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Scalable Solvers of Random Quadratic Equations via
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Abstract—A novel approach termed stochastic truncated am-
plitude flow (STAF) is developed to reconstruct an unknown
n-dimensional real-/complex-valued signal  from m “phaseless”
quadratic equations of the form v; = |(a;, x)|. This problem,
also known as phase retrieval from magnitude-only information, is
NP-hard in general. Adopting an amplitude-based nonconvex for-
mulation, STAF leads to an iterative solver comprising two stages:
s1) Orthogonality-promoting initialization through a stochastic
variance reduced gradient algorithm; and, s2) a series of iter-
ative refinements of the initialization using stochastic truncated
gradient iterations. Both stages involve a single equation per iter-
ation, thus rendering STAF a simple, scalable, and fast approach
amenable to large-scale implementations that are useful when n is
large. When {a;}!™ | are independent Gaussian, STAF provably
recovers exactly any © € R™ exponentially fast based on order
of n quadratic equations. STAF is also robust in the presence
of additive noise of bounded support. Simulated tests involving
real Gaussian {a; } vectors demonstrate that STAF empirically re-
constructs any x € R™ exactly from about 2.3 magnitude-only
measurements, outperforming state-of-the-art approaches and
narrowing the gap from the information-theoretic number of equa-
tions m = 2n — 1. Extensive experiments using synthetic data
and real images corroborate markedly improved performance of
STAF over existing alternatives.

Index Terms—Nonconvex optimization, phase retrieval, vari-
ance reduction, Kaczmarz algorithm.

1. INTRODUCTION

ONSIDER the fundamental problem of reconstructing a

general signal vector from magnitude-only measurements,
e.g., the magnitude of the Fourier transform or any linear trans-
form of the signal. This problem, also known as phase retrieval
[1], arises in many fields of science and engineering ranging
from X-ray crystallography [2], optics [3], as well as coherent
diffraction imaging [4]. In such settings, due to the physical
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limitations of optical detectors such as photosensitive films,
charge-coupled device (CCD) cameras, and human eyes, one
records only the intensity of light (which describes the abso-
lute counts of photons or electrons that strike the detectors) but
loses the phase (where the wave peaks and troughs lie) [5]. It
is known that when collecting the diffraction pattern at a large
enough distance from the imaging plane, the field is given by
the Fourier transform of the image (up to a known phase fac-
tor). Therefore, those optical devices in the far field essentially
measure only the squared modulus of the Fourier transform of
the object, whereas the phase of the incident light reaching the
detector is missing. Nevertheless, very much information is con-
tained in the Fourier phase. It has been well documented that
the Fourier phase of an image encodes often more structural in-
formation than its Fourier magnitude [6]. Recovering the phase
from magnitude-only measurements is thus of paramount prac-
tical relevance. Further details concerning recent advances in
the theory and practice of phase retrieval can be found in the
review [5].

Succinctly stated, the generalized phase retrieval amounts to
solving a system of “phaseless” quadratic equations taking the
form

¥ = [{a;, @),

where @ € R™ or C" is the wanted unknown, a; € R™ or C"
are known sensing/feature vectors, and v := [y ~~~'L/),,,,}T is
the observed data vector. Equivalently, (1) can also be given in
its squared form as y; = |(a;, z)|?, where y; := 1? denotes the
intensity or the squared modulus.

In the classical discretized one-dimensional (1D) phase re-
trieval, the amplitude vector 1) corresponds to the m-point (typ-
ically, m = 2n — 1) Fourier transform of the length-n signal @
[5]. It has been established using the fundamental theorem of al-
gebra that there is no unique solution in the discretized 1D phase
retrieval, even if one fixes trivial ambiguities resulting from op-
erations that preserve Fourier magnitudes, including the global
phase shift, conjugate inversion, and spatial shift [7]. In fact,
there are up to 2”2 generally distinct signals with common
7 beyond trivial ambiguities [7]. To overcome this ill-posed
character of the 1D phase retrieval, different approaches have
been suggested. Additional constraints on the unknown sig-
nal such as sparsity or non-negativity are enforced in [8]-[10]
and [12]-[15]. Other viable options include introducing spe-
cific redundancy into measurements leveraging, for example, the
short-time Fourier transform [5], [16], or masks [17], or simply
assuming random measurements (e.g., random Gaussian {a; }

1<i<m (1
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designs) [1], [12], [18], [19]. For analytic concreteness, we will
henceforth assume random measurements ); that are collected
from the real-valued Gaussian model (1), with independently
and identically distributed (i.i.d.) a; ~ N(0,1I,). To demon-
strate the effectiveness of our proposed algorithm, experimental
implementation for the complex-valued Gaussian model with
iid.a; ~CN(0,1,):=N(0,1,/2)+ jN(0,1I,/2),andus-
ing real images will be included as well.

It has been recently proved that when m > 2n — 1 or m >
4n — 4 generic measurements (e.g., from the Gaussian mod-
els) are acquired, the system in (1) determines uniquely an
n-dimensional real- or complex-valued x (up to a global sign
or phase) [20], [21], respectively. In the real case, m = 2n — 1
generic measurements are also proved necessary for uniqueness
[20]. Postulating existence of a unique solution x, our goal is to
devise simple yet effective algorithms amenable to large-scale
implementation: i) that provably reconstruct  from a near-
optimal number of quadratic equations as in (1); and ii), that
feature in simultaneously low per-iteration and computational
complexities as well as linear convergence rate.

Being a particular instance of nonconvex quadratic program-
ming, the problem of solving quadratic equations subsumes as
special cases various classical combinatorial optimization tasks
involving Boolean variables (e.g., the NP-complete stone prob-
lem [22, Section 3.4.1], [18]). Considering for instance real-
valued vectors a; and x, this problem boils down to assigning
signs s; = +1, such that the solution to the system of linear
equations (a;, ) = s,,/Y;, denoted by z, adheres to the given
equations |{(a;, z)| = 1;, 1 <1 < m. Itis clear that there are a
total of 2" different combinations of {s; } |, whereas only two
combinations of these signs leads to « up to a global sign. The
complex scenario becomes even more complicated, in which
instead of assigning a series of signs {s; }" ;, one looks for a
collection of unimodular complex constants {o; € C}", such
that the resulting linear system and the original quadratic sys-
tem are equivalent. Furthermore, solving quadratic equations
has also found applications in estimating the mixture of lin-
ear regressions, in which the latent membership variables are
viewed as the missing phases [23]. Despite its practical rel-
evance across various science and engineering fields, solving
systems of quadratic equations is combinatorial in nature, and
NP-hard in general.

