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Abstract—The problem of reconstructing a sparse signal vec-
tor from magnitude-only measurements (a.k.a. compressive phase
retrieval) emerges in diverse applications, but it is NP-hard in
general. Building on recent advances in nonconvex optimization,
this paper puts forth a new algorithm that is termed compressive
reweighted amplitude flow (CRAF) and abbreviated as CRAF, for
compressive phase retrieval. Specifically, CRAF operates in two
stages. The first stage seeks a sparse initial guess via a new spec-
tral procedure. In the second stage, CRAF implements a few hard
thresholding based iterations using reweighted gradients. When
there are sufficient measurements, CRAF provably recovers the
underlying signal vector exactly with high probability under suit-
able conditions. Moreover, its sample complexity coincides with
that of state-of-the-art procedures. Finally, numerical tests show-
case improved performance of the new spectral initialization, as
well as improved exact recovery relative to competing alternatives.
Empirically, the number of measurements required for exact recov-
ery by CRAF is about 40% less than those of competing alternatives
in our experiments using real images.

Index Terms—Nonconvex optimization, model-based hard
thresholding, iteratively reweighting, linear convergence to the
global optimum.

I. INTRODUCTION

PHASE retrieval (PR) refers to the task of reconstructing a
signal vector from its phaseless measured linearly trans-

formed entries. It emerges naturally in a wide range of engi-
neering and physics applications such as X-ray crystallography,
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astronomy, and coherent diffraction imaging [1], [2]. In these
setups, the physical sensors can only record the density (the
number of photons) of the light waves, but not their phase.
This missing phase information renders general phase retrieval
ill-posed. In fact, it has been established that reconstructing
a discrete, finite-duration signal vector from its Fourier trans-
form magnitudes is generally NP-complete [3]. To obtain use-
ful solutions, additional assumptions have to be made, which
include (block) sparsity of underlying signal vectors [4]–[7],
non-negativity [1], [4], and random Gaussian measurements
[8]–[14].

A number of phase retrieval approaches have been devel-
oped so far, a sample of which are reviewed next. Alternating
projection methods were advocated in [15], [16]. By means
of matrix-lifting and upon dropping the nonconvex rank con-
straint, convex semidefinite programs (SDP) were formulated
[17], [18]. Minimizing the least-squares or least-absolute-value
loss, several iterative solvers were pursued, namely those ab-
breviated as AltMinPhase [19], Wirtinger flow (WF) [7], [9],
[10], [13], [20], amplitude flow [11], [12], [21], and composite
optimization [22]. Convex phase retrieval approaches without
lifting were devised [23]–[25]. We also recently developed a
reweighted amplitude flow (RAF) algorithm which benchmarks
the numerical performance of phase retrieval of signal vectors
from Gaussian random measurements [12].

The aforementioned phase retrieval approaches do not exploit
possible structural information of the underlying signal vector,
and they require for exact recovery that the number of mea-
surements be on the order of the signal vector dimension [9],
[12]. This number in large-scale high-resolution imaging appli-
cations is on the order of millions, rendering such algorithms
inefficient. The signal vectors or their feature maps in many
practical setups however, are naturally (block) sparse or admit a
(block) sparse representation after certain known and determin-
istic linear transformations have been applied [1]. For example,
the nonzero entries in astronomical images centering around
sparsely distributed stars appear only in a few blocks. This prior
information can be critical in reducing the number of measure-
ments required by general phase retrieval approaches, and has
prompted the development of various (block) sparse phase re-
trieval solvers. To obtain sparse solutions, the �1-regularized
PhaseLift and SparsePhaseMax were pursued in [26] and [24],
[27], respectively. Targeting nonconvex compressive phase re-
trieval formulations, a greedy algorithm was devised [5], and
the soft-thresholded Wirtinger flow (TWF) [7] as well as the
sparse truncated amplitude flow (SPARTA) [6] was developed;
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see also [28] for the (block) compressive phase retrieval with
alternating minimization (CoPRAM).

Going beyond our precursors in [6], [12], this contribution
puts forth a new algorithm termed compressive reweighted am-
plitude flow (CRAF) for (block)-sparse phase retrieval. Gen-
eralizing [6], while further accounting for the structured spar-
sity pattern, the amplitude-based (block)-sparse phase retrieval
problem is formulated, and it is solved in two stages, namely the
initialization and the refinement stages. To enhance the initial-
ization performance, a new sparse spectral initialization is de-
veloped, which judiciously assigns a negative or positive weight
to each sample. As such, the mean of the resultant initialization
matrix features a larger gap between the first and the second
eigenvalues, hence yielding improved performance as will be
demonstrated in the numerical tests. The second stage of CRAF
successively refines the initialization by means of (model-based)
hard thresholding iterations using reweighted gradients. From
the theoretical side, CRAF provably recovers the true signal vec-
tor at a linear rate under suitable conditions. Finally, numerical
tests showcase the CRAF’s improved recovery, and robustness
to unknown sparsity relative to competing approaches.

The remainder of this paper is structured as follows. Section II
outlines the (block)-sparse phase retrieval problem. Section III
describes the algorithm, and establishes its convergence. Sim-
ulated tests are presented in Section IV, and the proofs of the
main theorems are given in Section V. Section VI concludes the
paper.

Regarding notation, lower- (upper-) case boldface letters
stand for column vectors (matrices). Sets are represented by cal-
ligraphic letters, e.g., S, with the exception of T as superscript
denoting matrix or vector transposition. The cardinality of set S
is given by |S|. Symbol ‖ · ‖2 is reserved for the Euclidean norm,
whereas ‖ · ‖0 for the �0 (pseudo)-norm counting the number
of nonzero entries in a vector. Operator �·� returns the smallest
integer greater than or equal to the given scalar. The Gauss error
function erf(x) is defined as erf(x) := (1/

√
π)

∫ x
−x e

−x̃2
dx̃. For

a positive integer m, [m] denotes the index set {1, 2, . . . , m}.
Finally, the ordered eigenvalues of matrix X ∈ Rn×n are given
as λ1(X) ≥ λ2(X) ≥ · · · ≥ λn (X).

II. COMPRESSIVE PHASE RETRIEVAL

The compressive phase retrieval aims at recovering a sparse
signal vector from a few magnitude-only measurements [5]–[7].
Mathematically, it can be described as follows: Given a small
set of phaseless linear measurements

ψi = |〈ai ,x〉|, 1 ≤ i ≤ m (1)

in which {ψi}mi=1 are the observed magnitudes, and {ai ∈
Rn}mi=1 the known sampling vectors, the goal is to recover
a (kB)-sparse solution x ∈ Rn , namely ‖x‖0 ≤ kB with kB
being the known sparsity level. To accommodate also the block-
sparse signal vectors, the following terminology is useful. Sup-
pose without loss of generality that x is split into NB blocks
{xb}NB

b=1 , namely one can write x := [xT
1 · · · xT

NB
]T . For no-

tational brevity, let NB := {1, . . . , NB } denote the index set
of all blocks, and Bb collect all indices of the entries of x
corresponding to the b-th block. Therefore, Bb ⊆ [n] for all

b ∈ Nb , where [n] := {1, . . . , n} consisting of all indices of
x.

Definition 1 (k-block-sparse vectors [29]): The k-block sp-
arse vectors refer to vectors x = [xT

1 · · · xT
NB

]T such that xb =
0 for all b /∈ SB , where SB is a subset of NB with cardinality
|SB | = k.

