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Nonlinear Dimensionality Reduction for
Discriminative Analytics of Multiple Datasets
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Abstract—Principal component analysis (PCA) is widely used
for feature extraction and dimensionality reduction, with docu-
mented merits in diverse tasks involving high-dimensional data.
PCA copes with one dataset at a time, but it is challenged when
it comes to analyzing multiple datasets jointly. In certain data sci-
ence settings however, one is often interested in extracting the most
discriminative information from one dataset of particular inter-
est (a.k.a. target data) relative to the other(s) (a.k.a. background
data). To this end, this paper puts forth a novel approach, termed
discriminative (d) PCA, for such discriminative analytics of multi-
ple datasets. Under certain conditions, dPCA is proved to be least-
squares optimal in recovering the latent subspace vector unique to
the target data relative to background data. To account for non-
linear data correlations, (linear) dPCA models for one or multiple
background datasets are generalized through kernel-based learn-
ing. Interestingly, all dPCA variants admit an analytical solution
obtainable with a single (generalized) eigenvalue decomposition.
Finally, substantial dimensionality reduction tests using synthetic
and real datasets are provided to corroborate the merits of the
proposed methods.

Index Terms—Principal component analysis, discriminative
analytics, multiple background datasets, kernel learning.

I. INTRODUCTION

PRINCIPAL component analysis (PCA) is the “workhorse”
method for dimensionality reduction and feature extrac-

tion. It finds well-documented applications, including bioinfor-
matics, genomics, quantitative finance, and engineering, to name
a few. The goal of PCA is to obtain low-dimensional represen-
tations for high-dimensional data, while preserving most of the
high-dimensional data variance [22].

Yet, various practical scenarios involve multiple datasets, in
which one is tasked with extracting the most discriminative in-
formation of one target dataset relative to others. For instance,
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consider two gene-expression measurement datasets of volun-
teers from across different geographical areas and genders: the
first dataset collects gene-expression levels of cancer patients,
considered here as the target data, while the second contains
levels from healthy individuals corresponding here to our back-
ground data. The goal is to identify molecular subtypes of can-
cer within cancer patients. Performing PCA on either the target
data or the target together with background data is likely to yield
principal components (PCs) that correspond to the background
information common to both datasets (e.g., the demographic
patterns and genders) [14], rather than the PCs uniquely de-
scribing the subtypes of cancer. Albeit simple to comprehend
and practically relevant, such discriminative data analytics has
not been thoroughly addressed.

Generalizations of PCA include kernel (K) PCA [30],
[33], graph PCA [15], �1-PCA [35], robust PCA [31], multi-
dimensional scaling [24], locally linear embedding [28], Isomap
[34], and Laplacian eigenmaps [7]. Linear discriminant analysis
(LDA) is a supervised classifier of linearly projected reduced
dimensionality data vectors. It is designed so that linearly pro-
jected training vectors (meaning labeled data) of the same class
stay as close as possible, while projected data of different classes
are positioned as far as possible [12]. Other discriminative meth-
ods include re-constructive and discriminative subspaces [11],
discriminative vanishing component analysis [20], and kernel
LDA [26], which similar to LDA rely on labeled data. Super-
vised PCA looks for orthogonal projection vectors so that the
dependence of projected vectors from one dataset on the other
dataset is maximized [6].

Multiple-factor analysis, an extension of PCA to handle mul-
tiple datasets, is implemented in two steps: S1) normalize each
dataset by the largest eigenvalue of its sample covariance; and,
S2) perform PCA on the combined dataset of all normalized
ones [1]. On the other hand, canonical correlation analysis is
widely employed for analyzing multiple datasets [9], [10], [19],
but its goal is to extract the shared low-dimensional structure.
The recent proposal called contrastive (c) PCA aims at ex-
tracting contrastive information between two datasets [2], by
searching for directions along which the target data variance
is large while that of background data is small. Carried out
using singular value decomposition (SVD), cPCA can reveal
dataset-specific information often missed by standard PCA if
the involved hyper-parameter is properly selected. Though pos-
sible to automatically choose the best hyper-parameter from a
list of candidate values, performing SVD multiple times can be
computationally cumbersome in large-scale settings.
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Building on but going beyond cPCA, this paper starts by de-
veloping a novel approach, termed discriminative (d) PCA, for
discriminative analytics of two datasets. dPCA looks for linear
projections (as in LDA) but of unlabeled data vectors, by max-
imizing the variance of projected target data while minimizing
that of background data. This leads to a ratio trace maximization
formulation, and also justifies our chosen term discriminative
PCA. Under certain conditions, dPCA is proved to be least-
squares (LS) optimal in the sense that it reveals PCs specific
to the target data relative to background data. Different from
cPCA, dPCA is parameter-free, and it requires a single general-
ized eigendecomposition, lending itself favorably to large-scale
discriminative data analytics. Yet, real data vectors often exhibit
nonlinear correlations, rendering dPCA inadequate for complex
practical setups. To this end, nonlinear dPCA is developed via
kernel-based learning, whose solution can be provided analyti-
cally in terms of generalized eigenvalue decompositions. As the
complexity of KdPCA grows only linearly with dimensionality
of data vectors, KdPCA is preferable over dPCA for discrimi-
native analytics of high-dimensional data.