Notation: Lower- (upper-) case boldface letters denote col-
umn vectors (matrices), and calligraphic symbols are reserved
for sets. The symbol 7 (H) stands for transposition (con-
jugate transposition), and > for positive semidefinite matri-
ces. For vectors, ||-|| signifies the Euclidean norm, and |||
denotes the ¢;-norm. The symbol [-] is the ceiling opera-
tion that returns the smallest integer greater than or equal
to the given number. For a given function g(n) of integer
n > 0, 0(g(n)) denotes the set of functions O(g(n)) = {f(n):
there exist positive constants C, Cy, and ng such that 0 <
Cig(n) < f(n) < Cyg(n) forall n>ng}; and likewise,
O(g(n)) = {f(n): there exist positive constants C' and ng
such that 0 < f(n) < Cg(n) forall n > ng}, and Q(g(n)) =
{f(n): there exist positive constants C' and n such that 0 <
Cg(n) < f(n)forall n > ng}.
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A. Prior Art

Adopting the least-squares criterion (which would coincide
with the maximum likelihood one when assuming an additive
white Gaussian noise model), the task of tackling the quadratic
system in (1) can be reformulated as that of minimizing the
following amplitude-based empirical loss [9], [12], [19]

1 m " 9
oo 1 ld )
minimize o— ; (¢; — |al*z]) (2)
or, the intensity-based one [1]

m

minimize 5— > (i - |a?“‘z|2)2 3)

zeCn m 4
i=1

and its counterpart for Poisson data [18]

PR H 2 H 2

minimize - — ; lal'z|* — y;log (la;*z|*). 4)
Unfortunately, the three objective functions are nonconvex be-
cause of the modulus in (2), or the quadratic terms in (3) and
(4). Ttis well known that nonconvex functions may exhibit many
stationary points, and minimizing nonconvex objectives is in
general NP-hard, and hence computationally intractable [24]. It
is worth stressing that it is difficult to establish convergence to a
local minimum due to the existence of complicated saddle point
structures [24]-[26].

Past approaches for solving quadratic equations can be
grouped in two categories: convex and nonconvex ones. The
nonconvex ones include the “workhorse” alternating projec-
tion algorithms [9], [27]-[29], AltMinPhase [12] and TAF [14],
[15],[19], [30], trust-region [31] and majorization-minimization
[32], [33], as well as the recently proposed Wirtinger-based
variants such as (truncated) Wirtinger flow (WF/TWF) [1],
[18], [34]. Based on STFT measurements, gradient descent-type
algorithms starting with a least-squares initialization provably
recover the signal from magnitude-only information under ap-
propriate conditions [16]. Stochastic or incremental counter-
parts consisting of Kaczmarz and ITWF have been reported
too [35], [36]. On the other hand, the convex alternatives typi-
cally rely upon the so-called matrix-lifting technique to derive
semidefinite programming-based solvers such as PhaseLift [37],
PhaseCut [38], and CoRK [39]. For the Gaussian model, com-
parisons between convex and nonconvex solvers in terms of
sample complexity and computational complexity to acquire an
e-accurate solution are listed in Table I.

B. This Paper

Adopting the amplitude-based nonconvex formulation, this
paper puts forth a new algorithm, referred to as stochastic trun-
cated amplitude flow (STAF). STAF offers an iterative algo-
rithm that builds upon but considerably broadens the scope of
TAF [19]. Specifically, it operates in two stages: Stage one em-
ploys a stochastic variance reduced gradient algorithm to obtain
an orthogonality-promoting initialization, whereas the second
stage applies stochastic truncated amplitude-based iterations to
refine the initial estimate. Our approach is shown capable of
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TABLE I
COMPARISONS OF DIFFERENT ALGORITHMS

Algorithm Sample complexity m Computational complexity
PhaseLift [37] O(n) O(n?/e)
PhaseCut [38] O(n) O(n?/e)

AltMinPhase [12]

O(nlogn(log” n + log(1/e))

O(n?logn(log® n + log?(1/¢))

WF [1] O(nlogn) O(n®lognlog(1/e))
TAF [19], TWF [18], ITWF [36] O(n) O(n?log(1/€))
This paper O(n) O(n?log(1/¢))

reconstructing any n-dimensional real-/complex-valued signal
x from a nearly minimal number of magnitude-only measure-
ments in linear time. Relative to TAF, the present paper’s STAF
is well suited for large-scale applications. Besides achieving
order-optimal sample and computational complexities, STAF
enjoys O(n) per-iteration complexity in both initialization and
refinement stages, which not only improves upon state-of-the-
art alternatives that can afford O(n?), but it is also order op-
timal. This makes STAF applicable and appealing to common
large-scale imaging phase retrieval settings. Although ITWF
adopts an incremental gradient method to achieve O(n) per-
iteration complexity at the second stage, its first stage relies
on the gradient-type power method of per-iteration complexity
O(n?) to obtain a truncated spectral initialization [36]. More-
over, as will be demonstrated by our simulated tests, STAF out-
performs the state-of-the-art algorithms including TAF, ITWF,
and (T)WF on both synthetic data and real images in terms
of both exact recovery performance and convergence speed.
Specifically for the real-valued Gaussian model, STAF empiri-
cally reconstructs any real-valued n-dimensional signal o from
anumber m ~ 2.3n of magnitude measurements, which is close
to the information-theoretic limit of m = 2n — 1. In sharp con-
trast, the existing alternatives such as TAF, ITWF, and (T)WF
typically require a few times more measurements to achieve ex-
act recovery. Markedly improved performance is also witnessed
for STAF when the complex-valued Gaussian model, and coded
diffraction patterns of real images [17], are employed.

Paper outline: The rest of the paper is outlined as follows.
Section II first reviews the truncated amplitude flow (TAF)
algorithm, and subsequently motivates and derives the two
stages of our proposed STAF algorithm. Section III summarizes
STAF, and establishes its theoretical performance. Extensive
tests comparing STAF with state-of-the-art approaches on both
synthetic data and real images are presented in Section IV. Fi-
nally, main proofs are given in Section V, and technical details
can be found in the Appendix.

II. ALGORITHM: STOCHASTIC TRUNCATED AMPLITUDE FLOW

In this section, TAF is first reviewed, and its limitations for
large-scale applications are pointed out. To cope with these
limitations, simple, scalable, and fast stochastic gradient descent
(SGD)-type algorithms for both the initialization and gradient
refinement stages are developed.

