
6448 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 24, DECEMBER 15, 2017

Randomized Block Frank–Wolfe for Convergent
Large-Scale Learning

Liang Zhang , Student Member, IEEE, Gang Wang , Student Member, IEEE, Daniel Romero , Member, IEEE,
and Georgios B. Giannakis , Fellow, IEEE

Abstract—Owing to their low-complexity iterations, Frank–
Wolfe (FW) solvers are well suited for various large-scale learning
tasks. When block-separable constraints are present, randomized
block FW (RB-FW) has been shown to further reduce complexity
by updating only a fraction of coordinate blocks per iteration. To
circumvent the limitations of existing methods, this paper develops
step sizes for RB-FW that enable a flexible selection of the number
of blocks to update per iteration while ensuring convergence and
feasibility of the iterates. To this end, convergence rates of RB-FW
are established through computational bounds on a primal subop-
timality measure and on the duality gap. The novel bounds extend
the existing convergence analysis, which only applies to a step-size
sequence that does not generally lead to feasible iterates. Further-
more, two classes of step-size sequences that guarantee feasibility
of the iterates are also proposed to enhance flexibility in choosing
decay rates. The novel convergence results are markedly broad-
ened to also encompass nonconvex objectives, and further assert
that RB-FW with exact line-search reaches a stationary point at
rate O(1/

√
t). Performance of RB-FW with different step sizes

and number of blocks is demonstrated in two applications, namely
charging of electrical vehicles and structural support vector ma-
chines. Extensive simulated tests demonstrate the performance im-
provement of RB-FW relative to existing randomized single-block
FW methods.

Index Terms—Conditional gradient descent, nonconvex opti-
mization, block coordinate, parallel optimization.

Manuscript received December 26, 2016; revised May 27, 2017 and Septem-
ber 7, 2017; accepted September 15, 2017. Date of publication September 21,
2017; date of current version October 20, 2017. The associate editor coordinat-
ing the review of this manuscript and approving it for publication was Dr. Marco
Moretti. The work of L. Zhang, G. Wang, and G. B. Giannakis was supported
by the National Science Foundation Grants 1423316, 1442686, 1508993, and
1509040. The work of D. Romero was supported in part by the PETROMAKS
Smart-Rig Grant 244205/E30 and in part by the TOPPFORSK WISECART
Grant 250910/F20 from the Research Council of Norway. (Corresponding
author: Georgios B. Giannakis.)

L. Zhang and G. B. Giannakis are with the Digital Technology Center and the
Department of Electrical and Computer Engineering, University of Minnesota,
Minneapolis, MN 55455, USA (e-mail: zhan3523@umn.edu; georgios@
umn.edu).

G. Wang is with the Digital Technology Center and the Department of Elec-
trical and Computer Engineering, University of Minnesota, Minneapolis, MN
55455 USA, and also with the State Key Laboratory of Intelligent Control and
Decision of Complex Systems, Beijing Institute of Technology, Beijing 100081,
China (e-mail: gangwang@umn.edu).

D. Romero is with the Department of Information and Communication Tech-
nology, University of Agder, Grimstad 4879, Norway (e-mail: daniel.romero@
uia.no).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2017.2755597

I. INTRODUCTION

THE Frank-Wolfe (FW) algorithm [1], also known as condi-
tional gradient descent [2], has well-documented merits as

a first-order solver especially for smooth constrained optimiza-
tion tasks over convex compact sets. FW has recently received
revived interest due to its simplicity and versatility in handling
structured constraint sets in various signal processing and ma-
chine learning applications [3]. This growing popularity is due
to its per-iteration simplicity that only entails minimizing a lin-
ear function over the feasible set, whereas competing first-order
alternatives, such as projected gradient descent [4] and their ac-
celerated versions [5], involve minimizing a quadratic function
over the feasible set per iteration. Typically, solving a con-
strained linear optimization is considerably easier than finding
the aforementioned projections per iteration. The resulting sav-
ings benefit diverse large-scale learning tasks, including matrix
completion [6], multi-class classification [7], image reconstruc-
tion [7], structural support vector machines (SVMs) [8], particle
filtering [9], sparse phase retrieval [10], and scheduling electric
vehicle (EV) charging [11].

Despite its simplicity, FW can become prohibitively expen-
sive when dealing with high-dimensional data. For this reason,
randomized single-block FW has been advocated for solving
large-scale convex constrained programs [8], where only a ran-
domly selected block of variables is updated per iteration. At the
price of obtaining the duality gap, convergence of randomized
single-block FW has been improved in [12]. Furthermore, ran-
domized multiple-block FW was devised to reduce convergence
time by updating multiple blocks per iteration in parallel [13].
Unfortunately, feasibility of the resulting iterates is in general
not guaranteed by the original parallel randomized block (RB)-
FW [13]. Moreover, all results on randomized FW focus on
convex objectives, and convergence of RB-FW for nonconvex
programs remained hitherto an open problem.

The present paper is the first to introduce a broad class of
step sizes for RB-FW that offer: (i) guaranteed convergence and
feasibility of the iterates along with (ii) flexibility to select a
step-size sequence whose decay rate is attuned to the problem
at hand. RB-FW with this rich class of step sizes subsumes the
classical FW as well as the randomized single-block FW solvers
as special cases. We further broaden the scope of RB-FW by
allowing for nonconvex smooth objective functions. Specifi-
cally, we establish that RB-FW with typical step sizes attains a
stationary point at rate O(1/ log t), whereas line-search-based

1053-587X © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-3115-1752
https://orcid.org/0000-0002-7266-2412
https://orcid.org/0000-0002-8498-0207
https://orcid.org/0000-0001-8264-6056

ZHANG et al.: RANDOMIZED BLOCK FRANK–WOLFE FOR CONVERGENT LARGE-SCALE LEARNING 6449

step sizes enjoys an improved rate of O(1/
√

t). Remarkably,
the latter coincides with the rate afforded by classical FW for
nonconvex problems [14]. Finally, simulated tests on optimal
coordination of EV charging and structural SVMs corroborate
the merits of RB-FW with our novel step sizes relative to single-
block FW.

The remainder of this paper is organized as follows. Section II
outlines the FW and RB-FW algorithms. Section III describes
two novel families of step sizes for RB-FW, and establishes
their feasibility and convergence. Section IV derives the RB-FW
convergence rates for non-convex programs, whereas Section V
highlights the implications of the results in Section III for classi-
cal FW. Section VI shows the merits of RB-FW in two applica-
tion settings, whereas Section VII tests the RB-FW performance
numerically. Finally, Section VIII concludes the paper.

Regarding common notation, lower- (upper-) case boldface
letters represent column vectors (matrices). Sets are denoted by
calligraphic letters, |B| stands for the cardinality of set B, and
N \ B := {x ∈ N : x /∈ B} denotes set difference. Symbol � is
reserved for transposition of vectors and matrices, whereas0 and
1 denote the all-zero and all-one vectors of suitable dimensions,
respectively. Operator �x� gives the smallest integer greater than
or equal to x, and log(x) returns the natural logarithm of x.

II. PRELIMINARIES

The classical FW algorithm [1] aims at solving the following
generic constrained optimization problem

minimize
x ∈Rd

f(x) (1)

subject to x ∈ X

where f(x) is convex and differentiable, while the feasible
set X is convex and compact. A number of problems in sig-
nal processing and machine learning, e.g., ridge regression or
basis pursuit [15], can be expressed in this form. Listed as
Algorithm 1, FW is initialized with a feasible x0 . Given iterate
xt , it then solves the following so-termed “linear oracle”

st := arg min
s ∈X

s�∇f(xt) (2)

and uses a convex combination of st with xt to obtain

xt+1 = (1− γt)xt + γtst (3)

where the step size γt ∈ (0, 1] is typically selected as [3]

γt =
2

t + 2
. (4)

Alternatively, γt can be chosen via line search, which picks
xt+1 as the best point on the line segment between xt and st :

γt = arg min
0≤γ≤1

f
(
(1− γ)xt + γst

)
. (5)

In either case, Algorithm 1 converges at rate O(1/t) [3].
When d is large, updating all d entries of x at each t is

computationally challenging. Randomized FW alleviates this
difficulty by updating only a subset of the d entries [8], [13].
Splitting x into Nb blocks {xn}Nb

n=1 with respective feasible sets

Algorithm 1: Frank-Wolfe [1].

1: Initialize t = 0, x0 ∈ X
2: while stopping criterion not met do
3: Compute st = arg mins ∈X s�∇f(xt)
4: Update xt+1 = (1− γt)xt + γtst

5: t← t + 1
6: end while

Fig. 1. Parallel implementation for Algorithm 2 at iteration t ≥ 0. Left: The
control center sends gradient ∇xn f (xt) to processor n ∈ Bt . Right: The up-
dated {st+1

n }n ∈Bt are sent to the control center.