For simplicity, we consider that each block of the signal vector
has equal length, that is, |Bb | = B for all b ∈ Nb with BNB =
n. It is clear that when B = 1, the block-sparse phase retrieval
boils down to the ordinary or unstructured sparse phase retrieval.
Accordingly, we will henceforth focus on developing recovery
algorithms for a block-sparse signal vector.

Adopting the least-squares criterion, the task of recovering
a k-block sparse vector from m magnitude-only measurements
can be cast as [11]

minimize
z∈Mk

B

�(z) :=
1

2m

m∑

i=1

(
ψi − |aT

i z|
)2

(2)

where Mk
B denotes the set of all k-block-sparse vectors of

dimension n. Because of the nonconvex objective and the com-
binatorial constraint, the problem in (2) is in general NP-hard,
hence computationally intractable.

For analytical concreteness, we focus on the real Gaussian
model, which assumes x ∈ Rn , and independent and identically
distributed (i.i.d.) sensing vectors following ai ∼ N (0, In ) for
all 1 ≤ i ≤ m. In this case, it has been proved that m = 2kB
generic measurements as in (1) are sufficient and necessary for
uniquely (up to a global sign) determining a k-block-sparse
solution {±x} of the quadratic system in (2) [30]. The critical
goal of this paper is to put forth simple and scalable algorithms
that can provably reconstruct x from as few magnitude-only
measurements as possible.

III. COMPRESSIVE REWEIGHTED AMPLITUDE FLOW

This section presents the two stages, namely the initialization
and the gradient refinement stages of CRAF. To begin, the dis-
tance from any estimate z ∈ Rn to the solution set {±x} ⊆ Rn

is defined as dist(z,x) := min{‖z + x‖2 , ‖z − x‖2}.

A. Sparse Spectral Initialization

A modified spectral initialization that utilizes the informa-
tion from all available data samples is delineated first. Relative
to existing phase retrieval initializations suggested in [9]–[12],
enhanced numerical performance is achieved by assigning ju-
dicious weights to all sampling vectors. Subsequently, the gen-
eralization of the new initialization procedure to compressive
phase retrieval settings is justified.

1) Spectral initialization: Finding a good initialization is
key in enabling strong convergence of iterative nonconvex opti-
mization algorithms. Consider first the general phase retrieval,
namely without exploiting the sparse prior information. Similar
to past approaches, the new initialization entails estimating
the norm ‖x‖2 as well as the directional vector d := x/‖x‖2 .
Regarding the former, it has been well documented that the term
r̂ :=

√
(1/m)

∑m
i=1 ψ

2
m is an unbiased and tightly concen-

trated estimate of the norm r := ‖x‖2 when there are enough
measurements [9]. The challenge remains to estimate the
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direction d, namely seek a unit vector d̂ that is maximally
correlated with d.

Among different initialization strategies, the procedure pro-
posed in [11] proves successful in achieving excellent numer-
ical performance in estimating d; see also [22] for robustified
alternatives. However, the truncation therein discards the useful
information carried over in a non-negligible portion of samples.
To exploit all the data samples, the new spectral initialization
obtains the wanted approximation vector as

d̂ := arg max
‖z‖2 =1

zT

(
λ−

|I−|
∑

i∈I−

aia
T
i +

λ+

|I+ |
∑

i∈I+

aia
T
i

)

z

(3)

where λ− < 0 and λ+ > 0 are preselected coefficients, and the
index sets I− := {i ∈ [m] : ψ2

i ≤ r̂2/2}, and I+ := {i ∈ [m] :
ψ2
i ≥ r̂2/2}. It is worth pointing out that the judiciously devised

index sets satisfy I = I− ∪ I+ , suggesting full use of the avail-
able data samples. With r̂ and d̂ at hand, the initial estimate of
x can be obtained conveniently as z0 := r̂d̂.

Intuitively, the initialization strategy in (3) can be justified as
follows. Leveraging the rotational invariance of a ∼ N (0, I),
we have for any thresholds τ1 , τ2 ∈ [0, 1]:

E
[
aaT |〈a,d〉2 ≤ τ1

]

= In − ddT + E[〈a,d〉2 |〈a,d〉2 ≤ τ1 ]ddT (4)

E
[
aaT |〈a,d〉2 ≥ τ2

]

= In − ddT + E[〈a,d〉2 |〈a,d〉2 ≥ τ2 ]ddT . (5)

It has been proved in [22, Lemma 3.2] that

E
[
〈a,d〉2 |〈a,d〉2 ≤ τ1

]
≤ τ1/3. (6)

Therefore, the smallest eigenvalue of E[aaT |〈a,d〉2 ≤ τ1 ] sat-
isfies

λn
(
E[aaT |〈a,d〉2 ≤ τ1 ]

)
≤ τ1/3

whereas all other eigenvalues are

λi
(
E[aaT |〈a,d〉2 ≤ τ1 ]

)
= 1, 1 ≤ i ≤ n− 1.

Similarly, one can establish the following lower bound for the
second term E[〈a,d〉2 |〈a,x〉2 ≥ τ2 ] in (5).

Lemma 1: Consider any nonzero signal vector d ∈ Rn with
‖d‖2 = 1. If a ∼ N (0, I), then for any τ ≥ 0, it holds that

E
[
〈a,d〉2

∣
∣〈a,d〉2 ≥ τ

]
≥ 6 − τ erf(

√
τ)

6 − 3 erf(
√
τ)
. (7)

Proof: With ã := 〈a,d〉, it holds that ã ∼ N (0, 1). Let ã′

be a random variable with the same density as ã, and p(ã) and

p(ã′) denote the density of ã and ã′, respectively. It follows that

E
[
〈a,d〉2 |〈a,d〉2 ≥ τ

]
= E[ã2 |ã2 ≥ τ ]

= E
[
ã2 | |ã| ≥

√
τ
]

=
∫ ∞

√
τ

ã2p(ã)
∫∞√

τ p(ã
′)dã′

dã

=
1 −

∫ √
τ

−√
τ
ã2p(ã)dã

1 −
∫ √

τ

−√
τ
p(ã′)dã′

=
2 − E[ã2 |ã2 ≤ τ ] erf(

√
τ)

2 − erf(
√
τ)

≥ 6 − τ erf(
√
τ)

6 − 3 erf(
√
τ)

where the last inequality relies on [22, Lemma 3.2]. �
To help in understanding the assertion of Lemma 1, tak-

ing τ = 0.5 as an example, we find E[〈a,d〉2 |〈a,d〉2 ≥
0.5] ≥ 1.42 by substituting the inequality erf(

√
0.5) ≥ 0.68

into (7). Hence, it holds that λ1(E[aaT |〈a,x〉2 ≥ 0.5]) ≥
1.42, and λi(E[aaT |〈a,x〉2 ≥ 0.5]) = 1, 1 ≤ i ≤ n− 1. On
the other hand, substituting τ1 = 0.5 into (6) yields
E
[
〈a,d〉2 |〈a,d〉2 ≤ τ1

]
≤ 0.167. Subsequently, it can be de-

duced that for λ− < 0 and λ+ > 0, the largest eigen-
value of λ−E[aaT |〈a,d〉2 ≤ 0.5] + λ+E[aaT |〈a,d〉2 ≥ 0.5]
is greater than or equal to 1.42λ+ + 0.167λ−, and all other
eigenvalues equalλ+ + λ−. Given that the principal eigenvector
of λ−E[aaT |〈a,d〉2 ≤ 0.5] + λ+E[aaT |〈a,d〉2 ≥ 0.5] is d, it
is thus possible to obtain an accurate estimate d̂ using (3) based
on the matrix perturbation lemma in [31, Corollary 1], provided
that the sample average λ−

|I−|
∑

i∈I− aia
T
i + λ+

|I+ |
∑

i∈I+ aia
T
i

is sufficiently close to its mean. The latter holds true when there
are enough samples. For completeness, the matrix perturbation
lemma is included as Lemma 2 in the Appendix. The aforemen-
tioned arguments speak for the effectiveness of the proposed
initialization, whereas the next theorem quantifies rigorously
the initialization estimation error dist(z0 ,x).