To begin with, a number of basic concepts are introduced. If
in the real case solves (1), so does —a. In the complex case, the

solution set becomes {xe’?, V¢ € [0,27)}. This prompts the
following definition of the Euclidean distance of any estimate z
to the solution set of (1): dist(z, ) := min ||z + «|| for real-
valued signals, and dist(z, ) := minimize,c(g 27 ||z — e’ ||
for complex ones [1]. Define also the indistinguishable global
phase constant in the real case as

o2~ {

Henceforth, letting & be any solution of the given system in (1),
we assume that ¢ (z) = 0; otherwise, z is replaced by e 19(2) 5
but for brevity of exposition, the phase adaptation term e /¢ (%)
shall be dropped whenever it is clear from the context.

0, [lz—=z[ <[z+=]

&)

w, otherwise.

A. Truncated Amplitude Flow

In this section, the two stages of TAF are outlined [19].
In stage one, TAF employs power iterations to compute
an orthogonality-promoting initialization, while the second
stage refines the initialization via gradient-type iterations.
The orthogonality-promoting initialization builds upon a basic
characteristic of high-dimensional spaces, which asserts that
high-dimensional random vectors are almost always nearly or-
thogonal to each other [19]. Its core idea relies on approximat-
ing the unknown x by a vector z; € R™ most orthogonal to
a carefully selected subset of design vectors {a;}iez,, with
the index set Zy, C [m]:= {1, 2, ..., m}. It is well known
that the geometric relationship between any nonzero vectors
p € R™and g € R"™ can be captured by their squared normal-
ized inner-product defined as cos? 0 := |(p, @) > /(|p:|I*|lall*).
where 0 € [0, 7] signifies the angle between p and q. Intuitively,
the smaller cos? 6 is, the more orthogonal the two vectors are.
Assume with no loss of generality that ||x| = 1, which will
be justified shortly. Upon obtaining the squared normalized
inner-products for all pairs {(a;,z)}" ,, collectively denoted
by {cos? 6;}", with 6; denoting the angle between a; and z,
the orthogonality-promoting initialization constructs Z; by in-
cluding the indices of a;’s that produce one of the smallest
|Zy| normalized inner-products. Precisely, z, can be found by

solving [19]
1
— z
(lfo - )
1€1y

where |Zy| is on the order of n. To be precise, as shown in [19,
Theorem 1], one requires for exact recovery of TAF that m >

a; a;—T

minimize 27
[=z]l=1

(6)

lai]?
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Algorithm 1: Power Method.
1: Input: Matrix Y, = DD7”.
2: Initialize a unit vector uy € R” randomly.
3: Fort =0to7 — 1do

?Uut
Y ow "

Upp1 =
4: End for
5: Output: 2y = ury.

¢1]Zo| > con holds for certain numerical constants ¢, ¢o > 0.
Solving (6) amounts to finding the smallest eigenvalue and the
associated eigenvector of Y := lIol > 7, Ha ” =~ 0. Nev-
ertheless, to avoid the O(n?®) computational complexity of
computing the eigenvector associated with the smallest eigen-
value in (6), an application of the standard concentration result

T
i ‘TGIGHQ ~ I, simplifies that to computing the principal
T = .
eigenvector of Yo = ﬁlj Ziefn % where Z, is the comple-
0
ment of Zy in [m]. Upon collecting {a;};z into an n x |Z|

data matrix D, one can rewrite Y, = DDT to arrive at the
following principal component analysis (PCA) problem

TDD” 2. (7

1
= arg max ——z
HEEYAN
On the other hand, if ||x| # 1, the estimate Z, is scaled

by L

- L_1yz’ a norm estimate of x to yield z(:=

1 m

=2 i—1 YiZo. Further details can be found in [I9,
Section IL.B].

When the signal dimension n is modest, problem (7) can be
solved exactly by a full singular value decomposition (SVD)
of D [40]. Yet it has running time of O(min{n?Zy,nZ.})
(or simply O(n?) because |Z| is required to be on the order
of n), which grows prohibitively in large-scale applications. A
common alternative is the power method that is tabulated in
Algorithm 1, and was also employed by [1], [18], [19], [36]
to find an initialization [40]. Power method, on the other hand,
involves a matrix-vector multiplication Y yu, per iteration, thus
incurring per-iteration complexity of O(n|Zy|) or O(n?) by
passing through the selected data {a;} ie7, - Furthermore, to
produce an e-accurate solution, it incurs runtime of [40]

0 (nulioxt1/o) ®)

depending on the eigengap J > 0, which is defined as the gap
between the largest and the second largest eigenvalues of Y
normalized by the largest one [40]. It is clear that when the eigen-
gap § is small, the runtime of O(n|Zy|log(1/€)/§) required by
the power method would be equivalent to many passes over the
entire data, and this could be prohibitively for large datasets
[41]. Hence, the power method may not be appropriate for com-
puting the initialization in large-scale applications, particularly
those involving small eigengaps.

The second stage of TAF relies on truncated gradient itera-
tions of the amplitude-based cost function (4). Specifically, with
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Fig. 1. Eigengaps 6 of Yy € R " averaging over 100 Monte Carlo real-
izations for n = 10, 000 fixed and m /n varying by 0.2 from 1 to 6. Top: Real-
valued Gaussian model with & ~ A(0,I,), and a; ~ N(0, I,,). Bottom:
Complex-valued Gaussian model with @ ~ CN'(0, I, ), and a; ~ CN(0, I,,).

t > 0 denoting the iteration number, the truncated gradient stage
starts with the initial estimate z(, and operates in the following
iterative fashion

"
Zi+1 = 2t — — E
m

1€T; 11

(a zp — ¢,| ZT )ai,\ﬁZO ©)
i Zt

where the index set responsible for the gradient regularization
is given as [19]

|af 2| 1
T 14y

It+1 ::{1<i<m

. Vt>0 (10
a7 } =010

for some regularization parameter v > 0.

B. Variance-reducing Orthogonality-promoting Initialization

This section first presents some empirical evidence showing
that small eigengaps appear commonly in the orthogonality-
promoting initialization approach. Fig. 1 plots empirical
eigengaps of Y5 € R"*" under the real- and complex-valued
Gaussian models over 100 Monte Carlo realizations under
default parameters of TAF, where n = 10, 000 is fixed, and m/n
the number of equations and unknowns increases by 0.2 from
1 to 6. As shown in Fig. 1, the eigengaps of Y resulting from
the orthogonality-promoting initialization in [19, Algorithm 1]
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Algorithm 2: Variance-reduced orthogonality-promoting
initialization (VR-OPI).