{Xn}Nb
n=1 assumed convex and compact, (1) becomes

minimize
x ∈Rd

f(x) (6)

subject to x1 ∈ X1 , . . . , xNb
∈ XNb

where x� := [x�1 ,x�2 , · · · ,x�Nb
]. Note that if Nb = 1, then (6)

boils down to (1).
The decomposition X = X1 × . . .×XNb

entails no loss of
generality since any X can be expressed in this form by setting
Nb = 1. It also emerges naturally in a number of applications,
including the dual problem of structural SVMs [8], trace-norm
regularized tensor completion [16], EV charging [11], the dual
problem of group fused Lasso [17], and structured sub-modular
minimization [18]. Thanks to the separable structure of X , the
linear oracle in (2) decouples across Nb blocks as

st
n = arg min

sn ∈Xn

〈sn ,∇xn
f(xt)〉, n = 1, 2, . . . , Nb (7)

where∇xn
f(xt) comprises the partial derivatives of f(x) with

respect to the entries of xn .
Instead of solving the Nb problems in (7), RB-FW reduces

complexity by solving just B of them, where B ∈ {1, . . . , Nb}
is a pre-selected constant. Let Nb := {1, . . . , Nb} be the index
set of all blocks, and let Bt be chosen at iteration t uniformly at
random among all subsets ofNb with B elements. The RB-FW
solver of (6) is summarized as Algorithm 2. To save computa-
tion time, step 4 of Algorithm 2 can be run in parallel [13] as
illustrated in Fig. 1. In this case, B can be selected according to
the number of physical processor cores in the control center.

The only step-size sequence for RB-FW available in the lit-
erature is [13]

γt =
2α

α2t + 2/Nb
, t = 0, 1, . . . (8)

6450 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 24, DECEMBER 15, 2017

Algorithm 2: Randomized Block Frank-Wolfe.

1: Initialize t = 0, x0 ∈ X
2: while stopping criterion not met do
3: Randomly pick Bt ⊆ Nb such that |Bt | = B
4: Compute st

n = arg min
sn ∈Xn

s�n∇xn
f(xt), ∀n ∈ Bt

5: Update

xt+1
n =

{
(1− γt)xt

n + γtst
n , ∀n ∈ Bt

xt
n , ∀n ∈ Nb \ Bt

6: t← t + 1
7: end while

where α := B/Nb is the fraction of updated blocks. For α = 1
and Nb �= 1, note that (8) is different from (4); hence, FW is
not generally a special case of the parallel RB-FW in [13].
Interestingly, Section III will introduce a family of step sizes for
RB-FW that subsumes the one in (4) as a special case.

Regarding convergence of FW solvers, two quantities play
instrumental roles. The first one is the curvature constant, which
for a differentiable f(x) over X is defined as [3], [19]

Cf := sup
γ ∈ [0 , 1]
x , s ∈X

y := (1−γ)x + γ s

2
γ2 [f(y)− f(x)− 〈y − x,∇f(x)〉] . (9)

Cf is the least upper bound of a scaled difference between
f(y) and its linear approximation around x. Throughout, Cf

is assumed bounded. This property is closely related to the
L-Lipschitz continuity of ∇f(x) over X , which is defined as

∃L > 0 : ‖∇f(x)−∇f(s)‖ ≤ L‖x− s‖, ∀x, s ∈ X . (10)

If (10) holds, it is easy to check that [3, Appendix D]

Cf ≤ LD2
X (11)

where DX := supx,s ∈X ‖x− s‖ is the diameter of X , which
is finite for X compact. Equation (11) evidences that Cf is
bounded whenever ∇f(x) is L-Lipschitz continuous over X .

When it comes to RB-FW, the set curvature for an index set
B ⊆ Nb is commonly used instead of the constant Cf [13]

CBf := sup
γ ∈ [0 , 1]

x ∈X
{sn ∈Xn }n ∈B

2
γ2

(
f(y)− f(x)−

∑

n ∈B
〈yn − xn ,∇xn

f(x)〉
)

(12)
where

yn :=
{

(1− γ)xn + γsn , n ∈ B
xn , n ∈ Nb \ B

and y� := [y�1 , . . . ,y�Nb
]. The expected set curvature for aB se-

lected uniformly at random with |B| = B can thus be expressed
as

C̄B
f := EB

[
CBf

]
=

(
Nb

B

)−1 ∑

{B: B⊆Nb ,|B|=B }
CBf (13)

where
(
Nb

B

)
:= Nb !/

(
B!(Nb −B)!

)
. It is easy to verify that

C̄B
f ≤ Cf by observing from (9) and (12) that CBf ≤ Cf , ∀B ⊆
Nb . Note however that C̄B

f = CBf = Cf , when B = Nb .
The second quantity of interest is the so-termed duality gap

g(x) := sup
s ∈X

(x− s)�∇f(x), x ∈ X (14)

whose name stems from Fenchel duality; see [8,
Appendix D], [3, Section 2]. Clearly, for the constrained prob-
lem (1), x is a stationary point if and only if g(x) = 0. In addi-
tion, it holds that g(x) ≥ 0, ∀x ∈ X , since (x− s)�∇f(x) = 0
for s = x. Thus, g(x) quantifies the distance of x from a sta-
tionary point of f(x) [14].

III. FEASIBILITY-ENSURING STEP SIZES FOR RB-FW

To motivate the need for novel step sizes, this section starts
by showing that γt in (8) does not guarantee feasibility of the
iterates {xt}. It then introduces two families of feasibility-
ensuring step size sequences, and proves that the iterates they
generate are convergent for convex objectives. Moreover, these
families are shown to offer a gamut of decay rates, thereby
allowing for a flexible selection of the most suitable step size
for a given problem.

With e.g., Nb = 103 and B = 2, the step size in (8) will
be γt > 1, ∀t < 500. As a result, step 5 of Algorithm 2 can
generate infeasible iterates xt , which render RB-FW unstable
since the gradient of the objective at the resulting xt may not
even be defined. For example, consider applying Algorithm 2
with Nb = 100, B = 10 and step size in (8) to solve the smooth
and convex program

minimize
{xn }1 0 0

n = 1

100∑

n=1

(xn)2 − log xn (15)

subject to 2 ≤ xn ≤ 3, n = 1, . . . , 100.

Initializing with {x1
n = 3}n ∈Nb

, it is easy to verify that
{s1

n = 2}n ∈B1 and {x2
n = −11/3}n ∈B1 , implying that f(x2)

and ∇f(x2) do not exist. Thus, the parallel RB-FW algorithm
in [13], whose step size is given by (8), cannot solve (15).

In a nutshell, existing step sizes do not guarantee feasibility of
RB-FW iterates. Besides, the decay rates of existing step sizes
can not be flexibly adjusted to optimize convergence in a given
problem; see Remark 2. To fill this gap, convergence analysis
of RB-FW will be pursued first for a rich class of step sizes.

A. Convergence of RB-FW for Convex Programs

For randomized FW, convergence analysis typically focuses
on f(xt) and g(xt) in (14) [8], [13]. Let x∗ denote one globally
optimal solution of (6), and define the primal sub-optimality of
xt as h(xt) := f(xt)− f(x∗). The next lemma, which quanti-
fies the improvement of h(xt) per iteration, will prove handy in
the ensuing convergence analysis.

Lemma 1: If {xt}t=0,1,... is generated by Algorithm 2 with
an arbitrary predefined step-size sequence {γt}t=0,1,... satisfy-
ing γt ∈ [0, 1] ∀t, then it holds that

E
[
h(xt+1)

]
≤ E

[
h(xt)

]
− αγtE

[
g(xt)

]
+ γ2

t C̄B
f /2 (16)

ZHANG et al.: RANDOMIZED BLOCK FRANK–WOLFE FOR CONVERGENT LARGE-SCALE LEARNING 6451

for t ≥ 0, where the expectation is taken over {Bτ }tτ =0 .
A detailed proof can be found in [8], [13]; see also part A of

the Appendix for an outline. Note that Lemma 1 can be applied
regardless of whether f(x) is convex or not.

Aiming to upper bound E [h(xt)], we will consider that
{γt}t=0,1,... satisfy

0 < γt ≤ 1, ∀t ≥ 0 (17a)

1− αγt+1

γ2
t+1

≤ 1
γ2

t

, ∀t ≥ 0. (17b)

It can be easily seen that (17b) is equivalent to

γt+1 ≥
γt

2

(√
α2γ2

t + 4− αγt

)

which implies that (17b) limits how rapidly {γt}t=0,1,... can
decrease. Condition (17) is very general and subsumes exist-
ing step sizes as special cases. For example, if B = Nb , Algo-
rithm 2 boils down to Algorithm 1, for which (4) is typically
adopted [3]. For γt as in (4), it is clear that (17a) is satisfied,
whereas (17b) follows from (t + 1)(t + 3) ≤ (t + 2)2 . Another
example arises if B = 1, in which case Algorithm 2 reduces to
Algorithm 4 in [8]. The sequence

γt =
2Nb

t + 2Nb
(18)

which was proposed in [8] for Algorithm 2, clearly sat-
isfies (17a), and also (17b) since it holds that (t + 1 +
2Nb)2 − 2(t + 1 + 2Nb) ≤ (t + 2Nb). The step size (8) also
satisfies (17b) since (α2t + α2 + 2/Nb)2 − 2α2(α2t + α2 +
2/Nb) ≤ (α2t + 2/Nb)2 , but fails to satisfy (17a), which en-
sures feasible iterates. However, upon observing that γt in (8)
satisfies γt ≤ 1 for t ≥ t̃ := (2BNb − 2Nb)/B2 , one deduces
that the shifted sequence

γ̃t := γt+ t̃ =
2

αt + 2
(19)

does satisfy (17a), and therefore constitutes a feasible alternative
to (8). Furthermore, it also satisfies (17b) because (αt + 2 +
α)(αt + 2− α) ≤ (αt + 2)2 .