Theorem 1: Let z0 = r̂d̂ with d̂ obtained from (3). For any
given constant δ0 ∈ (0, 1), there exists numerical constants c0 >
0 and C0 such that the following holds

dist(z0 ,x) ≤ δ0‖x‖2

with probability at least 1 − 10 exp(−c0m) when m ≥ C0n.
For readability, the proof of Theorem 1 is deferred to

Section V-A. Although the suggested initialization assumes
a specific threshold r̂2/2 to split samples into I− and I+ ,
it is straightforward to incorporate two different thresholds
0 ≤ τ̃1 ≤ τ̃2 ≤ 1 such that I− := {i ∈ [m] : ψ2

i ≤ τ̃1 r̂
2} and

I+ := {i ∈ [m] : ψ2
i ≥ τ̃2 r̂

2}. By appropriately selecting τ̃1
and τ̃2 , the initialization performance can be further boosted.
It is worthing pointing out that the weak recovery performance
of similar procedures has been studied in [32], which only pro-
vides guarantee for the case of n→ ∞.

2) Support recovery: The initialization procedure in (3) is
developed for general signal vectors x, without leveraging the
structural information that is present in diverse applications.
When the vector is sparse, the required number of data sam-
ples to yield an accurate initialization can be reduced [6]. Next,
we demonstrate how to obtain a sparse initialization based on
the procedure discussed in Section III-A. Similar to [6], [28],
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obtaining a sparse initialization entails first estimating the
(block)-support of the underlying (block)-sparse signal vectors.

Specifically, define random variables Zi,j := ψ2
i a

2
i,j , ∀j ∈

[n]. According to [6, Eq. (16)], the following holds

E

⎡

⎣
∑

j∈Bb

Z2
i,j

⎤

⎦ = E

⎡

⎣
∑

j∈Bb

(aT
i x)4a4

i,j

⎤

⎦

= 9B‖x‖4
2 + 24

∑

j∈Bb

x4
j + 72‖xb‖2‖x‖2

2 .

(8)

If b ∈ SB , then xb �= 0, yielding E[
∑

j∈Bb Z
2
i,j ] > 9B‖x‖4

2 +
72‖xb‖2‖x‖2

2 in (8). On the contrary, if b /∈ SB , one has xb = 0,
yielding E[

∑
j∈Bb Z

2
i,j ] = 9B‖x‖4

2 . It is evident that there is
a separation of at least 72‖xb‖2‖x‖2

2 in the expected values
of

∑
j∈Bb Z

2
i,j for b ∈ SB and b /∈ SB . As long as the gap

72‖xb‖2‖x‖2
2 is large enough, the (block)-support set SB can

be recovered exactly in this way.
To estimate the (block)-support SB in practice, compute first

the so-called block marginals

ζb :=
∑

j∈Bb

(
1
m

m∑

i=1

ψ2
i |ai,j |2

)2

, ∀b ∈ Nb

which serves as an empirical estimate of E[
∑

j∈Bb Z
2
i,j ]. As

explained earlier, the larger ζb is, the more likely is for the
block to be nonzero, namely ‖xb‖2 > 0 [28]. Upon collecting
{ζb}NB

b=1 , one can pick the indices associated with the k-largest
values in {ζb}NB

b=1 , which form the estimated block-support set
ŜB . Subsequently, an estimate of the support of x denoted as Ŝ
can be determined as Ŝ := {i ∈ Bb | ∀b ∈ ŜB }.

The support estimation procedure is summarized in Steps 2–4
of Algorithm 1. Appealing to [28, Theorem 5.1] (also included as
Lemma 3 for completeness in the Appendix), Steps 2–4 recover
the support of x exactly with probability at least 1 − 6

m provided
thatm ≥ C ′

0k
2B log(mn) for some positive constantC ′

0 and the
minimum block

xBmin := min
b∈SB

‖xb‖2
2

is on the order of (1/k)‖x‖2
2 , namely, xBmin = (C ′′

0 /k)‖x‖2
2 for

some number C ′′
0 > 0.

If the support has been exactly recovered, that is, Ŝ = S,
one can rewrite ψi = |aT

i x| = |aT
i,ŜxŜ | for all i ∈ [m], where

ai,Ŝ ∈ RkB contains entries of ai whose indices belong to

Ŝ; and likewise for xŜ ∈ Rk . Then, the proposed initializa-
tion in (3) can be applied to the dimensionality-reduced data
{(ai,Ŝ , ψi)}mi=1 to obtain

d̂Ŝ := max
z∈Rk B

zT

(
λ−

|I−|
∑

i∈I−

ai,ŜaT
i,Ŝ+

λ+

|I+ |
∑

i∈I+

ai,ŜaT
i,Ŝ

)

z.

Subsequently, an estimate of the n-dimensional vector d can be
constructed by zero-padding entries of d̂Ŝ whose indices do not
belong to Ŝ.

Algorithm 1: Compressive Reweighted Amplitude Flow
(CRAF).

1: Input: Data {(ai ;ψi)}mi=1 , block length B, and block
sparsity level k; initialization parameters λ− = −3
and λ+ = 1; step size μ = 1; and weighting
parameters {βi = 0.6}mi=1 , τw = 0.1 .

2: For b = 1 to NB , compute

ζb :=
∑

j∈Bb

(
1
m

m∑

i=1

ψ2
i |ai,j |2

)2

.

3: Set ŜB to include indices corresponding to the k-largest
instances in {ζb}NB

b=1 .
4: Set Ŝ to comprise indices of Bb for b ∈ ŜB .
5: Compute the principal eigenvector d̂Ŝ ∈ RkB of

λ−

|I−|
∑

i∈I−

ai,ŜaT
i,Ŝ +

λ+

|I+ |
∑

i∈I+

ai,ŜaT
i,Ŝ

where I− := {i ∈ [m] : ψ2
i ≤ r̂2/2} and

I+ := {i ∈ [m] : ψ2
i ≥ r̂2/2} with r̂ :=√∑m

i=1 ψ
2
i /m.

6: Initialize z0 as r̂d̃, where d̃ ∈ Rn is given by
augmenting d̂Ŝ in Step 5 with d̃i = 0 for i /∈ Ŝ .

7: Loop: For t = 0 to T − 1

zt+1 = HB
k

⎛

⎝zt − μ

m

∑

i∈[m ]

wt
i

(

aT
i zt − ψi

aT
i zt

|aT
i zt |

)

ai

⎞

⎠

where wt
i := max

{
τw ,

|aT
i zt |

|aT
i zt |+ψi βi

}
.