dPCA is further extended to handle multiple (more than two)
background datasets. Multi-background (M) dPCA is developed
to extract low-dimensional discriminative structure unique to
the target data but not to multiple sets of background data. This
becomes possible by maximizing the variance of projected target
data while minimizing the sum of variances of all projected
background data. At last, kernel (K) MdPCA is put forth to
account for nonlinear data correlations.

II. PRELIMINARIES AND PRIOR ART

Consider two datasets, namely a target dataset {xi ∈ RD}m
i=1

that we are interested in analyzing, and a background dataset
{yj ∈ RD}n

j=1 that contains latent background-related vectors
also present in the target data. Generalization to multiple back-
ground datasets will be presented in Sec. VI. Assume without
loss of generality that both datasets are centered; in other words,
the sample mean m−1 ∑m

i=1 xi (n−1 ∑n
j=1 yj ) has been sub-

tracted from each xi (yj ). To motivate our approaches in sub-
sequent sections, basics of (c)PCA are outlined next.

Standard PCA handles a single dataset at a time. It looks
for low-dimensional representations {χi ∈ Rd}m

i=1 of {xi}m
i=1

with d < D as linear projections of {xi}m
i=1 by maximizing the

variances of {χi}m
i=1 [22]. Specifically for d = 1, (linear) PCA

yields χi := û�xi , with the vector û ∈ RD found by

û := arg max
u∈RD

u�Cxxu s. to u�u = 1 (1)

where Cxx := (1/m)
∑m

i=1 xix�
i ∈ RD×D is the sample co-

variance matrix of {xi}m
i=1 . Solving (1) yields û as the nor-

malized eigenvector of Cxx corresponding to the largest eigen-
value. The resulting projections {χi = û�xi}m

i=1 constitute the
first principal component (PC) of the target data vectors. When
d > 1, PCA looks for {ui ∈ RD}d

i=1 , obtained from the d
eigenvectors of Cxx associated with the first d largest eigen-
values sorted in a decreasing order. As alluded to in Sec. I,
PCA applied on {xi}m

i=1 only, or on the combined datasets

{{xi}m
i=1 , {yj}n

j=1} cannot uncover discriminative patterns or
features of the target data relative to the background data.

On the other hand, the recent cPCA seeks a vector u ∈ RD

along which the target data exhibit large variations while the
background data exhibit small variations, via solving [2]

max
u∈RD

u�Cxxu − αu�Cyyu (2a)

s. to u�u = 1 (2b)

where Cyy := (1/n)
∑n

j=1 yjy�
j ∈ RD×D denotes the sample

covariance matrix of {yj}n
j=1 , and the hyper-parameter α ≥ 0

trades off maximizing the target data variance (the first term in
(2a)) for minimizing the background data variance (the second
term). For a given α, the solution of (2) is given by the eigen-
vector of Cxx − αCyy associated with its largest eigenvalue,
along which the obtained data projections constitute the first
contrastive (c) PC. Nonetheless, there is no rule of thumb for
choosing α. A spectral-clustering based algorithm was devised
to automatically select α from a list of candidate values [2],
but its brute-force search is computationally expensive to use in
large-scale datasets.

III. DISCRIMINATIVE PRINCIPAL COMPONENT ANALYSIS

Unlike PCA, LDA is a supervised classification method of
linearly projected data at reduced dimensionality. It finds those
linear projections that reduce that variation in the same class
and increase the separation between classes [12]. This is ac-
complished by maximizing the ratio of the labeled data variance
between classes to that within the classes.