To proceed with convergence rate analysis for a broad class of
step sizes, an upper bound on E [h(xt)] for step sizes satisfying
(17) will be developed.

Theorem 1 (Primal convergence): If f(x) is convex and
{γt}t=0,1,... satisfies (17), the iterates of Algorithm 2 satisfy

E
[
h(xt)

]
≤ 1− αγ0

γ2
0

γ2
t−1h(x0) +

tC̄B
f

2
γ2

t−1 , t ≥ 1. (20)

Proof: Since f(x) is differentiable, convexity of f(x) im-
plies that

f(xt)− f(x∗) ≤ (xt − x∗)�∇f(xt) (21)

where x∗ denotes any solution to (6). Combining (14) and (21)
yields

g(xt) ≥ f(xt)− f(x∗) = h(xt) ≥ 0. (22)

Thus, E[g(xt)] ≥ E[h(xt)] and (16) can be rewritten as

E
[
h(xt+1)

]
≤ (1− αγt)E

[
h(xt)

]
+ γ2

t C̄B
f /2. (23)

Dividing both sides of (23) by γ2
t gives rise to

1
γ2

t

E
[
h(xt+1)

]
≤ 1− αγt

γ2
t

E
[
h(xt)

]
+

C̄B
f

2
. (24)

Utilizing successively (17b) and (24) yields

1
γ2

t

E[h(xt+1)] ≤ 1
γ2

t−1
E[h(xt)] +

1
2
C̄B

f

≤ 1− αγt−1

γ2
t−1

E[h(xt−1)] +
1
2
C̄B

f +
1
2
C̄B

f

≤ . . . ≤ 1− αγ0

γ2
0

h(x0) +
t + 1

2
C̄B

f (25)

where the last inequality uses E[h(x0)] = h(x0). Therefore,

E
[
h(xt+1)

]
≤ 1− αγ0

γ2
0

γ2
t h(x0) +

t + 1
2

γ2
t C̄B

f

which establishes (20). �
Theorem 1 generalizes existing results on the convergence

of Algorithm 2, which apply only for specific step sizes either
assume B = 1 [8] or B = Nb [3]. Thus, Theorem 1 sheds light
on step size design for arbitrary B by providing computational
guarantees for Algorithm 2 with any step-size sequence satisfy-
ing (17).

Another quantity of interest to characterize the convergence
of Algorithm 2 is g(xt), which can be used to assess how close is
xt from being a solution [8], [13] since g(xt) ≥ h(xt); cf. (22).
However, since finding upper bounds on g(xt) is difficult [8],
[13], [14], bounds on the minimal expected duality gap until
iteration t, defined as [8], [13]

gt := min
k ∈{0,1,...t}

E
[
g(xk)

]
(26)

are pursued next.
Theorem 2 (Primal-dual convergence): Let {γt}t=0,1,... sat-

isfy (17) and γt+1 ≤ γt , ∀t ≥ 0. If f(x) is convex and
{xt}t=1,2,... is generated by Algorithm 2, then for all K ∈
{1, . . . , t}, it holds that

gt ≤
E

[
h(xK)

]

α(t−K + 1)γt
+

C̄B
f γ2

K

2αγt
. (27)

Proof: Lemma 1 asserts that

αγkE[g(xk)] ≤ E
[
h(xk)

]
− E

[
h(xk+1)

]
+ γ2

k C̄B
f /2. (28)

6452 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 24, DECEMBER 15, 2017

From gt ≤ E[g(xk)] and (28), it follows that

αgt

t∑

k=K

γk ≤ α

t∑

k=K

γkE[g(xk)]

≤
t∑

k=K

(
E

[
h(xk)

]
− E

[
h(xk+1)

])
+

C̄B
f

2

t∑

k=K

γ2
k

= E
[
h(xK)

]
− E

[
h(xt+1)

]
+

C̄B
f

2

t∑

k=K

γ2
k

≤ E
[
h(xK)

]
+

C̄B
f

2
(t−K + 1)γ2

K (29)

where the last inequality follows from E[h(xt+1)] ≥ 0 and
γt+1 ≤ γt . But since γk ≥ γt , ∀k ≤ t, one arrives at

t∑

k=K

γk ≥ (t−K + 1)γt . (30)

Finally, (27) follows after combining (29) with (30),
and dividing both sides of the resulting inequality by
α(t−K + 1)γt . �

Theorem 2 characterizes the primal-dual convergence of RB-
FW for any non-increasing step size satisfying (17). Plug-
ging (20) into (27) and fixing the step-size sequence yields an
upper bound on gt that can be minimized with respect to K to
obtain the convergence rate of gt . This approach will be pursued
in Section III-B.

B. Proposed Step Sizes

This section develops two classes of step sizes obeying (17)
for arbitrary values of B. Theorems 1 and 2 will then be invoked
to derive the resulting convergence rates. To start, consider the
following general family of diminishing step-size sequences for
fixed q ∈ (0, α] and decay rate ρ ∈ (0.5, 1]:

γt =
2

qtρ + 2
, ∀t ≥ 0. (31)

As will be seen, this family includes, as special cases, the step
sizes in (4), (18), and (19).

Lemma 2: If {γt}t=0,1,... is given by (31), it satisfies (17b).
Proof: See part B of the Appendix.
Upon noticing that 0 < γt ≤ 1 and γt+1 ≤ γt for {γt}t=0,1,...

in (31), the convergence rate of RB-FW can be derived by ap-
pealing to Theorems 1 and 2 as follows.

Corollary 1: For convex f(x), the iterates {xt}t=1,2,... of
Algorithm 2 with step size (31) satisfy

E
[
h(xt)

]
≤ 4 (1− α) h(x0)

[q(t− 1)ρ + 2]2
+

2tC̄B
f

[q(t− 1)ρ + 2]2
(32)

and

gt ≤
(2ρ + 1)2ρ+1(qtρ + 2)

αq2(2ρ)2ρ
·
(t + 1)C̄B

f + 2(1− α)h(x0)
t2ρ+1 .

(33)

Proof: See part C of the Appendix. �

Corollary 1 subsumes existing convergence results as special
cases. Indeed, when B = Nb , one has that Bt = Nb ∀t, which
implies that C̄B

f = Cf , and Algorithm 2 reduces to the tradi-
tional FW solver. By selecting q = 1 and ρ = 1, the classical
step size in (4) is retrieved. From Corollary 1, the resulting
computational bounds are

h(xt) ≤ 2tCf

(t + 1)2 ≤
2Cf

t + 2
(34)

and

gt ≤
27Cf

4
· (t + 1)(t + 2)

t3
. (35)

The resulting convergence rate of h(xt) coincides with the one
in [3, Theorem 1]. As for gt , the bound in (35) is of the same
order as that in [3, Theorem 2].

In addition, with B = 1, q = 1/Nb , and ρ = 1, the step
size (18) proposed in [8] is recovered. From Corollary 1, the
primal computational bound is

E[h(xt)] ≤ 4(N 2
b −Nb)h(x0)

(t− 1 + 2Nb)2 +
2tN 2

b C1
f

(t− 1 + 2Nb)2

≤ 4(N 2
b −Nb)h(x0)

(t− 1 + 2Nb)2 +
2N 2

b C1
f

t + 4Nb − 2
(36)

where the last inequality follows from

t

t + 2Nb − 1
≤ t + 2Nb − 1

t + 4Nb − 2
.

Meanwhile, gt is bounded by

gt ≤
27Nb(t + 2Nb)

4t3
[
(t + 1)NbC

1
f + 2(Nb − 1)h(x0)

]
.

(37)
Notably, the bound in (36) is tighter than the one reported in [8,
Theorem 2], while the bound on gt in (37) is of the same order
as that in [8, Theorem 2].

Finally, note that Corollary 1 also characterizes convergence
for the step size γ̃t in (19), since γ̃t is recovered from (31) upon
setting q = α and ρ = 1.

The decreasing rates of the bounds in Theorems 1 and 2 are
determined by the decay rates of the step size sequence. The
faster γt diminishes, the more rapidly the upper bound in Theo-
rem 1 vanishes. However, the sequence in (31) decreases at most
as fast as 2/(αt + 2). To improve the bound in Theorem 1, a
more rapidly vanishing sequence is proposed next. Specifically,
consider the sequence

γ0 = 1, and γt+1 =

√
α2γ4

t + 4γ2
t − αγ2

t

2
, ∀t ≥ 0. (38)

It is then possible to establish the following.
Lemma 3 (Recursive step size): If {γt}t=0,1,... is chosen as

in (38), it then holds that

1
αt + 1

≤ γt ≤
2

αt + 2
, ∀t ≥ 0 (39a)

γt+1 ≤ γt , ∀t ≥ 0. (39b)

Proof: See part D of the Appendix. �

ZHANG et al.: RANDOMIZED BLOCK FRANK–WOLFE FOR CONVERGENT LARGE-SCALE LEARNING 6453

The upper bound in (39a) confirms that the step size in (38)
vanishes at least as fast as 2/(αt + 2). To check whether
(38) meets (17), note that (17a) follows from (39a), whereas (38)
implies that (17b) holds with equality. Because (38) satisfies (17)
and (39b), the following computational bounds for (38) can be
derived by plugging (39a) into Theorems 1 and 2.