8: Output: zT .

B. Refinement via Reweighted Gradient Iterations

Upon obtaining an accurate initial point, successive refine-
ments based on reweighted gradient iterations are effected. To
account for the block-sparsity structure of the wanted signal vec-
tor x, the model-based iterative hard thresholding (M-IHT) [29]
is invoked. To start, recall that the generalized gradient of the
objective function in (2) is [11]

∇�(z) :=
1
m

∑

i∈[m ]

(

aT
i z − ψi

aT
i z

|aT
i z|

)

ai (9)

in which the convention aT
i z/|aT

i z| := 0 for |aT
i z| = 0 is

adopted.
With t ≥ 0 denoting the iteration count and z0 being the

initial point, the M-IHT algorithm proceeds with the following
k-block-sparse hard thresholding, namely

zt+1 = HB
k

(
zt − μ

m
∇�(zt)

)
(10)

where μ > 0 is the preselected step size, and the block-sparse
hard thresholding operator HB

k (ū) : Rn → Rn converts an n-
dimensional vector ū := [ūT

1 . . . ūT
NB

]T into a k-block-sparse
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one u := [uT
1 . . . uT

NB
]T such that

ub =

{
ūb , if b ∈ UB
0, if b /∈ UB

where UB comprises indices corresponding to the k-largest en-
tities in {‖ūb‖2}NB

b=1 .
Unfortunately, the negative gradient −∇�(z) may not drag

the iterate sequence {zt} to the global optimum x because the
estimated sign aT

i z/|aT
i z| in ∇�(z) may not coincide with the

true one aT
i x/|aT

i x| [11]. As a consequence, the update in (10)
may not always reduce the distance of the iterate to the global
optimum. To alleviate the negative influence of the erroneously
estimated signs, SPARTA implements the following truncated
gradient ∇�tr(zt) [6]

∇�tr(zt) :=
1
m

∑

i∈It

(

aT
i zt − ψi

aT
i zt

|aT
i zt |

)

ai (11)

where

It :=
{

1 ≤ i ≤ m

∣
∣
∣
∣
|aT
i zt |

|aT
i x| ≥ τg

}

for some preselected truncation parameter. It is clear that
∇�tr(z) is based on data samples whose associated |ai

T z| is
of relatively large sizes. The reason for this gradient truncation
is that gradients (summands in (11)) of large |ai

T z|/|ai
T x|

provably point toward the global optimum x with high prob-
ability [11]. However, as pointed out in [12], the truncation
operation may reject meaningful samples, which hampers the
efficacy of ∇�tr especially when the sample size is limited.

An alternative to the truncation trimming procedure is to
introduce different weights for different gradients [12], which
helps fusing useful information from all gradient directions.
Specifically, the ensuing reweighted gradient used in [12] proves
successful in phase retrieval of general signal vectors

∇�rw (zt) :=
1
m

∑

i∈[m ]

wt
i

(

aT
i zt − ψi

aT
i zt

|aT
i zt |

)

ai (12)

where the weights are given by

wt
i := max

{

τw ,
|aT
i zt |

|aT
i zt | + ψiβi

}

, ∀i ∈ [m] (13)

for certain preselected parameters τw > 0 and βi > 0 for all
i ∈ [m]. Evidently, it holds that τw ≤ wt

i ≤ 1 for all i ∈ [m],
and the larger the ratio |ai

T z|/|ai
T x|, the larger the weight

wt
i . In this sense, wt

i reflects the confidence in the i-th negative
gradient pointing toward the global optimum x.

In the context of phase retrieval of block-sparse vectors, it is
thus reasonable to implement the M-IHT based iteration using
reweighted gradients, namely

zt+1 := HB
k

(
zt − μ∇�rw (zt)

)
. (14)

The proposed block-sparse phase retrieval solver is summarized
in Algorithm 1, whose exact recovery is established in the fol-
lowing theorem.

Theorem 2: Let x ∈ Rn be any k-block-sparse (kB � n)
vector with xBmin := (C ′′

0 /k)‖x‖2
2 . Consider noiseless mea-

surements {ψi = |aT
i x|}mi=1 from the real Gaussian model.

If m ≥ C1k
2B log(mn), there exists a constant learning rate

μ > 0, such that the successive estimates zt in Algorithm 1
obey

‖zt − x‖2 ≤ δ0ρ
t‖x‖2 , t = 0, 1, . . . (15)

with probability at least 1 − c2 exp(−c1m) − 6/m. Here, 0 <
δ0 < 1, 0 < ρ < 1, μ, c1 > 0, c2 > 0, C ′′

0 , and C1 are certain
numerical constants.

The proof of Theorem 2 is provided in Section V-B. Regard-
ing its implication, a couple of observations come in order. To
start, as soon as m ≥ C1k

2B log(mn), CRAF recovers exactly
k-block-sparse vectors x with the minimum block xB

min hav-
ing size on the order of ‖x‖2

2/k. This sample complexity is
consistent with the Block CoPRAM method in [28], which im-
proves upon the sample complexity of SPARTA by a factor of
B. Furthermore, CRAF converges exponentially fast. Expressed
differently, it takes CRAF at most T := O(log(1/ε)) iterations
to reach a solution of ε-relative accuracy.

IV. NUMERICAL TESTS

This section demonstrates the efficacy of the proposed ini-
tialization and the CRAF algorithm relative to the state-of-
the-art approaches for (block) sparse phase retrieval, includ-
ing SPARTA [6] and (block) CoPRAM [28]. In all except the
real-data experiments, the support S of the true signal vectors
x ∈ R3,000 was randomly chosen. The nonzero entries were
generated using xS ∼ N (0, I). The obtained x was subse-
quently normalized such that ‖x‖2 = 1. The sampling vectors
were generated using ai ∼ N (0, I), 1 ≤ i ≤ m. For SPARTA,
its suggested parameters were used. The parameters of CRAF
were set as λ− = −3, λ+ = 1, {βi = 0.6}mi=1 , τw = 0.1, and
μ = 1. For all simulated algorithms, the maximum iterations
were fixed to T = 1, 000, and all reported results are averaged
over 100 Monte Carlo simulations. A trial is declared a success
if the relative error dist(zT , x)/‖x‖2 is less than 10−5 .

A. Sparse Phase Retrieval

We first tested CRAF for solving the ordinary compressive
phase retrieval, namely problem (2) with block length B = 1.
The first experiment evaluates the performance of our initial-
ization relative to that in SPARTA [6] and CoPRAM [28]. Fig-
ure 1 depicts the average relative error of the three initialization
schemes with the sparsity level k varying from 25 to 35, and
m/k fixed to 30. Clearly, the new initialization outperforms the
other two.

The second experiment examines the empirical success rates
of CRAF, SPARTA, and CoPRAM for solving compressive
phase retrieval. The empirical success rates of CRAF, SPARTA,
and CoPRAM are presented in Fig. 2 with m increasing from
400 to 1,800. Notably, the curves showcase improved exact
recovery performance of CRAF relative to its competing alter-
natives. Since in certain applications, the sparsity level k may
not be accurately known, it is desirable to have the compressive
phase retrieval algorithms remain operational for unknown or
inexact k values. Let k̂ be an estimate of the sparsity level k.
The recovery performance of CRAF is tested with k̂ set as the
upper limit of the theoretically affordable sparsity level, namely
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Fig. 1. Average relative error versus k.