1: Input: Data matrix D = {a; }, 7, , step size n = 20/m,
as well as the number of epochs S = 100, and the epoch
length T = |Z| (by default).

2: Initialize a unit vector uy € R " randomly.

3:Fors=0toS —1do

w = ET‘ >ieT, a;(al a,)
U = Ug.
4: Fort=0toT —1do
Pick i; € Z, uniformly at random
Vipl =U +1 [ai, (aZut — aZﬁS) + w]

_ Vit
Wi+l = o, o7
5:  End For
/aerl =ur.
6: End For

7: Output: z2p = ug.

are rather small particularly for small m /n close to the informa-
tion limit 2. Using power iterations in Algorithm 1 of runtime
O(n|Zy|log(1/€)/8) in (8) thus entails many passes over the
entire data due to a small eigengap factor of 1/, which may not
perform well in the presence of large dimensions that are com-
mon to imaging applications [41]. On the other hand, instead of
using the deterministic power method, stochastic and incremen-
tal algorithms have been advocated in [41], [42]. These algo-
rithms perform a much cheaper update per iteration by choosing
some i; € Z, either uniformly at random or in a cyclic manner,
and update the current iterate using only a;,. They are shown
to have per-iteration complexity of O(n), which is very appeal-
ing to large-scale applications. Building on recent advances in
accelerating stochastic optimization schemes [43], a variance-
reducing principal component analysis (VR-PCA) algorithm
can be found in [41]. VR-PCA performs cheap stochastic itera-
tions, yet its total runtime is O(n(Zy + 1/6?)log(1/€)) which
depends only logarithmically on the solution accuracy € > 0.
This is in sharp contrast to the standard SGD variant, whose
runtime depends on 1/e due to the large variance of stochastic
gradients [42].

For the considered large-scale phase retrieval in most imag-
ing applications, this paper advocates using VR-PCA to solve
the orthogonality-promoting initialization problem in (7). We
refer to the resulting algorithm as the variance-reducing
orthogonality-promoting initialization (VR-OPI), which is sum-
marized in Algorithm 2 next. Specifically, VR-OPI is a double-
loop algorithm with a single execution of the inner loop referred
to as an iteration and one execution of the outer loop referred
to as an epoch. In practice, the algorithm consists of S epochs,
while each epoch runs 7’ (typically taken to be the data size |Z|)
iterations. Note that the full gradient evaluated per execution of
the outer loop combined with the stochastic gradients inside the
inner loop can be shown capable of reducing the variance of
stochastic gradients [43].

The following results adopted from [41, Theorem 1] establish
linear convergence rate of VR-OPIL.

1965

Proposition 1 ([41]): Let v; € R™ be an eigenvector of
Y, associated with the largest eigenvalue ;. Assume that
max;e(n,) ||a; |> < r :=2.3n (which holds with probability at
least 1 — me "/ 2), the two largest eigenvalues of Y, are Ay >
Ao > 0 with eigengap 0 = (A; — Ag)/A1, and that (g, v1) >
1/\/§ With any 0 < €, £ < 1, constant step size n > 0, and
epoch length 7" chosen such that

c1 log(2/¢)
nd

Tn*r* +rny/Tlog(2/€) < ¢ (11)

for certain universal constants cg, ¢, co > 0, successive es-
timates of VR-OPI (summarized in Algorithm 2) after S =

[log(1/€)/log(2/£)] epochs satisfy

(s, o) 21— e

2
WS%& T>
T

)

12)

with probability exceeding 1 — [log €. Typical parameter val-
ues are ) = 20/m, S = 100, and T' = |Z,|.

The proof of Proposition 1 can be found in [41]. Even though
PCA in (7) is nonconvex, the SGD based VR-OPI algorithm
converges to the globally optimal solution under mild conditions
[41]. Moreover, fixing any £ € (0, 1), conditions in (11) hold
true when T is chosen to be on the order of 1/(nd), and 7 to
be sufficiently smaller than § /r%. Expressed differently, if VR-
OPIruns T' = ©(r? /§?) iterations per epoch for a total number
S = O(log(1/¢€)) of epochs, then the returned VR-OPI estimate
is e-accurate with probability at least 1 — [log,(1/€)]&. Since
each epoch takes O(n(T + |Zy|)) time to implement, the total
runtime is of

o(n(|fo| + g) log(l/e)) (13)

which validates the exponential convergence rate of VR-OPI. In

addition, when ¢/r > Q(1/

to O(n|Zy|log(1/€)) up to log-factors. It is worth emphasizing
that the required runtime is proportional to the time required
to scan the selected data once, which is in stark contrast to
the runtime of O(n|Z|log(1/¢€)/d) when using power method
[40]. Simulated tests in Section I'V corroborate the effectiveness
of VR-OPI over the popular power method in processing data
involving large dimensions m and/or n.

|Zo]), the total runtime reduces

C. Stochastic Truncated Gradient Stage

Driven by the need of efficiently processing large-scale phase-
less data in imaging applications, a stochastic solution algo-
rithm is put forth for minimizing the amplitude-based cost
function in (4). To ensure good performance, the gradient reg-
ularization rule in (10) is also accounted for to lead to our
truncated stochastic gradient iterations. It is worth mention-
ing that the Kaczmarz method [44] was also used for solving
a system of quadratic equations in [35]. However, Kaczmarz
variants of block or randomized updates converge to at most a
neighborhood of the optimal solution x. Distance between the
Kaczmarz estimates and  is bounded in terms of the dimension
m and the size of the amplitude data vector 1) measured by the
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{1 - or ¢~ -norm. Nevertheless, the obtained bounds of the form
ml|¥]|1 or m||1||« are rather loose (m typically very large),
and less attractive than the geometric convergence to the global
solution  to be established for also stochastic iterations based
STAF.

Adopting the intensity-based Poisson likelihood function
(3), an incremental version of TWF was developed in [36],
which provably converges to « in linear time. Albeit achieving
improved empirical performance and faster convergence over
TWF in terms of the number of passes over the entire data to
produce an e-accurate solution [18], the number of measure-
ments it requires for exact recovery is still relatively far from
the information-theoretic limits. Specifically for the real-valued
Gaussian a; designs, ITWF requires about m > 3.2n noiseless
measurements to guarantee exact recovery relative to 4.5n for
TWF [18]. Recall that TAF achieves exact recovery from about
3n measurements [19]. Furthermore, gradient iterations can be
trapped in saddle points when dealing with nonconvex optimiza-
tion. In contrast, stochastic iterations are able to escape saddle
points, and converge globally to at least a local minimum [25].
Hence, besides the appealing computational advantage, stochas-
tic counterparts of TAF may further improve the performance
over TAF, as also asserted by the comparison between ITWF and
TWE. In the following, we present two STAF variants: Starting
with an initial estimate z, found using VR-OPI in Algorithm
2, the first variant successively updates z, through amplitude-
based stochastic gradient iterations with a constant step size
i > 0 chosen on the order of 1/n, while the second operates
much like the Kaczmarz method, yet both suitably account for
the truncation rule in (10).