Corollary 2: For convex f(x), the iterates {xt}t=1,2,... of
Algorithm 2 with step size as in (38), satisfy

E
[
h(xt)

]
≤ 4(1− α)h(x0)

(αt + 2− α)2 +
2tC̄B

f

(αt + 2− α)2 (40)

and

gt ≤
27(αt + 1)

2α3t3
[
(t + 1)C̄B

f + 2(1− α)h(x0)
]
. (41)

Proof: See part E of the Appendix. �
To recap, this section puts forth two families of step sizes

for Algorithm 2 with arbitrary B, namely (31) and (38).
Corollaries 1 and 2 establish convergence of Algorithm 2 for
these step sizes, which also guarantee feasibility of the iterates
since they satisfy (17a). When {γt}t=0,1,... is given by (31) with
q = α and ρ = 1 or when it is defined as in (38), the conver-
gence rates of Algorithm 2 are in the order of O (1/t), thus
matching those of the traditional FW algorithm, yet the compu-
tational cost of the former is potentially much lower than that
of the latter.

Remark 1: The step size of RB-FW can also be chosen
through line search, which prescribes

γt = arg min
0≤γ≤1

f
(
(1− γ)xt + γŝt

)
(42)

with ŝt� := [ŝt�
1 , . . . , ŝt�

Nb
] and

ŝt
n :=

{
st
n , n ∈ Bt

xt
n , n ∈ Nb \ Bt .

Let {x̌t}t=0,1,... be the iterates generated by Algorithm 2 with
γt given by (42). By (16) and (42), it holds that

E
[
h(x̌t+1)

]
≤ E

[
h(x̌t)

]
− αγtE

[
g(x̌t)

]
+ γ2

t C̄B
f /2. (43)

for any predefined step-size sequence {γt ∈ [0, 1]} [8], [13].
Particularly, (43) holds for {γt := 2/(αt + 2)}t=0,1,... . It can
then be shown that {x̌t}t=0,1,... satisfy for t ≥ 1

E
[
h(x̌t)

]
≤ 4(1− α)h(x0)

(αt + 2− α)2 +
2tC̄B

f

(αt + 2− α)2

and

ǧt ≤
27(αt + 2)

4α3 ·
(t + 1)C̄B

f + 2(1− α)h(x0)
t3

where ǧt := mink ∈{0,1,...t} E
[
g(x̌k)

]
. The proof follows the

steps of the one for Corollary 1. The convergence rate of line-
search-based Algorithm 2 therefore remains in the order of
O(1/t). Note however that extra computational cost is incurred
for finding γt via (42).

Remark 2: At this point, it is worth discussing the choice
of the step size leading to the fastest convergence in a given
problem. Even though the bounds in this section suggest that

the more rapid the decrease of the step sizes, the quicker the
decrease of h(xt), this is not always the case in practice. This
is because step sizes with large decay rates become small after
the first few iterations, and small step sizes lead to slow changes
in h(xt). Conversely, small decay rates tend to yield rapidly
decreasing h(xt) in the first few iterations since the step sizes
remain relatively large. Hence, it is difficult to provide universal
guidelines since rapidly or slowly diminishing step sizes may
be preferred depending on the specific optimization problem
at hand. For example, if optimal solutions lie in the interior of
the feasible set, rapidly diminishing step sizes can help reduce
oscillations around optimal solutions, thus improving the over-
all convergence rates. On the other hand, if f(x) is monotone
on X , the solution lies on the boundary, which means that no
oscillatory behavior is produced and, hence, slowly diminishing
step sizes will be preferable.

IV. RB-FW FOR NONCONVEX PROGRAMS

The objective function of (6) is nonconvex in certain applica-
tions, such as constrained multilinear decomposition [20] and
power system state estimation [21], [22]. Yet, convergence of
RB-FW has never been investigated for this case. The rest of
this section fills this gap by analyzing the convergence rate of
RB-FW in problems involving a nonconvex objective. Similar
to Section III, computational bounds are first derived for a wide
class of step sizes, and are subsequently tailored for γt as in (31)
as well as for exact line search.

Recall that Section II introduced g(x) as a non-stationarity
measure of point x with respect to f(x). In the sequel, RB-FW
with be analyzed in terms of upper bounds on gt [cf. (26)].

Theorem 3: If {γt}t=0,1,... satisfies 0 ≤ γt ≤ 1 ∀t, it holds
for the iterates {xt}t=0,1,... of Algorithm 2 that

gt ≤
h(x0)

α
∑t

k=0 γk

+
C̄B

f

∑t
k=0 γ2

k

2α
∑t

k=0 γk

, t ≥ 0. (44)

Proof: Using 0 ≤ gt ≤ E[g(xk)] and (28), we deduce that

αgt

t∑

k=0

γk ≤ α

t∑

k=0

γkE[g(xk)]

≤
t∑

k=0

(
E

[
h(xk)

]
− E

[
h(xk+1)

])
+ (C̄B

f /2)
t∑

k=0

γ2
k

= E
[
h(x0)

]
− E

[
h(xt+1)

]
+ (C̄B

f /2)
t∑

k=0

γ2
k

≤ h(x0) + (C̄B
f /2)

t∑

k=0

γ2
k

where the last inequality follows from E
[
h(xt+1)

]
≥ 0. Divid-

ing both sides by α
∑t

k=0 γk leads to (44). �
Clearly, Theorem 3 affirms that limt→∞ gt = 0 if the step-size

sequence {γt}t=0,1,... satisfies

lim
t→∞

t∑

k=0

γk =∞, and lim
t→∞

t∑

k=0

γ2
k = S

6454 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 24, DECEMBER 15, 2017

for some finite S > 0. In other words, if {γt}t=0,1,... is not
summable and {γ2

t }t=0,1,... is summable, then either xt is a
stationary point for some t, or, a subsequence of {xt}t=0,1,...

converges to a stationary point.
For any given step size, the convergence rates of RB-FW can

be derived through (44). To start with, consider {γt}t=0,1,...

in (31) with q = α, ρ = 1; that is, γt = 2/(αt + 2), and
note that

t∑

k=0

2
αk + 2

≥
∫ t

x=0

2
αx + 2

dx =
2
α

log
(αt + 2

2

)
(45a)

t∑

k=0

4
(αk + 2)2 ≤

∫ t

x=−1

4
(αx + 2)2 dx =

4
α

(1
2− α

− 1
αt + 2

)
.

(45b)

By substituting (45) into Theorem 3, it follows that
Algorithm 2 attains a stationary point of a nonconvex program
at rate O(1/ log t).

This rather slow rate can be substantially improved upon
adopting exact line search for RB-FW.

Theorem 4: If {γt}t=0,1,... is chosen as in (42), it holds for
the iterates {xt}t=0,1,... of Algorithm 2 that

gt ≤
max

{
2h(x0), C̄B

f

}

α
√

t + 1
, t ≥ 0. (46)

Proof: The right-hand side of (16) is minimized for

γ̂k = arg min
γ ∈ [0,1]

E
[
h(xk)

]
− αγE

[
g(xk)

]
+ γ2C̄B

f /2

= min
{
1, αE

[
g(xk)

]
/C̄B

f

}
. (47)

Thus, if E
[
g(xk)

]
≥ C̄B

f /α, then γ̂k = 1 and (16) becomes

E
[
h(xk+1)

]
≤ E

[
h(xk)

]
− αE

[
g(xk)

]
+ C̄B

f /2

≤ E
[
h(xk)

]
− αE

[
g(xk)

]
/2 (48)

where the second inequality follows from C̄B
f ≤ αE

[
g(xk)

]
.

Similarly, if E
[
g(xk)

]
< C̄B

f /α, then γ̂k = αE
[
g(xk)

]
/C̄B

f

and (16) becomes

E
[
h(xk+1)

]
≤ E

[
h(xk)

]
− α2E

[
g(xk)

]2
/2C̄B

f . (49)

Combining both cases, (48) and (49) establish that

E
[
h(xk+1)

]
≤ E

[
h(xk)

]

−min

{
αE

[
g(xk)

]

2
,
α2E2

[
g(xk)

]

2C̄B
f

}

. (50)

When γk is given by (42) with t = k, h(xk+1) is not greater
than when γk = γ̂k . Therefore, (50) still holds in the former
case. Thus, for {γk}k=0,1,... as in (42), it follows that

min

{
αE

[
g(xk)

]

2
,
α2E

[
g(xk)

]2

2C̄B
f

}

≤ E
[
h(xk)

]
− E

[
h(xk+1)

]
. (51)

Summing (51) from k = 0 to t yields

(t + 1)min

{
αgt

2
,
α2g2

t

2C̄B
f

}

≤ h(x0)− E
[
h(xt+1)

]
. (52)

Therefore,

gt ≤ max

⎧
⎨

⎩
2h(x0)
α(t + 1)

,

√
2C̄B

f h(x0)

α
√

t + 1

⎫
⎬

⎭
. (53)

Since t + 1 ≥
√

t + 1 and
√

2C̄B
f h(x0) ≤ max{2h(x0), C̄B

f },
(46) holds. �

Theorem 4 generalizes the recent result in [14], which only
applies to the classical FW method. The improved bound in (46)
is attained at the price of performing exact line search, which
requires the solution to a potentially nonconvex univariate opti-
mization subproblem (42). It is worth mentioning that an optimal
solution to this subproblem can be readily found in a number
of cases. For example, if f((1− γ)xt + γst) is quadratic in
γ, then γt can be readily found by evaluating this function at
three points.