Fig. 2. Empirical success rate versus m for k = 30.

√
3, 000 ≈ 55. From Fig. 3, it is clear that CRAF offers the

best numerical performance for unknown k. A careful compar-
ison between Figs. 2 and 3 demonstrates that CRAF is more
robust to unknown k values than CoPRAM. The average run-
times of simulated schemes under k = k̂ = 30 and m = 2, 400
were recorded. Specifically, CRAF, SPARTA, and CoPRAM
incur a runtime of 0.1888, 0.1966, and 0.3168 seconds, respec-
tively. The major computational advantage of CRAF relative
to CoPRAM is attributed to the simple closed-form update of
(14), whereas each iteration of CoPRAM invokes CoSaMP that
requires solving an inverse problem.

To test the proposed initialization procedure as well as CRAF
in a more realistic setting, the Lovett hall image shown in Fig. 4
was employed. It is worth mentioning that the Lovett hall image
naturally admits a sparse representation after the Haar wavelet
transformation [33]. But for simplicity, this image was first re-
sized to 32 × 32, whose Haar wavelet representation was further
sparsified by setting all but the top 30-wavelet coefficients to
zero [33]. The resulting sparse wavelet coefficient vector con-
stitutes the true signal vector x in (1). With m increasing from
200 to 500, the empirical success rates of CRAF, SPARTA,

Fig. 3. Empirical success rate vs. m for k = 30, and k̂ = 55.

Fig. 4. The Lovett Hall.

Fig. 5. Empirical success rate for CRAF, SPARTA, CoPRAM, and SPARTA
and CoPRAM initialized with the new spectral initialization.

and CoPRAM are reported in Fig. 5. To evaluate performance
of the proposed initialization, SPARTA and CoPRAM initial-
ized with the new estimate in (3) were simulated. Clearly, with
our proposed initialization, both SPARTA and CoPRAM enjoy
considerable performance improvements. Nevertheless, CRAF
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Fig. 6. Average relative error of signal recovery versus the variance of noise
σ2 for k = 30, and m = 1600.

Fig. 7. Empirical success rate versus m for B = 2, k = 20.

with the reweighed gradients attains superior performance over
all simulated schemes.

The next experiment validates the robustness of CRAF with
respect to noisy measurements of the following form:

ψi = |aT
i x| + ηi, 1 ≤ i ≤ m

where {ηi} are independently sampled from N (0, σ2). In this
experiment, k = 30, B = 1, and m = 1, 600 were simulated.
Figure 6 depicts the average relative errors of the three ap-
proaches versus varying σ2 from 0.1 to 0.6, from which it is
clear that CRAF offers the most accurate estimates for all noise
levels. In other words, CRAF achieves improved robustness rel-
ative to SPARTA and CoPRAM.

B. Block-sparse Phase Retrieval

We further tested the performance of CRAF relative to that
of block CoPRAM and SPARTA for 20-block-sparse phase re-
trieval with block lengthB = 2. The empirical success rates for
the three schemes from 100 independent trials with k known
are reported in Fig. 7, from which it is clear that CRAF yields
the best recovery performance. With m = 2, 400, the average
runtimes of CRAF, SPARTA, and block CoPRAM were 0.2196,
0.2336, and 1.4565 seconds, respectively. As the numbers indi-

Fig. 8. Empirical success rate versus m for B = 5, k = 6, and k̂ = 11.

cate, CRAF is on par with SPARTA, but much faster than the
block CoPRAM. The last experiment tests block-sparse phase
retrieval with a block length of B = 5. The empirical exact
recovery rates of CRAF, block CoPRAM, and SPARTA with
k unknown are presented in Fig. 8. Plots (CRAF/Block Co-
PRAM versus SPARTA) corroborate the merits of exploiting
block sparsity in reducing the sample complexity for exact re-
covery. Despite the marginal improvement of CRAF relative
to block CoPRAM in this test due to the large block size, it
is worth pointing out that CRAF is much faster than block
CoPRAM.

V. PROOFS

The proofs of Theorem 1 and 2 are presented next. The proof
of Theorem 1 is mainly based on that of [22, Prop. 2], whereas
the proof of Theorem 2 builds upon [6, Thm. 1].

A. Proof of Theorem 1

For ease of presentation, some notation is established first. To
begin, let

M− :=
1

|I−|
∑

i∈I−

aia
T
i , and M+ :=

1
|I+ |

∑

i∈I+

aid
T
i

denote the first and second parts of the matrix used in the new
initialization procedure (3). Upon defining

φ(τ−) := E[〈a,d〉2 |〈a,d〉2 ≤ τ−] − 1

φ(τ+) := E[〈a,d〉2 |〈a,d〉2 ≥ τ+] − 1

it can be verified that

E[M−] = In + φ(τ−)ddT, and E[M+] = In + φ(τ+)ddT .

Without loss of generality, one can then write

M− = In + φ−(ε)ddT + Δ−

M+ = In + φ+(ε)ddT + Δ+

where Δ− (Δ+) describes the difference between M− (M+)
and their mean E[M−] = In + φ−(ε)ddT (E[M+] = In +
φ+(ε)ddT ). Appealing to a standard eigenvector perturba-
tion result [31, Corollary 1] (also included as Lemma 2
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in the Appendix), to bound dist(d̂,d), it suffices to bound
‖λ−Δ− + λ+Δ+‖2 .

It has been established in [22, Proposition 2] that for arbi-
trarily small δ− ∈ (0, 1), and some absolute constants c− > 0,
C− <∞ dependent on δ−, the following holds with probability
at least 1 − 5 exp(−c−m)

‖Δ−‖2 ≤ δ− (16)

whenever m ≥ C−n.
The task now remains to bound ‖Δ+‖2 . To account for the

estimation error in r̂, the following two index sets surrounding
I+ are introduced [22, Proposition 2]

I+
−ε :=

{

i ∈ [m] | 〈ai ,d〉2 >
1 − ε

2

}

I+
+ε :=

{

i ∈ [m] | 〈ai ,d〉2 ≥ 1 + ε

2

}

for some numerical constant ε ∈ (0, 1). For convenience, one
can set κ := exp((ε− 1)/4)/

√
π(1 − ε) which upper bounds

P
(
〈a,d〉2 ∈ [ 1−ε

2 , 1+ε
2 ]

)
/ε, and

p0(ε) := P

(

〈a,d〉2 ≥ 1 + ε

2

)

.

It can be readily checked that

p0(ε) = P

(

χ2
1 ≥ 1 + ε

2

)

= 1 − P

(

χ2
1 ≤ 1 + ε

2

)

≥ 1 −
√

1 + ε

2
exp

(
1 − ε

2

)

leveraging the tail bound of the χ2
1 distribution.