For simplicity of exposition, let us rewrite the amplitude-
based cost function as follows

m m

L 1 T2
minimize U(z) = ;Zi(z) =3 ; (i —laf z))” (14
where the factor 1/2 is introduced for notational convenience.
It is clear that the cost £(z) or each ¢;(z) in (14) is nonconvex
and nonsmooth; hence, the optimization in (14) is computation-
ally intractable in general [45]. Along the lines of nonconvex
paradigms including WF [1], TWF [18], and TAF [19], our ap-
proach to solving the problem at hand amounts to iteratively
refining the initial estimate z; by means of truncated stochas-
tic gradient iterations. This is in contrast to (T)WF and TAF,
which rely on (truncated) gradient-type iterations [1], [18], [19].
STAF processes one datum at a time and evaluates the general-
ized gradient of one component function ¢;, (z) for some index
ir € {1,2,...,m} per iteration ¢ > 0. Specifically, STAF suc-
cessively updates z using the following truncated stochastic
gradient iterations for all ¢ > 0

zee1 = 20 = Ve (20) a2 /1a7 2p>1/(140)) (15

with

(16)
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Algorithm 3: Stochastic Truncated Amplitude Flow
(STAF).

1: Input: Data {(a;,v;)}/" | ; maximum number of
iterations 7' = 500 m; by default, step sizes ;. = 0.8/n
or ;4 = 1.2/n in the real- or complex-valued Gaussian
models, truncation thresholds [Zo| = [£m], and
v =0.7.

2: Evaluate 7, to consist of indices associated with the
|Zo| largest values among {1); /||a;||}.

. ege e 1 m 2= ~ .
3: Initialize zo as /-~ > " | ¥7 2, where 2 is obtained

A

via Algorithm 2 with ¥y = - 37, 7 %
4: Fort=0toT — 1do
Zi+1 = Rt — Hay,
T
T aiz 2t
X (a; zg — v, —— | 1 "y 17
( Wr i aZZtI) {lof, =2} 17
where i; is sampled uniformly at random from
{1,2,...,m},or,
Z1 = 2 Diy
t+1 = Z¢ —
lai, |12
T
T ait Zt
X la;zy—;, ——— |1 18
( iy <t % a;{zt|> {‘dizf Zﬁ}( )
where i; is sampled at random from {1,2,...,m} with
probability proportional to ||a;, ||*.
5: End for

6: Output: z7.

where ji; is either set to be a constant > 0 on the order
of 1/n, or taken as the time-varying one as in Kaczmarz’s
iteration, namely, y; = 1/||a;, ||* [44]. The index i; is sam-
pled uniformly at random or with given probabilities from
{1, 2,...,m}, or it simply cycles through the entire set [m].
In addition, fixing the truncation threshold to v = 0.7, the
indicator function ﬂ{\a;T,, x|/ lal, @1/ (147)} in (15) takes the

value 1, if |a] z;|/|al x| > 1/(1 + ) holds true; and 0 oth-
erwise. It is worth stressing that this truncation rule provably
rejects “bad” search directions with high probability. Moreover,
this regularization maintains only gradient components of large
enough |az-7zt| values, hence saving the objective function (2)
from being non-differentiable at z! and simplifying the theo-
retical analysis. In the context of large-scale linear regressions
or dynamic tracking, similar ideas such as censoring have been
pursued [46], [47], [48]. Numerical tests demonstrating the per-
formance improvement using the stochastic truncated iterations
will be presented in Section I'V.

III. MAIN RESULTS

The proposed STAF scheme is summarized as Algorithm 3,
with either constant step size ;> 0 in the truncated stochas-
tic gradient iterations in (17), or with time-varying step size
p: = 1/||a@;,||* in the truncated Kaczmarz iterations in (18).
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Fig. 2. Error evolution of the iterates using: i) power method in Algorithm 1;

and ii) variance-reducing orthogonality-promoting initialization in Algorithm 2
for solving problem (7) with step size 1 = 1. Top: Noiseless real-valued
Gaussian model with & ~ N(0,I,,), and a; ~ N(0, I,,), where n = 10%,
and m = 2n — 1. Bottom: Noiseless complex-valued Gaussian model with
x~CN(0,1,),and a; ~CN(0,I,), where n = 10*, and m = 4n — 4.

Equipped with an initialization obtained using VR-OPI, both
STAF variants will be shown to converge at exponential rate
to the globally optimal solution with high probability, as soon
as m/n the number of equations and unknowns exceeds some
numerical constant.

Assuming m independent data samples {(a;;%;)} drawn
from the real-valued Gaussian model, the following establishes
theoretical performance of STAF in the absence of noise.

Theorem I (Exact recovery): Consider the noiseless mea-
surements 1; = |a’ x| with an arbitrary signal = € R", and
iid. {a; ~N(0,I,)}" . If u is either set to be a constant
p > 0 as per (17), or it is time-varying x; = 1/||a;, ||* as per
(18) with the corresponding index sampling scheme, and also

m>con and < pg/n (19)

1967

then with probability at least 1 — ¢;m exp(—con), the stochas-
tic truncated amplitude flow (STAF) estimates (tabulated in
Algorithm 3 with default parameters) satisfy

Ep, [dist?(z1,2)] < p (1 _ %)f ||, t=0,1,... 20)

for p = 1/10 and some numerical constant v > 0, where the
expectation is taken over the path sequence P; := {iy, i1,
.ooyii1}, and ¢, 1, ¢2, po > 0 are certain universal con-
stants.

The proof of Theorem 1 is deferred to the Appendix. Ap-
parently, the mean-square distance between the iterate and the
global solution is reduced by a factor of (1 — v/n)™ after one
pass through the entire data. Heed that the expectation Ep, [-]
in (20) is taken over the algorithmic randomness P; rather than
the data. This is important since in general the data may be
modeled as deterministic. Although only performing stochastic
iterations in (17) and (18), STAF still enjoys linear convergence
rate. This is in sharp contrast to typical SGD methods, where
variance reduction techniques controlling the variance of the
stochastic gradients are required to achieve linear convergence
rate [41], as in Algorithm 2. Moreover, the largest constant step
size that STAF can afford is estimated to be pyp = 0.8469, giv-
ing rise to a convergence factor of ¥ = 0.0696 in (20). When
truncated Kaczmarz iterations are implemented, v is estimated
to be 1.0091 much larger than the one in the constant step size
case. Our experience with numerical experiments also confirm
that the Kaczmarz-based STAF in (18) converges faster than
the constant step-size based one in (17), yet it is slightly more
sensitive when additive noise is present in the data.