All in all, the main contribution here is a convergence rate
analysis of RB-FW for minimizing (6) with nonconvex f(x).
Interestingly, when RB-FW relies on step sizes obtained through
line search, a stationary point is reached at rate O(1/

√
t).

V. GENERALIZED STEP SIZES FOR FW

The availability of satisfactory step sizes for FW is rather
limited. Indeed, besides line search, convergence rate of FW
has only been established for γt = 2

t+2 [3], and γt = 1
t+1 [23].

This limits the user’s control on convergence of FW iterates; cf.
Remark 2. To alleviate this limitation, this section examines the
usage of step sizes in (31) and (38) in the classical FW solver,
namely Algorithm 1. Since the latter can be viewed as a special
case of Algorithm 2 with B = Nb , Corollaries 1 and 2 can be
leveraged to derive the convergence rates of FW for convex
programs with the novel step sizes. Specifically, the ensuing
computational bounds hold.

Corollary 3: If f(x) is convex and {γt}t=0,1,... is chosen as
in (31) with α = 1, q ∈ (0, 1] and ρ ∈ (0.5, 1], then the succes-
sive iterates {xt}t=1,2,... of Algorithm 1 satisfy for t ≥ 1

h(xt) ≤ 2tCf

[q(t− 1)ρ + 2]2
(54)

and

gt ≤
(2ρ + 1)2ρ+1(qtρ + 2)

q2(2ρ)2ρ

(t + 1)Cf

t2ρ+1 . (55)

Proof: This is a special case of Corollary 1 for α = 1.
Corollary 4: If f(x) is convex and the step-size sequence

{γt}t=0,1,... is chosen as in (38) with α = 1, then the successive
iterates {xt}t=1,2,... of Algorithm 1 satisfy for t ≥ 1

h(xt) ≤ 2Cf

t + 2
(56)

ZHANG et al.: RANDOMIZED BLOCK FRANK–WOLFE FOR CONVERGENT LARGE-SCALE LEARNING 6455

and

gt ≤
27Cf

2

(
1
t

+
2
t2

+
1
t3

)
. (57)

Proof: Corollary 4 follows directly from Corollary 2. �
Corollaries 3 and 4 establish convergence rates in terms of

both h(xt) and gt for the classical FW method with step sizes
of different decay rates. For a given problem, the most suitable
step size can be selected following the guidelines in Remark 2.
Interestingly, comparing Corollaries 3 and 4 with Corollaries 1
and 2 reveals that the initial optimality gap h(x0) no longer
affects the bounds for FW.

VI. APPLICATIONS

Two applications where RB-FW exhibits significant compu-
tational advantages over existing alternatives will be delineated
in this section.

A. Coordination of EV Charging

The convex setup of optimal schedules for EV charging in [24]
is briefly reviewed next. Suppose that a load aggregator coordi-
nates the charging of N EVs over the T consecutive time slots
T := {1, . . . , T} of length Δτ . Let Tn ⊆ T denote the time
slots in which vehicle n is connected to the power grid, and let
pn (τ) be the charging rate of EV n at time τ to be scheduled by
the load aggregator. If p̄n is the charging rate limitation imposed
by the battery of vehicle n, then pn (τ) should lie in the interval
[0, p̄n (τ)] with

p̄n (τ) :=
{

p̄n , τ ∈ Tn ,

0, otherwise.

The charging profile for vehicle n, denoted by p�n :=
[pn (1), · · · , pn (T)], should therefore belong to the convex and
compact set

Pn :=
{
pn : Δτ p�n 1 = Rn, 0 ≤ pn (τ) ≤ p̄n (τ), ∀τ ∈ T

}

where Rn represents the total energy needed by EV n.
Given {Rn}Nn=1 , {p̄n}Nn=1 , and {Tn}Nn=1 , the problem solved

by the aggregator is to find the charging profiles minimizing its
electricity cost [24]; that is,

p∗ ∈ arg min
p

f(p) (58)

subject to pn ∈ Pn , ∀ n ∈ N

where p� := [p�1 , · · · ,p�N] and N := {1, . . . , N}. With
{D(τ)}Tτ =1 denoting additional known loads, the total cost f(p)
is

f(p) =
T∑

τ =1

(
D(τ) +

N∑

n=1

pn (τ)
)2

. (59)

Note that f(p) is convex but not strongly convex in p. The
feasible set for (58) is the Cartesian product P := P1 × . . .×
PN , which is convex and compact. Thus, problem (58) is convex
and of the form (6).

Algorithm 3: EV Charging Coordination Solver.

Input: {Rn}Nn=1 , {p̄n}Nn=1 , {Tn}Nn=1 , and B
1: Initialize {p0

n} and t = 0
2: while stopping_criterion not met do
3: Randomly pick Bt ⊆ N such that |Bt | = B
4: Evaluate ct via (61) and broadcast ct entry order
5: Calculate {st

n}n ∈Bt
via (62) and (63)

6: Update {pt+1
n }n ∈N via

pt+1
n =

{
(1− γt)pt

n + γtst
n , ∀n ∈ Bt

pt
n , ∀n ∈ N \ Bt

7: t← t + 1
8: end while

Assuming that the aggregator can only afford updating the
charging profiles of B out of the N vehicles in parallel due to a
limited number of processors, the ensuing B linear subproblems
arise when solving (58) via Algorithm 2:

st
n ∈ arg min

sn ∈Pn

〈sn , ct〉, n ∈ Bt (60)

where |Bt | = B and ct := ∇pn
f(pt). The latter does not de-

pend on n since the gradient ∇pn
f(pt) is identical across the

N vehicles. Its τ -th entry is given by

ct(τ) := 2
(
D(τ) +

N∑

n=1

pt
n (τ)

)
. (61)

The subproblem (60) can be solved in closed form [25]. To
find a solution, sort the entries of ct in non-decreasing order
by finding {τ t

i }Ti=1 such that ct(τ t
1) ≤ ct(τ t

2) ≤ . . . ≤ ct(τ t
T).

Subsequently, one needs to find the index τ̄ t
n ≥ 1 for which

τ̄ t
n −1∑

i=1

p̄n (τ t
i) ≤ Rn and

τ̄ t
n∑

i=1

p̄n (τ t
i) > Rn. (62)

Finally, the entries of the minimizer st
n are found as

st
n (τ t

i) =

⎧
⎪⎨

⎪⎩

p̄n (τ t
i), i = 1, . . . , τ̄ t

n − 1

Rn −
∑τ̄ t

n
j=1 p̄n (τ t

j), i = τ̄ t
n

0, i = τ̄ t
n + 1, . . . , T.

(63)

The computational advantage of RB-FW for solving (58) stems
from the fact that the solution to the subproblems (60) can
be obtained efficiently via (63) upon receiving the ct en-
try order, whereas competing alternatives require projections
onto {Pn}n ∈Bt

per iteration [11]. Our RB-FW-based charging
scheme is summarized in Algorithm 3.

B. Structural SVMs

The term structured prediction comprises a family of machine
learning problems, where the output to the predictors have vari-
able sizes [26]. An example is the optical character recognition
(OCR) task, where one is given a vector z ∈ RP containing the
P -pixel image of an M -letter word. The goal is to produce a
vector y ∈ {1, . . . , 26}M , whose m-th entry indicates which of

6456 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 24, DECEMBER 15, 2017

the 26 letters of the alphabet corresponds to the m-th character
in that word. This problem is challenging because the output y
may take 26M values, and also the same predictor must work
for different values of M .

Structural SVMs have been widely adopted to carry out the
aforementioned structured prediction tasks [27], [28]. Upon
defining the application-dependent feature map φ [28] that en-
codes the relevant information for the input-output pair (z,y)
in the d-dimensional vector φ(z,y), a vector w is learned so
that 〈w,φ(z,y)〉 when seen as a function of y is maximized
at the correct y for a given input z. Given N training pairs
{(zn ,yn)}Nn=1 , w is learned by solving

minimize
w ,ξ

λ

2
‖w‖2 +

1
N

N∑

n=1

ξn (64a)

subject to 〈w,ψn (ỹ)〉 ≥ Ln (ỹ)− ξn (64b)

∀ỹ ∈ Yn , ∀n ∈ N

where N := {1, . . . , N}, ψn (ỹ) := φ(zn ,yn)− φ(zn , ỹ),
Ln (ỹ) is the incurred loss by predicting ỹ instead of the given
label yn , {ξn}Nn=1 are slack variables, λ is a nonnegative con-
stant, andYn is the set of all possible outputs for input zn . In the
OCR example, Yn = {1, . . . , 26}Mn , where Mn is the number
of characters of the n-th word.