Subsequently, five events denoted as {Ei}5
i=1 occurring with

high probability are introduced in (17) as shown at the bot-
tom of this page. The constants p ≥ 1 and q ≥ 1 in (17) sat-
isfy 1/p+ 1/q = 1. On the event E1 , it can be verified that

r̂2 ∈ [(1 − ε)r2 , (1 + ε)r2 ], hence I+
+ε ⊂ I+ ⊂ I+

−ε . When all
five events {Ei}5

i=1 occur, ‖Δ+‖2 can be bounded. In de-
tail, Δ+ can be rewritten as in (18) shown at the bottom of
this page, implying that Δ+ = Δ+

1 + Δ+
2 + Δ+

3 . The three
terms ‖Δ+

1 ‖2 , ‖Δ+
2 ‖2 , and ‖Δ+

3 ‖2 are bounded next. Note
that on the event E5 , it holds that ‖Δ+

1 ‖2 ≤ ε. To bound
‖Δ+

2 ‖2 , observe that on the event E3 and E4 , the following are
true

‖Δ+
2 ‖2 =

m

|I+
+ε |

∥
∥
∥
∥
∥
∥
∥

1
m

∑

i∈I+ \I+
+ ε

aia
T
i

∥
∥
∥
∥
∥
∥
∥

2

≤ m

|I+
+ε |

∥
∥
∥
∥
∥
∥
∥

1
m

∑

i∈I+
−ε \I

+
+ ε

aia
T
i

∥
∥
∥
∥
∥
∥
∥

2

≤ 2
p0(ε)

· 4q(κε)1/p

where the last inequality arises from the definitions of E3 and
E4 . Regarding ‖Δ+

3 ‖2 , the next holds true

‖Δ+
3 ‖2 = m

|I+ | − |I+
+ε |

|I+
+ε ||I+ |

∥
∥
∥
∥
∥

1
m

∑

i∈I+

aia
T
i

∥
∥
∥
∥
∥

2

≤ m
|I+ | − |I+

+ε |
|I+

+ε ||I+ |

∥
∥
∥
∥
∥

1
m

m∑

i=1

aia
T
i

∥
∥
∥
∥
∥

2

≤ 8ε(1 + ε)κ
p0(ε)2 .

To sum, the following is true

‖Δ+‖2 = ‖Δ+
1 ‖2 + ‖Δ+

2 ‖2 + ‖Δ+
3 ‖2 (19)

≤ ε+
2

p0(ε)
· 4q(κε)1/p +

8ε(1 + ε)κ
p0(ε)2 . (20)

E1 : =
{

1
m

∥
∥AT A

∥
∥

2 ∈ [1 − ε, 1 + ε]
}

, E2 :=
{
|I+

−ε | ≤ |I+
+ε | + 2εκm

}
,

E3 : =
{

|I+
+ε | ≥

1
2
mp0(ε)

}

, E4 :=

⎧
⎪⎨

⎪⎩

∥
∥
∥
∥
∥
∥
∥

1
m

∑

i∈I+
−ε \I

+
+ ε

aia
T
i

∥
∥
∥
∥
∥
∥
∥

2

≤ 4q(κε)
1
p

⎫
⎪⎬

⎪⎭
,

E5 : =

⎧
⎪⎨

⎪⎩

∥
∥
∥
∥
∥
∥
∥

1
|I+

+ε |
∑

i∈I+
+ ε

[

aia
T
i −

(

In + φ+
(

1 + ε

2

)

xxT
)]

∥
∥
∥
∥
∥
∥
∥

2

≤ ε

⎫
⎪⎬

⎪⎭
(17)

Δ+ = M+ −
(

In + φ+
(

1 + ε

2

)

ddT
)

=
1

|I+
+ε |

∑

i∈I+
+ ε

[

aia
T
i −

(

In + φ+
(

1 + ε

2

)

ddT
)]

︸ ︷︷ ︸
:=Δ+

1

+
1

|I+
+ε |

∑

i∈I+ \I+
+ ε

aia
T
i

︸ ︷︷ ︸
:=Δ+

2

−
(

1
|I+

+ε |
− 1

|I+ |

)
∑

i∈I+

aia
T
i

︸ ︷︷ ︸
:=Δ+

3

(18)
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Takingp = 1 + 1
log 1

κ ε

and q = 1 + log 1
κε , one has ‖Δ+‖2 ≤

δ+ , with

δ+ := ε+
8e(1 − log κε)κε

p0(ε)
+

8ε(1 + ε)κ
p0(ε)2 .

Since p0(ε) and κ are bounded away from 0 for sufficiently
small ε > 0, δ+ approaches 0 as ε approaches 0. Based on the
established bounds on ‖Δ−‖2 in (16) and ‖Δ+‖2 in (19), one
has

‖λ−Δ− + λ+Δ+‖2 ≤ λ+δ+ − λ−δ−.

From Lemma 2 in the Appendix, the next can be deduced

dist2(d̂,d) ≤ 2 − 2|〈d̂,d〉| ≤
(

2(λ+δ+ − λ−δ−)
λ+φ(τ+) + λ−φ(τ−)

)2

implying

dist(d̂,d) ≤ 2(λ+δ+ − λ−δ−)
λ+φ(τ+) + λ−φ(τ−)

. (21)

Combining E1 and the bound in (21) gives rise to

dist(z0 ,x) ≤ r̂ dist(d̂,d) + |r − r̂|

≤
(√

1 + ε dist(d̂,d) +
√

1 + ε− 1
)
‖x‖2 .

Letting δ0 := 2
√

1+ε(λ+ δ+ −λ−δ−)
λ+ φ(τ + )+λ−φ(τ −)

+
√

1 + ε− 1, we have

dist(z0 ,x) ≤ δ0‖x‖2 . It is worth stressing that limε→0 δ0 = 0,
suggesting that δ0 can be brought arbitrarily close to 0 by in-
creasing m.

So far, it has been proved that dist(z0 ,x) ≤ δ0‖x‖2 on the
events {Ei}5

i=1 . The next step is to show the five events occur
simultaneously with high probability. Recall that it has been
shown in [22, Proposition 2] that each of the events E1 , E2 ,
and E4 occurs with probability at least 1 − exp(−c−m) when
m > C−n.

To complete the proof, we first show that

P (E3) ≥ 1 − exp
(
−mp0(ε)2

2

)

.

To that end, rewrite |I+
+ε | as

|I+
+ε | =

m∑

i=1

1{〈ai ,d〉2 ≥(1+ε)/2}.

Since {1{〈ai ,d〉2 ≥(1+ε)/2}}mi=1 are i.i.d. Bernoulli random vari-
ables with

P
(
〈ai ,d〉2 ≥ (1 + ε)/2

)
≥ p0(ε), ∀i ∈ [m]

the following holds

P

(

|I+
+ε | ≤

1
2
mp0(ε)

)

≤ exp
(
−mp0(ε)2

2

)

by Hoeffding’s inequality [34]. Therefore, P (E3) ≥ 1 −
exp(−mp0 (ε)2

2 ). Similar to [22, Lemma A.6], it can be shown
that for

m ≥ log2 p0(ε)n/c+ε2p0(ε)

with some absolute constant c+ > 0,

P (E5 |E3) ≥ 1 − exp
(
−c+ε2mp0(ε)

log2 p0(ε)

)

.

Thus, setting c0 = min{ c
+ ε2 p0 (ε)

log2 p0 (ε) ,
p0 (ε)2

2 , c−} and

C0 = max{log2 p0(ε)/c+ε2p0(ε), C−}

confirms the assertion of Theorem 1.