IV. SIMULATED TESTS

This section presents extensive numerical experiments eval-
uating the performance of STAF using both synthetic data and
real images. STAF was thoroughly compared with existing al-
ternatives including TAF [19], (T)WF [1], [18], and ITWF [36].
For fair comparisons, all the parameters pertinent to implemen-
tation of each algorithm were set to their suggested values. The
initialization in each scheme was found based on a number of
(power/stochastic) iterations equivalent to 100 passes over the
entire data, which was subsequently refined by a number of
iterations corresponding to 1,000 passes; unless otherwise
stated. All simulated estimates were averaged over 100 inde-
pendent Monte Carlo trials. Two performance evaluation met-
rics were used: the relative root mean-square error defined as
Relative_error := dist(z,«)/||z||; and the empirical success-
ful recovery rate among 100 independent runs, in which a
success is declared when the returned estimate incurs a rela-
tive error less than 1079 [1]. Tests using both noiseless/noisy
real-/complex-valued Gaussian models 1; = |al*z| + 7; were
conducted, where the i.i.d. noise obeys 7; ~ N(0, 02| z|?).
The Matlab implementations of STAF can be downloaded from
http://www.tc.umn.edu/gangwang/STAF.

The first experiment compares VR-OPI in Algorithm 2 with
the power method in Algorithm 1 to solve the orthogonality-
promoting initialization optimization in (7). The comparison is
carried out in terms of the number of data passes to achieve
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iv) TAF [19]; and v) STAF with n = 1,000 and m /n varying by 0.1 from 1
to 7 under the same orthogonality-promoting initialization. Top: Noiseless real-
valued Gaussian model with @ ~ A (0, I,,), and a; ~ N(0, I,,); Bottom:
Noiseless complex-valued Gaussian model with & ~ CA(0, I,,), and a; ~

CN(0,1,).

the same solution accuracy, in which one pass through the se-
lected data amounts to a number |Z,| of gradient evaluations
of component functions. First, synthetic data based experiments
are conducted using the real-/complex-valued Gaussian mod-
els with n = 10, 000 under the known sufficient conditions for
uniqueness, i.e., m = 2n — 1 in the real case, and m = 4n — 4
in the complex case. Fig. 2 plots the error evolution of the iterates
u, for the power method and VR-OPI, where the error in log-
arithmic scale is defined as log; (1 — [[D7w[|* /| D7 v |?)
with the exact principal eigenvector vy computed from the SVD
of Yy = DD in (7). Apparently, the inexpensive stochastic
iterations of VR-OPI achieve certain solution accuracy with
considerably fewer gradient evaluations or data passes in both
real and complex settings. This is important for tasks of large
|Zo|, or equivalently large dimension m (since |Zo| = [m/6]
by default), because one less data pass implies |Z| fewer gra-
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Fig. 4. Relative error versus iterations using: i) WF [1]; ii)) TWF [18];
iii) ITAF [36]; iv) TAF [19]; and v) STAF under the same orthogonality-
promoting initialization. Top: Noiseless real-valued Gaussian model with
x ~N(0,I,),anda; ~ N(0, I,,); Bottom: Noiseless complex-valued Gaus-
sian model with & ~ CN(0,I,,), and a; ~ CN(0, I,,), where n = 1,000,
and m = 5n.

dient evaluations and thus results in considerable savings in
computational resources.

The second experiment evaluates the refinement stage of
STAF relative to its competing alternatives including those of
(T)WF, TAF, and ITWF in a variety of settings. For fairness, all
schemes were here initialized using the same orthogonality-
promoting initialization found using 100 power iterations,
and subsequently applied a number of iterations correspond-
ing to 7'= 1,000 data passes. First, tests on the noiseless
real- and complex-valued Gaussian models were conducted,
withiid. a; ~ N(O, 11,000), T ~ N(O, II,OOO)’ andiid. a; ~
CN(0, I o0),  ~ CN (0, I 00 ), respectively. Fig. 3 depicts
the empirical success rate of all considered schemes with m/n
varying by 0.1 from 1 to 7. Fig. 4 compares the convergence
speed of various schemes in terms of the number of data passes
to produce solutions of a given accuracy. Apparently, starting
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to 7. Top: Noiseless real-valued Gaussian model with @ ~ N (0, I,,), and
a; ~N(0,I,); Bottom: Noiseless complex-valued Gaussian model with
x~CN(0,I,),anda; ~CN(0,1I,).

with the same initialization, STAF outperforms its competing
alternatives under both real-/complex-valued Gaussian models.
In particular, SGD-based STAF improves in terms of exact
recovery and convergence speed over the state-of-the-art
gradient-type TAF, corroborating the benefit of using SGD-type
solvers to cope with saddle points and local minima of noncon-
vex optimization [25], [36].

The previous experiment showed improved performance of
STAF under the same initialization. Now, we present numer-
ical results comparing different schemes equipped with their
own initialization, namely, WF with spectral initialization [1],
(DTWF with truncated spectral initialization [18], as well as
TAF with orthogonality-promoting initialization using power
iterations [19], and STAF with VR-OPI. Fig. 5 demonstrates
merits of STAF over its competing alternatives in exact recovery
performance on the noiseless real-valued (left) and complex-
valued (right) Gaussian model. Specifically in the real case,

1969

Relative error (log10)

Relative error (log10)

0 10 20 30 40 50
lteration

Fig. 6. Relative error versus iterations using: i) WF [1]; ii) TWF [18];
iii) ITAF [36]; iv) TAF [19]; and v) STAF with n = 1,000 and m /n = 5. Top:
Noisy real-valued Gaussian model with @ ~ N(0, I,,), and a; ~ N (0,1, );
Bottom: Noisy complex-valued Gaussian model with @ ~ CN(0, I, ), and
a; ~ CN(O‘ In).

STAF guarantees exact recovery from about 2.3n magnitude-
only measurements, which is close to the information-theoretic
limit of m = 2n — 1. In comparison, existing alternatives re-
quire a few times more measurements to achieve exact recovery.
STAF also performs well in the complex case.

