Control, Osaka, Japan, 2015, pp. 5801-5807.
[36] T. Hsia and V. Vimolvanich, "An on-line technique for system identification," IEEE Trans. Autom. Control, vol. AC-14, no. 1, pp. 92-96, Feb. 1969.
[37] S. Sridhar and M. Govindarasu, "Model-based attack detection and mitigation for automatic generation control," IEEE Trans. Smart Grid, vol. 5, no. 2, pp. 580-591, Mar. 2014.
[38] A. Farraj, E. Hammad, A. Al Daoud, and D. Kundur, "A game-theoretic analysis of cyber switching attacks and mitigation in smart grid systems," IEEE Trans. Smart Grid, vol. 7, no. 4, pp. 1846-1855, Jul. 2016.
[39] A. Teixeira, K. C. Sou, H. Sandberg, and K. H. Johansson, "Secure control systems: A quantitative risk management approach," IEEE Control Syst., vol. 35, no. 1, pp. 24-45, Feb. 2015.
[40] F. Pasqualetti, F. Dörfler, and F. Bullo, "Attack detection and identification in cyber-physical systems," IEEE Trans. Autom. Control, vol. 58, no. 11, pp. 2715-2729, Nov. 2013.
[41] G. Wu, J. Sun, and J. Chen, "Optimal linear quadratic regulator of switched systems," IEEE Trans. Autom. Control, vol. 64, no. 7, pp. 2898-2904, Jul. 2019.


Guangyu Wu received the Ph.D. degree in con- 881 trol theory and control engineering from the Beijing 882 Institute of Technology, Beijing, China, in 2018.883

He is currently a Post-Doctoral Research Fellow 884 with Tongji University, Shanghai, China. His cur- 885 rent research interests include optimal control 886 of switched systems, security of cyber-physical 887 systems, and event-triggered distributed control of 888 vehicle platoons.


Gang Wang (M'18) received the B.Eng. degree 890 in electrical engineering and automation from the 891 Beijing Institute of Technology, Beijing, China, in 892 2011, and the Ph.D. degree in electrical engineer- 893 ing from the University of Minnesota, Minneapolis, 894 MN, USA, in 2018.

895
He is currently a Post-Doctoral Associate with the 896 Department of Electrical and Computer Engineering, 897 University of Minnesota. His current research 898 interests include statistical signal processing, con- 899 trol, optimization, and deep learning with applica- 900 tions to data science and smart grids.

901
Dr. Wang was a recipient of the National Scholarship from China in 2013, 902 the Innovation Scholarship (First Place) from China in 2017, and the Best 903 Conference Papers at the 2017 European Signal Processing Conference and 904 the 2019 IEEE Power \& Energy Society General Meeting. He is currently 905 serving on the editorial board of Signal Processing.


Jian Sun (M'10) received the bachelor's degree in 907 automation and electric engineering from the Jilin 908 Institute of Technology, Changchun, China, in 2001, 909 the master's degree in mechanical and electronic 910 engineering from the Fine Mechanics and Physics, 911 Chinese Academy of Sciences (CAS), Changchun, 912 in 2004, and the Ph.D. degree in control theory and 913 engineering from CAS, Beijing, China, in 2007. 914
He was a Research Fellow with the Faculty of 915 Advanced Technology, University of Glamorgan, 916 Pontypridd, U.K., from 2008 to 2009. He was a Post- 917 Doctoral Research Fellow with the Beijing Institute of Technology, Beijing, 918 from 2007 to 2010. In 2010, he joined the School of Automation, Beijing 919 Institute of Technology, where he has been a Professor since 2013. His cur- 920 rent research interests include networked control systems, time-delay systems, 921 and security of cyber-physical systems.

Prof. Sun is an Editorial Board Member of the IEEE Transactions on 923 Systems, Man and Cybernetics: Systems, Journal of Systems Science 924 and Complexity, and Acta Automatica Sinica.


Lu Xiong received the Ph .D. degree in vehicle engi- 926 neering from Tongji University, Shanghai, China, in 927 2005.

928
He was a Post-Doctoral Researcher with the 929 University of Stuttgart, Stuttgart, Germany, from 930 2008 to 2009. He is currently a Professor with the 931 School of Automotive Studies, Tongji University. 932 His current research interests include vehicle system 933 dynamics and control, side-wheel/in-wheel motor 934 drive electric vehicle control, design and control of 935 electro-hydraulic brake system, and motion control 936 of an intelligent/unmanned vehicle.

937```