Problem (64) is difficult since the number of constraints ex-
plodes with |Yn |. If βn (ỹ) is the Lagrange dual variable associ-
ated with (64b), vector βn is formed with entries {βn (ỹ)}ỹ∈Yn

,
and vector β has entries {βn}n ∈Nb

, the dual of (64) is [8]

minimize
β∈Rm

β≥0

f(β) :=
λ

2
‖Aβ‖2 − b�β (65)

subject to 1�βn = 1, ∀n ∈ N

where m :=
∑

n |Yn |, A ∈ Rd×m is formed with columns
{ 1
λN
ψn (ỹ) ∈ Rd | ỹ ∈ Yn , n ∈ N}, and vector b ∈ Rm has

entries { 1
N Ln (ỹ)}ỹ ∈Yn ,n ∈N .

A randomized single-block FW is adopted by [8], to solve
(65). Extending this approach to B > 1 yields Algorithm 4. To
avoid storing the high-dimensional vectorβt , auxiliary variables
w̃t := Aβt , t = 0, 1, . . . are introduced. It can be shown that
iterates {w̃t}t=0,1... converge to the global minimizer of (64);
see [8] for additional details.

VII. SIMULATED TESTS

This section demonstrates the efficacy of the novel step sizes,
and our parallel RB-FW solvers, in the context of the large-scale
applications of Sec. VI.

A. Coordination of EV Charging

In the first experiment, 63 EVs with maximum charging
power p̄n = 3.45 kW ∀n, were scheduled. The simulation
comprises T = 96 time slots ranging from 12:00 pm to
12:00 pm of the next day. The values of {Tn}Nn=1 and {Rn}Nn=1
were set according to real travel data of the National Household
Travel Survey [11], [29]. The base load {Dτ }Tτ =1 were obtained

Algorithm 4: Structural SVMs Solver.

Input: {(zn ,yn)}Nn=1 , {Yn}Nn=1 , and B

1: Initialize β0 , 	̂0 = 	0
1 = . . . = 	0

Nb
= 0, and t = 0

2: Calculate w̃0 = w̃0
1 = . . . = w̃0

Nb
= Aβ0

3: while stopping_criterion not met do
4: Randomly pick Bt ⊆ N such that |Bt | = B
5: for n ∈ Bt do
6: Compute

y∗n := arg max
y ∈Yn

Ln (y)− 〈w̃t ,ψn (y)〉

7: Update w̃t+1
n = (1− γt)w̃t

n + γt

λN
ψn (y∗n)

8: Update 	t+1
n = (1− γt)	t

n + γt

N Ln (y∗n)
9: Update w̃t+1 = w̃t + w̃t+1

n − w̃t
n

10: Update 	t+1 = 	t + 	t+1
n − 	t

n

11: end for
12: t← t + 1
13: end while

by averaging the 2014 residential load data from Southern
California Edison [30].

Convergence is assessed in terms of the relative error ε(pt) :=
(f(pt)− f(p∗)) /f(p∗), wherep∗ is obtained using the off-the-
shelf solver SeDuMi.

The following step-size sequences were compared.

(S1) : γt :=
2

αt + 2
(66)

(S2) : γt :=

√
α2γ4

t−1 + 4γ2
t−1 − αγ2

t−1

2
, γ0 = 1

(S3) : γt :=
2

0.5αt + 2

(S4) : γt :=
2

0.5αt0.9 + 2

(S5) : γt :=
2

0.5αt0.8 + 2
.

S2 is the sequence in (38), whereas S1 and S3-S5 are special
cases of (31). Sequences S1-S5 cover a wide range of decay
rates. S2 vanishes faster than S1 [cf. (39a)], whereas the decay
rates of S3-S5 are smaller than that of S1. Note that S1 boils
down to the step size in (18) when setting B = 1. For all n =
1, . . . , N , p0

n was initialized as

p0
n (τ) =

⎧
⎪⎨

⎪⎩

p̄n (τ), τ = 1, . . . , τ̄ 0
n − 1

Rn −
∑τ̄ 0

n
j=1 p̄n (j), τ = τ̄ 0

n

0, τ = τ̄ 0
n + 1, . . . , T

where the index τ̄ 0
n ≥ 1 was found as

τ̄ 0
n −1∑

τ =1

p̄n (τ) ≤ Rn and
τ̄ 0

n∑

τ =1

p̄n (τ 0) > Rn.

The first experiment assumed that only one vehicle was
randomly selected to update its charging profile per iteration.
Algorithm 3 with B = 1 was run with the step sizes S1-S5 for

ZHANG et al.: RANDOMIZED BLOCK FRANK–WOLFE FOR CONVERGENT LARGE-SCALE LEARNING 6457

Fig. 2. Convergence performance of Algorithm 3 with B = 1.

Fig. 3. Convergence performance of Algorithm 3 with B = 10.

1,000 iterations. Fig. 2 depicts the evolution of ε(pt) across the
iteration index t for Algorithm 3 with step sizes S1-S5 when
B = 1. It is observed that the algorithm converges towards a
global minimum for all the tested step sizes. In this scenario, the
more slowly the step size diminishes, the faster the relative error
decreases. Since B = 1 and Algorithm 3 is a special instance of
Algorithm 2, Fig. 2 therefore highlights how randomized single-
block FW can benefit from the proposed step sizes. Specifically,
the proposed step sizes S3-S5 lead to a much faster conver-
gence than S1, which coincides with the step size in (18) since
B = 1.

The second experiment tested Algorithm 3 with B = 10.
Fig. 3 further confirms that slowly diminishing step sizes lead
to fast convergence in the first few iterations. However, as the
iterates approach a minimum, the slowly diminishing step sizes
yield larger oscillations; see e.g. S5 in Fig. 3. This phenomenon
has already been described in Remark 2. Comparing Figs. 2
and 3 reveals that considerably less iterations are required to
achieve a target accuracy for larger B. For example, about one
fifth of iterations are now required for Algorithm 3 with S5 to
reach ε(p) ≤ 10−5 . Thus, if the ten blocks can be processed in

Fig. 4. Number of iterations to achieve ε(pt) ≤ 10−5 .

Fig. 5. Empirical success rate for S1-S5 with different values of B .

parallel, setting B = 10 roughly reduces the computation time
by a factor of five, which further corroborates the merits of
parallel RB-FW.

The next experiment highlights the impact of B on the con-
vergence of Algorithm 3. Five copies of Algorithm 3, each one
with a different step size S1-S5, are executed for 100 indepen-
dent trials. The minimum value of t such that at least one of
these copies satisfies ε(pt) ≤ 10−5 is recorded. Fig. 4 repre-
sents the sample mean and standard derivation of this minimum
t averaged over the 100 trials for different values of B. It is
observed that both mean and standard derivation decrease for
increasing B. If each iteration of Algorithm 3 is run in B cores
in parallel, then the number of iterations constitutes a proxy
for runtime. Fig. 4 adopts this proxy to showcase the benefit
of adopting B > 1. Nonetheless, observe that the influence of
B on the number of iterations decreases for large B. Fig. 5
depicts the fraction of trials that each copy of Algorithm 3 is
the first among the five copies in achieving ε(pt) ≤ 10−5 . This
figure reveals that slowly diminishing step sizes are preferable
for small values of B.

6458 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 24, DECEMBER 15, 2017

Fig. 6. Progress of g(βt) for Algorithm 4 with B = 1.

Fig. 7. Progress of g(βt) for Algorithm 4 with B = 2.

B. Structural SVMs

The structural SVMs experiment was conducted on a subset
of the OCR dataset [27], [31]. The feature mapping φ(z,y),
loss function Ln (ỹ), and solution to the subproblems in step 5
of Algorithm 4 were evaluated using the open source code [32]
released by the authors in [8]. The dimension of φ(z,y) is
d = 4, 028, and the number of training examples is N = 6, 251.
To initialize each β0

n , one of its entries chosen uniformly at
random was set to one, whereas all the remaining entries were set
to zero. Algorithm 4 with λ = 0.1 and step sizes S1-S5 was run
for six passes through all the training examples. The duality gap
g(βt) in (14) is depicted in Figs. 6 and 7 for B = 1 and B = 2,
respectively. In both cases, Algorithm 4 with S5 outperforms all
other variants in the first few iterations. Furthermore, it can be
seen that the required number of iterations to achieve a target
accuracy almost halves when increasing B from one to two.

VIII. CONCLUDING SUMMARY

The RB-FW algorithm is especially suited for solving high-
dimensional constrained learning problems whose feasible set is
block separable. For convex programs, the present contribution

developed a rich family of feasibility-ensuring step sizes that
enable parallel updates of provably convergent RB-FW iterates.
The novel step sizes admit various decay rates, leading to flexible
convergence rates of RB-FW. Convergence of RB-FW is further
established for constrained nonconvex problems too. Numeri-
cal tests using real-world datasets corroborated the speed-up
advantage of parallel RB-FW with the proposed step sizes over
randomized single-block FW. In addition, single-block FW with
the developed slowly diminishing step sizes converges markedly
faster than that with existing step sizes.