To demonstrate the robustness of STAF against additive noise,
we perform stable phase retrieval under the noisy real-/complex-
valued Gaussian model v; = |al*x| + n;, withn; ~ N(0,0%I)
i.i.d.,and 0® = 0.12||z||>. The noisy data for magnitude-square
based algorithms were generated as y; = t?. Curves in Fig. 6
clearly show near-perfect statistical performance and fast con-
vergence of STAF.

Finally, to demonstrate the effectiveness and scalability of
STAF on real data, the Milky Way Galaxy image' is con-
sidered. The colorful image of RGB bands is denoted by

'Downloaded from http://pics-about-space.com/milky-way-galaxy.
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Fig. 7. Recovered images after: the variance-reducing orthogonality-
promoting initialization stage (top panel), and the STAF refinement stage (bot-
tom panel) on the Milky Way Galaxy image using X = 8 random masks.

X € R1080x1920x3 "3y which the first two indices encode the
pixel location, and the third the color band. The algorithm
was run independently on each of the three RGB images. We
collected the physically realizable measurements called coded
diffraction patterns (CDP) using random masks [17], which
have also been used in [1], [18], [19], [36]. Letting © € R"
be a vectorization of a certain band of X, one has magnitude
measurements of the form

Y = |FDWg|, 1<k<K ey

where n = 1,080 x 1,920 = 2,073,600, F'is an n x n discrete
Fourier transform matrix, and D*) is a diagonal matrix whose
diagonal entries are sampled uniformly at random from phase
delays {1, —1, j, —j}, with j denoting the imaginary unit. CDP
measurements were generated using K = 8 random masks for
a total of m = nK measurements. In this part, since the fast
Fourier transform (FFT) can be implemented in O(n logn) in-
stead of O(n?) operations, the advantage of using STAF with
optimal per-iteration complexity is less pronounced. Hence, in-
stead of processing one quadratic measurement per iteration, a
block STAF version processes per iteration n?> measurements
associated with one random mask. That is, STAF samples ran-
domly the index k € {1,2,..., K} of masks in (21), and up-
dates the iterate using all diffraction patterns corresponding to
the k-th mask. In this case, STAF is able to leverage the effi-
cient implementation of FFT, and converges fast. Fig. 7 displays
the recovered images, where the top is obtained after 100 data
passes of VR-OPI iterations, and the bottom is produced by 100
data passes of STAF iterations refining the initialization. Ap-
parently, the recovered images corroborate the effectiveness of
STAF in real-world conditions.

V. CONCLUDING REMARKS

This paper developed a new linear-time algorithm abbrevi-
ated with STAF to solve systems of quadratic equations, and
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considerably broaden the scope of the state-of-the-art TAF algo-
rithm in [19]. Adopting the amplitude-based nonconvex formu-
lation, STAF is a two-stage iterative algorithm. It first adopts an
orthogonality-promoting initialization using a stochastic vari-
ance reduced gradient algorithm, and subsequently refines the
initial estimate via truncated stochastic amplitude-based itera-
tions. STAF was shown capable of recovering any signal from
about as many equations as unknowns. In contrast to exist-
ing alternatives, both stages of STAF achieve optimal itera-
tion and computational complexities that make it attractive to
large-scale implementation. Numerical tests involving synthetic
data and real images corroborate the merits of STAF in terms
of both exact recovery performance and convergence speed
over the state-of-the-art approaches including TAF, (T)WE,
and ITWFE.

Pertinent future research directions include establishing
analytical results for STAF in the presence of noise, and compar-
ing the estimation performance of STAF with known Cramer-
Rao bounds [29]. Another possibility consists of leveraging the
orthogonality-promoting initialization in the context of robust
phase retrieval and faster semidefinite optimization, and devel-
oping suitable gradient regularization rules for other nonconvex
optimization tasks. Devising inexpensive stochastic iterations
based solvers for compressive phase retrieval, as well as general-
ization to two-dimensional phase retrieval problems, constitute
additional directions for future research.

APPENDIX
Proof of Theorem 1

Recall from [19, Theorem 1] that when m/n exceeds some
universal constant ¢y > 0, the estimate z; returned by the
orthogonality-promoting initialization obeys the following with
high probability

dist(zg,x) < (1/10)|z]. (22)

Along the lines of (T)WF and TAF, to prove our Theorem 1, it
suffices to show that successive STAF iterates z; are on average
locally contractive around the planted solution , as asserted in
the following proposition.

Proposition 2 (Local error contraction): Consider the noi-
seless measurements 1; = |a x| with an arbitrary signal x
€R”, and iid. a; ~N(0,I,), 1 <i<m. Under the de-
fault algorithmic parameters given in Algorithm 3, there exist
universal constants ¢, ¢}, ¢4 > 0, and v > 0, such that with
probability at least 1 — ¢,m exp(—cjn), the following holds
simultaneously for all z; satisfying (22)

E;, [dist’ (2, 1,2)] < (1 — %) dist*(z0,2)  (23)
provided that m > ¢{n.

Proposition 2 demonstrates monotonic decrease of the mean-
square estimation error: Once entering a reasonably small-size
neighborhood of x, successive iterates of STAF will be dragged
toward x at a linear rate. Upon establishing the local error
contraction property in (23), taking expectation on both sides of
(23) over 7,1, and applying Proposition 2 again, yields a similar
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relation for the previous iteration. Continuing this process to
reach the initialization z; and appealing to the initialization
result in (22) collectively, leads to (20), hence completes the
proof of Theorem 1.

Proof of Proposition 2

To prove Proposition 2, let us first define the truncated gradi-
ent of /(z) as follows

m

aTZ
Vgtr(z):Z(aTz ¢L| T |)Uxi]1{|a17z1 > 1

i=1

P, } (24)

which corresponds to the truncated gradient employed by TAF
[19]. Instrumental in proving the local error contraction in
Proposition 2, the following lemma adopts a sufficient decrease
result from [19, Proposition 3]. The sufficient decrease is a key
step in establishing the local regularity condition [1], [18], [19],
which suffices to prove linear convergence of iterative optimiza-
tion algorithms.

Proposition 3: [19, Proposition 3] Consider the noise-free
measurements ¢; = |a? z| withiid. a; ~ N(0,1,),1<i <
m, and v = 0.7. For any fixed € > 0, there exist universal con-
stants ¢, ¢|, ¢4 > 0 such that if m > ¢n, then the following
holds with probability at least 1 — ¢, exp(—cjm),

(h b)) 2200-G - G - 29 IHIE,

h=z—=x (25)

forall ¢, z € R™ such that ||h||/|x| < 1/10, where estimates
(1 ~ 0.0782, and (> =~ 0.3894.