B. Proof of Theorem 2

Some notation used only for this section is introduced first.
For all t ≥ 0, let

vt+1 := zt − μ

m

m∑

i=1

wt
i

(

aT
i zt − ψi

aT
i zt

|aT
i zt |

)

ai

represent the estimate prior to effecting the hard thresholding
operation in (10). The support of x and zt is denoted as S and
Ŝt , respectively. Hence, the support for the reconstruction error
ht := x − zt defined as Ωt is given by S ∪ Ŝt . Additionally,
let Ωt \ Ωt+1 be the difference between sets Ωt and Ωt+1 . Evi-
dently, it holds that |S| = |Ŝt | = s for s := kB, which implies
|Ωt | ≤ 2s, |Ωt \ Ωt+1 | ≤ 2s, and |Ωt ∪ Ωt+1 | ≤ 3s, ∀t ≥ 0.
Vectors with sets as subscript, e.g., vΩ t , are formed by zero-
ing all entries of the vector except for those in the set.

According to the triangle inequality of the vector 2-norm, it
holds that

∥
∥x − zt+1

∥
∥

2 =
∥
∥x − vt+1

Ω t+ 1 + vt+1
Ω t+ 1 − zt+1

∥
∥

2

≤
∥
∥x − vt+1

Ω t+ 1

∥
∥

2 +
∥
∥zt+1 − vt+1

Ω t+ 1

∥
∥

2

≤ 2
∥
∥xΩ t+ 1 − vt+1

Ω t+ 1

∥
∥

2 . (22)

The last inequality in (22) comes from ‖zt+1 − vt+1
Ω t+ 1 ‖2 ≤

‖xΩ t+ 1 − vt+1
Ω t+ 1 ‖2 since zt+1 achieves the minimal distance

to vt+1
Ω t+ 1 among all vectors belonging to Mk

B and supported on
Ωt+1 . Substituting the definitions of ht and vt into (22), one
arrives at

1
2
‖ht+1‖2

≤
∥
∥
∥
∥
∥
ht

Ω t+ 1 −
μ

m

m∑

i=1

wt
ia

T
i htai,Ω t+ 1

− μ

m

m∑

i=1

wt
i

(
aT
i zt

|aT
i zt | −

aT
i x

|aT
i x|

)

|aT
i x|ai,Ω t+ 1

∥
∥
∥
∥
∥

2

≤
∥
∥
∥
∥
∥
ht

Ω t+ 1 −
μ

m

m∑

i=1

wt
iai,Ω t+ 1 aT

i,Ω t+ 1 ht
Ω t+ 1

∥
∥
∥
∥
∥

2

+

∥
∥
∥
∥
∥
μ

m

m∑

i=1

wt
iai,Ω t+ 1 aT

i,Ω t \Ω t+ 1 ht
Ω t \Ω t+ 1

∥
∥
∥
∥
∥

2

+

∥
∥
∥
∥
∥
μ

m

m∑

i=1

wt
i

(
aT
i zt

|aT
i zt | −

aT
i x

|aT
i x|

)

|aT
i x|ai,Ω t+ 1

∥
∥
∥
∥
∥

2

. (23)
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Hence, bounding ‖ht+1‖2 suffices to bound the three terms on
the right hand side of (23).

Regarding the first term, the following holds
∥
∥
∥
∥
∥
ht

Ω t+ 1 −
μ

m

m∑

i=1

wt
iai,Ω t+ 1 aT

i,Ω t+ 1 ht
Ω t+ 1

∥
∥
∥
∥
∥

2

≤
∥
∥
∥
∥
∥
I − μ

m

m∑

i=1

wt
iai,Ω t+ 1 aT

i,Ω t+ 1

∥
∥
∥
∥
∥

2

∥
∥ht

Ω t+ 1

∥
∥

2

≤ max
{
1 − μλ, μλ̄− 1

}∥
∥ht

Ω t+ 1

∥
∥

2 (24)

in which λ̄ and λ > 0 denote the largest and smallest eigenvalue
of (1/m)

∑m
i=1 w

t
iai,Ω t+ 1 aT

i,Ω t+ 1 , respectively. Since τw ≤
wt
i ≤ 1 and ai,Ω t+ 1 aT

i,Ω t+ 1 , ∀i ∈ [m] are positive semidefinite,
the next is true

τw

m∑

i=1

ai,Ω t+ 1 aT
i,Ω t+ 1 ≤

m∑

i=1

wt
iai,Ω t+ 1 aT

i,Ω t+ 1

≤
m∑

i=1

ai,Ω t+ 1 aT
i,Ω t+ 1 . (25)

To estimate the eigenvalues of (1/m)
∑m

i=1 ai,Ω t+ 1 aT
i,Ω t+ 1 , we

resort to the restricted isometry property of Gaussian matri-
ces A ∈ Rm×n whose entries are i.i.d. standard Gaussian vari-
ables [35]. Specifically, if K � {1, . . . , n} with |K| ≤ 3s, then
for constant δ3s ≤ ε, the following holds for all u ∈ Rm

√
(1 − δ3s)m‖u‖2 ≤ ‖AT

Ku‖2 ≤
√

(1 + δ3s)m‖u‖2

with probability at least 1 − e−c
′
1m , provided that m ≥

C ′
1ε

−2(3s) log(n/(3s)) for numerical constants c′1 , C
′
1 > 0 [36,

Proposition 3.1]. Hence,

λ1

(
1
m

m∑

i=1

ai,Ω t+ 1 aT
i,Ω t+ 1

)

≤ 1 + δ3s (26)

λn

(
1
m

m∑

i=1

ai,Ω t+ 1 aT
i,Ω t+ 1

)

≥ 1 − δ3s (27)

due to |Ωt+1 | ≤ 2s. Substituting (26) and (27) into (25) yields

λ̄ ≤ 1 + δ3s , and λ ≥ τw (1 − δ3s)

which together with (24) suggests that
∥
∥
∥
∥
∥
ht

Ω t+ 1 −
μ

m

m∑

i=1

wt
iai,Ω t+ 1 aT

i,Ω t+ 1 ht
Ω t+ 1

∥
∥
∥
∥
∥

2

≤ max{1 − μτw (1 − δ3s), μ(1 + δ3s) − 1}
∥
∥ht

Ω t+ 1

∥
∥

2 .

(28)

Consider now the second term in (23). For convenience, define

AT
Ω t+ 1 := [a1,Ω t+ 1 · · · am,Ω t+ 1 ]

AT
Ω t+ 1 := [a1,Ω t+ 1 · · · am,Ω t+ 1 ]

AT
Ω t ∪Ω t+ 1 := [a1,Ω t ∪Ω t+ 1 · · · am,Ω t ∪Ω t+ 1 ]

and let W be a diagonal matrix with its i-th diagonal entry being
wt
i . Then, one has

∥
∥
∥
∥
∥
μ

m

m∑

i=1

wt
iai,Ω t+ 1 aT

i,Ω t \Ω t+ 1 ht
Ω t \Ω t+ 1

∥
∥
∥
∥
∥

2

≤
∥
∥
∥
μ

m
AT

Ω t+ 1 WAΩ t \Ω t+ 1

∥
∥
∥

2

∥
∥
∥ht

Ω t \Ω t+ 1

∥
∥
∥

2

≤
∥
∥
∥
∥
μ

m
AT

Ω t ∪Ω t+ 1 WAΩ t ∪Ω t+ 1 − μ
τw + 1

2
I

∥
∥
∥
∥

2

∥
∥
∥ht

Ω t \Ω t+ 1

∥
∥
∥

2

≤ μ
1 − τw + 2δ3s

2

∥
∥
∥ht

Ω t \Ω t+ 1

∥
∥
∥

2
(29)

where the first inequality is due to the definition of the ma-
trix norm, the second inequality comes from the fact that
AT