APPENDIX

A. Proof of Lemma 1

Using (12) together with steps 4 and 5 of Algorithm 2, we
find

f(xt+1) ≤ f(xt) +
∑

n ∈Bt

〈xt+1
n − xt

n ,∇xn
f(xt)〉+ γ2

t CBt

f /2

= f(xt) +
∑

n ∈Bt

γt〈st
n − xt

n ,∇xn
f(xt)〉+ γ2

t CBt

f /2.

Subtracting f(x∗) from both sides yields

h(xt+1) ≤ h(xt) +
∑

n ∈Bt

γt〈st
n − xt

n ,∇xn
f(xt)〉+ γ2

t CBt

f /2.

Taking conditional expectation with respect to Bt , we arrive for
a given xt at

EBt

[
h(xt+1)|xt

]

≤ h(xt) + α
∑

n ∈Nb

γt〈st
n − xt

n ,∇xn
f(xt)〉+ γ2

t C̄B
f /2

= h(xt) + αγt〈st − xt ,∇f(xt)〉+ γ2
t C̄B

f /2

= h(xt)− αγtg(xt) + γ2
t C̄B

f /2 (67)

where the last equality follows from (14) and step 4 of
Algorithm 2. Since xt is determined by {Bτ }t−1

τ =0 , taking ex-
pectations in (67) with respect to {Bτ }t−1

τ =0 yields (16).

B. Proof of Lemma 2

Plugging (31) into the left-hand side of (17b) yields

1− αγt+1

γ2
t+1

=
[q(t + 1)ρ + 2− α]2 − α2

4

≤ [q(t + 1)ρ + 2− α]2

4

≤ [q(t + 1)ρ − q + 2]2

4
. (68)

where the last inequality follows from q ≤ α ≤ 1. Consider
the auxiliary function ϕ(x) := (x + c)ρ − xρ − c, x ≥ 0 for
some constant c ≥ 1, and its first-order derivative

ϕ′(x) = ρ(x + 1)ρ−1 − ρxρ−1 , x ≥ 0.

Since ρ ≤ 1, it holds that ϕ′(x) ≤ 0, and thus,

ϕ(x) ≤ ϕ(0) = cρ − c ≤ 0, ∀x ≥ 0

ZHANG et al.: RANDOMIZED BLOCK FRANK–WOLFE FOR CONVERGENT LARGE-SCALE LEARNING 6459

or,

(x + c)ρ − c ≤ xρ, ∀x ≥ 0. (69)

Multiplying both sides of (69) by q, and setting c = 1 and x = t
gives rise to

0 ≤ q(t + 1)ρ − q ≤ qtρ , ∀t ≥ 0. (70)

Combining (68) and (70) yields

1− αγt+1

γ2
t+1

≤ [qtρ + 2]2

4
=

1
γ2

t

which concludes the proof.

C. Proof of Corollary 1

Expression (32) follows directly by substituting (31) into (20).
To show (33), apply Theorem 2 to verify that

αgt ≤
E

[
h(xK)

]

γ2
0 (t−K + 1)γt

+
C̄B

f γ2
K

2γt

≤ (1− αγ0)γ2
K−1h(x0)

γ2
0 (t−K + 1)γt

+
KC̄B

f γ2
K−1

2(t−K + 1)γt
+

C̄B
f γ2

K

2γt

≤ (1− α) γ2
K−1h(x0)

(t−K + 1)γt
+

γ2
K−1C̄

B
f (t + 1)

2γt(t−K + 1)

≤ γ2
K−1

t−K + 1
·
(t + 1)C̄B

f + 2(1− α)h(x0)
2γt

(71)

for all K ∈ {1, . . . , t}, where the second inequality stems
from (20) and the third one follows from γK ≤ γK−1 and
γ0 = 1. The next step is to bound the first quotient in the right-
hand side of (71). To this end, set c = 2/q and x = K − 1 in (69)
to deduce that

γK−1 =
2

q(K − 1)ρ + 2
≤ 2

q(K − 1 + 2/q)ρ
. (72)

Now set K = �μ(t + 2/q)�, where μ is an arbitrary constant.
Since K ∈ {1, . . . , t}, μ needs to satisfy

0 < μ ≤ t

t + 2/q
. (73)

Since

�μ(t + 2/q)� − 1 + 2/q ≥ μ(t + 2/q)− 2 + 2/q

≥ μ(t + 2/q) > 0

it follows from (72) that

γK−1 ≤
2

qμρ(t + 2/q)ρ
.

Therefore,

γ2
K−1

t−K + 1
≤ 4

q2(t−K + 1)μ2ρ(t + 2/q)2ρ

≤ 4
q2 [t− μ(t + 2/q)]μ2ρ(t + 2/q)2ρ

. (74)

Minimizing the right-hand side with respect to μ in the inter-
val (73) yields

γ2
K−1

t−K + 1
≤ 4(2ρ + 1)2ρ+1

q2(2ρ)2ρt2ρ+1 (75)

for μ = 2ρ
2ρ+1

t
t+2/q .

From (71), gt can be upper bounded as

gt ≤
γ2

K−1

t−K + 1
·
(t + 1)C̄B

f + 2(1− α)h(x0)
2αγt

≤ (2ρ + 1)2ρ+1(qtρ + 2)
αq2(2ρ)2ρ

·
(t + 1)C̄B

f + 2(1− α)h(x0)
t2ρ+1 .

where the second inequality follows from (75) and (31).

D. Proof of Lemma 3

To prove (39a) by induction, it clearly holds for t = 0, and
assume that it holds also for a fixed t ≥ 0. Then, one needs to
show that

1
αt + 1 + α

≤ γt+1 ≤
2

αt + 2 + α
. (76)

To this end, define the auxiliary function

ϕ̂(x) :=
√

α2x4 + 4x2 − αx2

2
, x ≥ 0

which is monotonically increasing since

ϕ̂′(x) =
(α2x2 + 2)− αx

√
α2x2 + 4√

α2x2 + 4
> 0.

Thus, by the induction hypothesis we have

ϕ̂

(
1

αt + 1

)
≤ γt+1 = ϕ̂(γt) ≤ ϕ̂

(
2

αt + 2

)
. (77)

Note that

1− 2α

αt + 2 + α
≤

(
1− α

αt + 2 + α

)2

=
(

αt + 2
αt + 2 + α

)2

or, equivalently,

1 ≤ 2α

αt + 2 + α
+

(
αt + 2

αt + 2 + α

)2

=
(

α

αt + 2
+

αt + 2
αt + 2 + α

)2

− α2

(αt + 2)2 . (78)

This inequality implies that

ϕ̂

(
2

αt + 2

)
=

1
αt + 2

√
4α2

(αt + 2)2 + 4− 2α

(αt + 2)2

≤ 2
αt + 2 + α

. (79)

Combining (79) with the second inequality in (77) proves the
second inequality in (76).

6460 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 24, DECEMBER 15, 2017

On the other hand, since (αt + 1 + α)2 ≥ α(αt + 1 + α) +
(αt + 1)2 , it holds that

α2

(αt + 1)2 + 4 ≥ α2

(αt + 1)2 +
4α

αt + 1 + α
+

4(αt + 1)2

(αt + 1 + α)2

=
(

α

αt + 1
+

2(αt + 1)
αt + 1 + α

)2

. (80)

Thus,

ϕ̂

(
1

αt + 1

)
=

1
2(αt + 1)

√
α2

(αt + 1)2 + 4− α

2(αt + 1)2

≥ 1
αt + 1 + α

. (81)

Combining (81) with the first inequality in (77) proves the first
inequality in (76), thus concluding the proof of (39a).

To prove (39b), one can also proceed by induction. First,
γ1 ≤ γ0 since

√
α2 +4−α

2 ≤ 1. Assuming γt−1 ≤ γt , it follows
that γt ≤ γt+1 since ϕ̂(x) is nondecreasing.

E. Proof of Corollary 2

Inequality (40) readily follows from (20) and (39a). To prove
(41), note that (71) holds because of γ0 = 1 and (39). Mean-
while, by the second inequality in (39a), the step size in (38)
satisfies (75) for q = α and ρ = 1, that is

γ2
K−1

t−K + 1
≤ 27

α2t3
. (82)

Plugging (39a) together with (82) into (71), yields (41).

REFERENCES

[1] M. Frank and P. Wolfe, “An algorithm for quadratic programming,” Naval
Res. Logist. Quart., vol. 3, nos. 1/2, pp. 95–110, 1956.

[2] V. F. Deminaov and A. M. Rubinov, Approximate Methods in Optimization
Problems. Amsterdam, The Netherlands: Elsevier, 1970.

[3] M. Jaggi, “Revisiting Frank-Wolfe: Projection-free sparse convex op-
timization,” in Proc. Int. Conf. Mach. Learn., Atlanta, GA, USA,
Jun. 2013, pp. I-427–I-435.

[4] D. P. Bertsekas, Nonlinear Programming, 2nd ed. Belmont, MA, USA:
Athena Scientific, 1999.

[5] Y. Nesterov, Introductory Lectures on Convex Optimization. Boston, MA,
USA: Kluwer, 2004.