Now let us turn to the term on the left hand side of (23),
which after plugging in the update of z; 1 in (17) or (18), boils
down to

dist? (zy41,x)

7Hh, a? = ,w@ a1
= t — Mt i, 2t i |agzt| it {|a?rzf7

T
= [lhe]* = 20 | @l 2 — ¥ TiE) aT R
! t BT aZ-tht| it {|a Z/|,] L

alz \’

Thed 2

+ a’ z i, —— | |la;, |1
“t< o a%l) 167 o7 2 )

(26)

where p1; = p > 0 withi, € {1, 2, ..., m} sampled uniformly
at random in (17), or y; = 1/||a;, ||* with i, € {1, 2, ..., m}
selected with probability proportional to ||a;, ||* in (18).
Consider first the constant step size case in (17). Take the
expectation of both sides in (26) with respect to the selection of
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index 7; (rather than the data randomness) to obtain

E;, [dist2(zt+1,a:)]

2u m ath
= ||h||" — Z al z ; —— aTh
|| t” ( o ,l/]“ agzt> t {|a,,zt|>1+4}

Zfl

u m aTZf 2
a z L a: |’ 1 Gi-
Z( o a) i 78 o 220}
27

Now the task reduces to upper bounding the terms on the right
hand side of (27). Note from (24) that by means of V/;,(z;),
the second term in (27) can be re-expressed as follows

2,u i agzt T
— ¢y, —— | a; h1
@i,z = v alz]) " {lal =

Vi

t
i—1 [|Zl+7}
¢

< —4p(1—¢ — G —26) A’ (28)

where the inequality follows from Proposition 3. Regarding
the last term in (27), since for the i.i.d. real-valued Gaussian
a;’s, max;, ¢ [|@;, || < 2.3n holds with probability at least

o -n/2 .
1—me [19], and also ﬂ{‘az ztlzf;'i,} < 1, then the next

holds with high probability

/A m ath 2
it 2
E (a zt — P, ai%) lai [I” 1

L,—l

L,r}

2 m
< 2200 3 (o~ o o)
< 2.3’ (aszt . w)Q
m = t t
< thATAhf
m

<23(1+8)u’n b (29)
in which the second inequality comes from (|afz|—
la? x[)? < (al 2z, — al x)?, and the last inequality arises due
o the fact that )Lde(ATA) < (14 &)m holds with probabil-
ity at least 1 — ¢}, exp(—c}nd?), provided that m > c¢{nd 2 for
some universal constant ¢, ¢}, ¢, > 0[49, Theorem 5.39].
Substituting (28) and (29) into (27) establishes that

E;, [dist?(z41,2)] < [1—4p(1— ¢ — G — 2€)

+2.3(1+6)u2n] Ihe]? (30)

holds with probability exceeding 1 — com exp(—c;yn) provided
thatm > con, where ¢y > {0 ~2_To obtain legitimate estimates
for the step size, fixing €, § > 0 to be sufficiently small con-
stants, say e.g., 0.01, then using (30), 1« can be chosen such that
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4(0.98 — ¢; — o) — 2.42un > 0, yielding
4(0.98 — ¢ — 0.8469
0<p< ( G-G) =M gy
2.42n n n

Plugging = ¢3/n for some 0 < ¢35 < o into (30), gives
rise to

E;, [dist*(z¢21,2)] < <1 - 5) dist?(z;,x)  (32)

for vi=4dc3(1— ¢ — G —2¢) — 2.3¢3(1+6) < vp:=0.0697,
where the equality holds at the maximum step size p = po,
hence concluding the proof of Proposition 2 for the constant
step size case.

Now let us turn to the case of a time-varying step size. Specif-
ically, let y; = 1/||a;, ||?, and 4; be sampled at random from the
set {1, 2, ..., m} with probability [a;, [|*/>>]"_, |la;,|* =
llai, [I*/||Al|% [50]. Taking the expectation of both sides in (26)
over 7; gives rise to

E;, [dist2(zt+1 , w)]

= Ilhe]I*~ 2ZHMW

T
R o) R (R,

2
m 1
+ e | @ ir 1
;hm@<“ o > {ja

z’|—1+'> }

(33)

Consider random A :=[a;---a,,]7 with iid. rows a; ~
N (0,1,), and any fixed o > 0. Then, by means of Bernstein-
type inequality [49, Proposition 5.16], || A% —1]
= |m1—” >_i; @i ; — 1] < o holds with probability at least 1 —
2exp(— mna2 / 8). Therefore, the second term on the right hand
side of (33) can be bounded as follows

Fi =1

m T
T
“AW§:< o h>%m%%a%x}

2 m - a;];zr Th

- _(l—i—a)mnq; a;, Zt =i, agzt| a;, il {Ia”z, > "}
4m

<~ Troymm L~ ~G@ -2 Ihff
4

<~ Tiom -G -G -20|hff (34)

where the second inequality follows from Proposition 3, and the
last inequality from the fact that m > con. Concerning the last
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m

term on the right hand side of (33), one obtains that
Z lai, |I” 1
Al (a2

T 2
S z,| Wjar =1
m

:Hmvzzhz”‘““){wmvw}

m

3 (alz —ala)’

=1

<
- HAH2
< hl AT Ah,

HAH2

- (I+d6)m

“(1—o)mn

(1+9) 2

< —"7|h 35
which holds with high probability as soon as m > con >
chd2n.

Putting results in (33), (34), and (35) together, one establishes
that the following holds

I

. .92 4
]E,jf [dlst (Zt+1,m)] § |:1 — m (1 — Cl — CQ — 26)
(1+9)
L 66)

with probability at least 1 — cym exp(—cyn) provided that m >
con. Hence, one can set in this case
4 (1+9)
= —(1-— — (o — 2¢€) — .
g (14+o0)n (1=G =G =2 (1—0o)n

Taking without loss of generality ¢, o, € to be 0.01, and substi-
tuting the estimates of (;, (s into (36), one arrives at v = 1.0091
to deduce that

]Ei, [dist2 (Zt+1,$)} < (1 —

which holds with high probability as soon as m > ¢yn, es-
tablishing the local error contraction property of the truncated
Kaczmarz iterations in (18), as claimed in Proposition 2.
Combining the results in (32) and (37), we proved the local
error contraction property in Proposition 2 of the two STAF
variants under both constant and time-varying step sizes.

1.0091

) dist?(z, )  (37)
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