Ω t+ 1 WAΩ t \Ω t+ 1 is a submatrix of AT
Ω t ∪Ω t+ 1 WAΩ t ∪Ω t+ 1 ,

and the last inequality stems from τw < 1.
Finally, for the last term in (23), let vt := [vt1 · · · vtm ]T with

vti := wt
i (

aT
i zt

|aT
i zt | −

aT
i x

|aT
i x| )|a

T
i x|, ∀i ∈ [m]. By the definition of

the induced matrix 2-norm, it holds that

∥
∥
∥
∥
∥

1
m

m∑

i=1

wt
i

(
aT
i zt

|aT
i zt | −

aT
i x

|aT
i x|

)

|aT
i x|ai,Ω t+ 1

∥
∥
∥
∥
∥

2

=
1
m

∥
∥AT

Ω t+ 1 vt
∥
∥

2 ≤
∥
∥
∥
∥

1√
m

AT
Ω t+ 1

∥
∥
∥
∥

2

∥
∥
∥
∥

1√
m

vt
∥
∥
∥
∥

2

≤ (1 + δ3s)
∥
∥
∥
∥

1√
m

vt
∥
∥
∥
∥

2
. (30)

Regarding the term ‖ 1√
m

vt‖2 , the following holds

1
m

∥
∥vt

∥
∥2

2 =
1
m

m∑

i=1

wt
i

(
aT
i zt

|aT
i zt | −

aT
i x

|aT
i x|

)2

|aT
i x|2

≤ 2 · 1
m

m∑

i=1

|sgn(aT
i z) − sgn(aT

i x)||aT
i x||aT

i h|

≤ 4
√

1 + δ2s
1 − ρ0

(

δ2s +

√
21
20
ρ0

)

‖h‖2
2 (31)

where the first inequality originates from that |aT
i x| ≤ |aT

i ht |
when sgn(aT

i z) �= sgn(aT
i x) and 0 < wt

i < 1; the second in-
equality is obtained by appealing to Lemma 4 in the Appendix,
which is adapted from [20, Lemma 7.17]. Taking the result in
(31) into (30) gives rise to

∥
∥
∥
∥
∥

1
m

m∑

i=1

(
aT
i zt

|aT
i zt | −

aT
i x

|aT
i x|

)

|aT
i x|ai,Ω t+ 1

∥
∥
∥
∥
∥

2

≤ (1 + δ3s)γ
∥
∥ht

∥
∥

2 (32)

where γ := 2
√

√
1+δ2 s
1−ρ0

(
δ2s +

√
21
20 ρ0

)
.
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Plugging the bounds in (28), (29), and (32) into (23) confirms
that
∥
∥ht+1

∥
∥

2

≤ 2max {1 − μτw (1 − δ3s), μ(1 + δ3s) − 1}
∥
∥ht

Ω t+ 1

∥
∥

2

+ μ(1 − τw + 2δ3s)
∥
∥
∥ht

Ω t \Ω t+ 1

∥
∥
∥

2
+ 2μ(1 + δ3s)γ

∥
∥ht

∥
∥

2

≤ 2
√

2 max {max {1 − μτw (1 − δ3s), μ(1 + δ3s) − 1} ,

μ(1 − τw + 2δ3s)/2} ‖ht‖2 + 2μ(1 + δ3s)γ
∥
∥ht

∥
∥

2

≤ 2
[√

2 max {1 − μτw (1 − δ3s), μ(1 + δ3s) − 1} ,

μ(1 − τw + 2δ3s)/2} + μ(1 + δ3s)γ]
∥
∥ht

∥
∥

2

:= ρ
∥
∥ht

∥
∥

2 (33)

where the second inequality is due to
∥
∥ht

Ω t+ 1

∥
∥

2 +
∥
∥
∥ht

Ω t \Ω t+ 1

∥
∥
∥

2
≤

√
2
∥
∥ht

∥
∥

2

for disjoint sets Ωt+1 and Ωt \ Ωt+1 . From (33), it is clear that
for proper τw and sufficiently small ρ0 , δ2s , and δ3s , one can se-
lect a constant step sizeμ > 0 such that ρ < 1. Theorem V-B can
be then directly deduced by combining Theorem 1, Lemma 3,
and equation (33).

VI. CONCLUDING REMARKS

This contribution developed a compressive reweighted ampli-
tude flow (CRAF) algorithm for phase retrieval of (block)-sparse
signal vectors. CRAF first estimates the support of the underly-
ing signal vector, which is followed by a new spectral procedure
to obtain an effective initialization. To strengthen this initial
guess, CRAF proceeds with (model-based) hard thresholding it-
erations relying on reweighted gradients of the amplitude-based
least-squares loss function. CRAF provably recovers the true
signal vectors exponentially fast when a sufficient number of
measurements become available. Judicious numerical tests cor-
roborate the merits of CRAF relative to state-of-the-art solvers
of the same kind.

APPENDIX: SUPPORTING LEMMAS

The following lemma which bounds the distance between
the principle eigenvectors of two symmetric matrices is adapted
from [31, Corollary 1].

Lemma 2: [31, Corollary 1] Let Z := X + Δ with X and
Δ being symmetric matrices, unit vectors v1 and u1 be the
principal eigenvectors of Z and X , and θ := cos−1〈u1 ,v1〉
represent the angles between u1 and v1 . It then holds that

√
1 − 〈u1 ,v1〉2 = | sin θ| ≤ 2‖Δ‖2

λ1(X) − λ2(X)
. (34)

The next lemma adopted from [28] certifies that Steps 2–4 in
Algorithm 1 recover the true support of x with high probability.

Lemma 3 (Support estimate [28]): Consider any k-block-
sparse signal vector x ∈ Rn with support S and xB

min :=
minb∈SB ‖xb‖2

2 on the order of (1/k)‖x‖2
2 . Assume {ai}mi=1

are i.i.d standard Gaussian, that is, ai ∼ N (0, In ). There exists
an event of probability exceeding 1 − 6/m such that, Steps 2–4

in Algorithm 1 recover S if m ≥ C ′
0k

2B log(mn) for some
positive constant C ′

0 .
The last lemma that is useful in establishing the convergence

of CRAF is proved in [20, Lemma 7.17].
Lemma 4: [20, Lemma 7.17] Consider m noise-free mea-

surements {ψi = |aT
i x|}mi=1 in which x ∈ Rn is s-sparse with

support S , and {ai ∼ N (0, In )}mi=1 are i.i.d. sensing vec-
tors. Let z ∈ Rn be an s-sparse vector satisfying ‖z − x‖2 ≤
ρ0‖x‖2 . If h ∈ Rn is (2s)-sparse andm > C3(2s) log(n/(2s))
for some numerical constants C3 , then the following holds for
δ2s > 0

1
m

m∑

i=1

∣
∣sgn(aT

i z) − sgn(aT
i x)

∣
∣ |aT

i x||aT
i h|

≤ 2
√

1 + δ2s
1 − ρ0

(

δ2s +

√
21
20
ρ0

)

‖h‖2
2 (35)

with probability exceeding 1 − 3e−c3m for a fixed numerical
constant c3 > 0.
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