[6] M. Jaggi and M. Sulovsk, “A simple algorithm for nuclear norm regular-
ized problems,” in Proc. Int. Conf. Mach. Learn., Haifa, Israel, Jun. 2010,
pp. 471–478.

[7] Z. Harchaoui, A. Juditsky, and A. Nemirovski, “Conditional gradient al-
gorithms for norm-regularized smooth convex optimization,” Math. Pro-
gram., vol. 152, nos. 1/2, pp. 75–112, 2015.

[8] S. Lacoste-Julien, M. Jaggi, M. Schmidt, and P. Pletscher, “Block-
coordinate Frank-Wolfe optimization for structural SVMs,” in Proc. Int.
Conf. Mach. Learn., Atlanta, GA, USA, Jun. 2013, pp. I-53–I-61.

[9] S. Lacoste-Julien, F. Lindsten, and F. R. Bach, “Sequential kernel herding:
Frank-Wolfe optimization for particle filtering,” in Proc. Int. Conf. Artif.
Intell. Statist., San Diego, CA, USA, May 2015, pp. 544–552.

[10] G. Wang, L. Zhang, G. B. Giannakis, J. Chen, and M. Akcakaya, “Sparse
phase retrieval via truncated amplitude flow,” 2016. arXiv:1611.07641.

[11] L. Zhang, V. Kekatos, and G. B. Giannakis, “Scalable electric vehicle
charging protocols,” IEEE Trans. Power Syst., vol. 32, no. 2, pp. 1451–
1462, Mar. 2017.

[12] A. Osokin, J.-B. Alayrac, I. Lukasewitz, P. K. Dokania, and S. Lacoste-
Julien , “Minding the gaps for block Frank-Wolfe optimization of struc-
tured SVMs,” in Proc. Int. Conf. Mach. Learn., New York, NY, USA,
Jun. 2016, pp. 593–602 .

[13] Y. Wang, V. Sadhanala, W. Dai, W. Neiswanger, S. Sra, and E. P. Xing,
“Parallel and distributed block-coordinate Frank-Wolfe algorithms,” in
Proc. Int. Conf. Mach. Learn., New York, NY, USA, Jun. 2016, pp. 1548–
1557.

[14] S. Lacoste-Julien, “Convergence rate of Frank-Wolfe for non-convex ob-
jectives,” 2016. [Online]. Available: https://arxiv.org/abs/1607.00345

[15] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM Rev., vol. 43, no. 1, pp. 129–159, Feb. 2001.

[16] J. Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor completion for estimating
missing values in visual data,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 1, pp. 208–220, Jan. 2013.

[17] C. M. Alaı́z, Á. Barbero, and J. R. Dorronsoro, “Group fused lasso,” in
Proc. Int. Conf. Artif. Neural Netw., Sofia, Bulgaria, Mar. 2013, pp. 66–73.

[18] S. Jegelka, F. Bach, and S. Sra, “Reflection methods for user-friendly
submodular optimization,” Stateline, NV, USA, Dec. 2013, pp. 1313–
1321.

[19] K. L. Clarkson, “Coresets, sparse greedy approximation, and the Frank-
Wolfe algorithm,” ACM Trans. Algorithms, vol. 6, no. 4, Jul. 2010, Art.
no. 63.

[20] E. E. Papalexakis, N. D. Sidiropoulos, and R. Bro, “From k-means
to higher-way co-clustering: Multilinear decomposition with sparse la-
tent factors,” IEEE Trans. Signal Process., vol. 61, no. 2, pp. 493–506,
Dec. 2013.

[21] G. B. Giannakis, V. Kekatos, N. Gatsis, S.-J. Kim, H. Zhu, and B. Wollen-
berg, “Monitoring and optimization for power grids: A signal processing
perspective,” IEEE Signal Process. Mag., vol. 30, no. 5, pp. 107–128,
Sep. 2013.

[22] G. Wang, A. S. Zamzam, G. B. Giannakis, and N. D. Sidiropoulos, “Power
system state estimation via feasible point pursuit: Algorithms and Crmér-
Rao bound,” 2017, arXiv:1705.04031.

[23] R. M. Freund and P. Grigas, “New analysis and results for the Frank–Wolfe
method,” Math. Program., vol. 155, nos. 1/2, pp. 199–230, Jan. 2016.

[24] L. Zhang, V. Kekatos, and G. B. Giannakis, “A generalized Frank-Wolfe
approach to decentralized control of vehicle charging,” in Proc. IEEE
Conf. Decis. Control, Las Vegas, NV, USA, Dec. 2016, pp. 1105–1111.

[25] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY, USA:
Cambridge Univ. Press, 2004.

[26] G. Bakır, T. Hofmann, B. Schölkopf, A. J. Smola, B. Taskar, and S. V.
Vishwanathan, Predicting Structured Data. Cambridge, MA, USA: MIT
Press, 2007.

[27] B. Taskar, C. Guestrin, and D. Koller, “Max-margin Markov networks,”
in Proc. Neural Inf. Process. Syst., Vancouver, BC, Canada, Dec. 2003.

[28] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, “Large mar-
gin methods for structured and interdependent output variables,” vol. 6,
pp. 1453–1484, Sep. 2005.

[29] Federal Highway Administration, U.S. Department of Transportation,
Washington, DC, USA, 2009. [Online]. Available: http://nhts.ornl.
gov/2009/ pub/stt.pdf

[30] Southern California Edison dynamic load profiles. Southern Cal-
ifornia Edison, Rosemead, CA, USA, 2014. [Online]. Available:
https://www.sce.com/wps/portal/home/regulatory/load-profiles/

[31] OCR dataset. , Stanford University, Stanford, CA, USA, 2017. [Online].
Available: http://ai.stanford.edu/∼btaskar/ocr/

[32] S. Lacoste-Julien, M. Jaggi, M. Schmidt, and P. Pletscher, “Block-
coordinate Frank-Wolfe solver for structural SVMs,” 2012. [Online].
Available: https://github.com/ppletscher/BCFWstruct

Liang Zhang (S’13) received the B.Sc. and M.Sc. de-
grees in electrical engineering from the Shanghai Jiao
Tong University, Shanghai, China, in 2012 and 2014,
respectively. Since 2014, he has been working to-
ward the Ph.D. degree in the Department of Electrical
and Computer Engineering, University of Minnesota,
Minneapolis, MN, USA. His research interests in-
clude large-scale optimization and high-dimensional
learning.

ZHANG et al.: RANDOMIZED BLOCK FRANK–WOLFE FOR CONVERGENT LARGE-SCALE LEARNING 6461

Gang Wang (S’12) received the B.Eng. degree in
electrical engineering and automation from the Bei-
jing Institute of Technology, Beijing, China, in 2011.
He is currently working toward the Ph.D. degree in
the Department of Electrical and Computer Engi-
neering, University of Minnesota, Minneapolis, MN,
USA. His research interests include high-dimensional
statistical learning, and stochastic optimization with
applications to autonomous energy grids and deep
learning.

He received a National Scholarship from China in
2014, and a Best Student Paper Award at the 2017 European Signal Processing
Conference.

Daniel Romero (M’16) received the M.Sc. and Ph.D.
degrees in signal theory and communications from
the University of Vigo, Vigo, Spain, in 2011 and 2015,
respectively. From July 2015 to November 2016, he
was a Postdoctoral Researcher in the Digital Technol-
ogy Center and Department of Electrical and Com-
puter Engineering, University of Minnesota, Min-
neapolis, MN, USA. In December 2016, he joined
the Department of Information and Communication
Technology, University of Agder, Kristiansand, Nor-
way, as an Associate Professor. His research interests

include signal processing, communications, and machine learning.

Georgios B. Giannakis (F’97) received the Diploma
in electrical engineering from the National Technical
University of Athens, Athens, Greece, in 1981, the
MSc. degree in electrical engineering, in 1983, the
MSc. degree in mathematics, in 1986, and the Ph.D.
degree in electrical engineering, in 1986, from the
University of Southern California, Los Angeles, CA,
USA.

From 1987 to 1998, he was at the University of
Virginia, and since 1999 he has been a Professor at
the University of Minnesota, Minneapolis, MN, USA,

where he holds an Endowed Chair in Wireless Telecommunications, a Univer-
sity of Minnesota McKnight Presidential Chair in ECE, and is a Director of the
Digital Technology Center. His general interests include communications, net-
working, and statistical signal processing—subjects on which he has published
more than 400 journal papers, 700 conference papers, 25 book chapters, two
edited books, and two research monographs (h-index 127). His research interests
include learning from big data, wireless cognitive radios, and network science
with applications to social, brain, and power networks with renewables. He is
the (co-) inventor of 30 patents issued, and the (co-) recipient of eight best paper
awards from the IEEE Signal Processing (SP) and Communications Societies,
including the G. Marconi Prize Paper Award in Wireless Communications. He
also received Technical Achievement Awards from the SP Society (2000), from
EURASIP (2005), a Young Faculty Teaching Award, the G. W. Taylor Award
for Distinguished Research from the University of Minnesota, and the IEEE
Fourier Technical Field Award (2015). He is the Fellow of EURASIP, and has
served the IEEE in a number of posts, including that of a Distinguished Lecturer
for the IEEE-SP Society.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