In a related but unsupervised setup, consider we are given a
target dataset and a background dataset, and we are tasked with
extracting vectors that are meaningful in representing {xi}m

i=1 ,
but not {yj}n

j=1 . A meaningful approach would then be to max-
imize the ratio of projected target data variance over that of
background data. Our discriminative (d) PCA approach finds

û := arg max
u∈RD

u�Cxxu
u�Cyyu

(3)

We will term the solution in (3) discriminant subspace vector,
and the projections {û�xi}i=1 the first discriminative (d) PC.
Next, we discuss the solution in (3).

Using Lagrangian duality theory, the solution in (3) corre-
sponds to the right eigenvector of C−1

yy Cxx associated with
the largest eigenvalue. To establish this, note that (3) can be
equivalently rewritten as

û := arg max
u∈RD

u�Cxxu (4a)

s. to u�Cyyu = 1. (4b)

Letting λ denote the dual variable associated with the con-
straint (4b), the Lagrangian of (4) becomes

L(u; λ) = u�Cxxu + λ
(
1 − u�Cyyu

)
. (5)

At the optimum (û; λ̂), the KKT conditions confirm that

Cxx û = λ̂Cyy û. (6)
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Algorithm 1: Discriminative PCA.
1: Input: Nonzero-mean target and background data

{ ◦
xi}m

i=1 and { ◦
yj}n

j=1 ; number of dPCs d.

2: Exclude the means from { ◦
xi} and { ◦

yj} to obtain
centered data {xi}, and {yj}. Construct Cxx and Cyy .

3: Perform eigendecomposition on C−1
yy Cxx to obtain the

d right eigenvectors {ûi}d
i=1 associated with the d

largest eigenvalues.
4: Output Û = [û1 · · · ûd ].

This is a generalized eigen-equation, whose solution û is the
generalized eigenvector of (Cxx ,Cyy ) corresponding to the
generalized eigenvalue λ̂. Left-multiplying (6) by û� yields
û�Cxx û = λ̂û�Cyy û, corroborating that the optimal objec-
tive value of (4a) is attained when λ̂ := λ1 is the largest gen-
eralized eigenvalue. Furthermore, (6) can be solved efficiently
using well-documented solvers that rely on e.g., Cholesky’s fac-
torization [29].

Supposing further that Cyy is nonsingular (6) yields

C−1
yy Cxx û = λ̂û (7)

implying that û in (4) is the right eigenvector of C−1
yy Cxx cor-

responding to the largest eigenvalue λ̂ = λ1 .
To find multiple (d ≥ 2) subspace vectors, namely {ui ∈

RD}d
i=1 that form U := [u1 · · · ud ] ∈ RD×d , in (3) with Cyy

being nonsingular, can be generalized as follows (cf. (3))

Û := arg max
U∈RD ×d

Tr
[(

U�CyyU
)−1

U�CxxU
]
. (8)

Clearly, (8) is a ratio trace maximization problem; see e.g.,
[21], whose solution is given in Thm. 1 (see a proof in [13, p.
448]).

Theorem 1: Given centered data {xi ∈ RD}m
i=1 and {yj ∈

RD}n
j=1 with sample covariance matrices Cxx := (1/m)

∑m
i=1 xix�

i and Cyy := (1/n)
∑n

j=1 yjy�
j � 0, the i-th col-

umn of the dPCA optimal solution Û ∈ RD×d in (8) is given by
the right eigenvector of C−1

yy Cxx associated with the i-th largest
eigenvalue, where i = 1, . . . , d.

Our dPCA for discriminative analytics of two datasets is sum-
marized in Algorithm 1. Four remarks are now in order.

Remark 1: Without background data, we have Cyy = I, and
dPCA boils down to the standard PCA.

Remark 2: Several possible combinations of target and back-
ground datasets include: i) measurements from a healthy group
{yj} and a diseased group {xi}, where the former has simi-
lar population-level variation with the latter, but distinct varia-
tion due to subtypes of diseases; ii) before-treatment {yj} and
after-treatment {xi} datasets, in which the former contains ad-
ditive measurement noise rather than the variation caused by
treatment; and iii) signal-free {yj} and signal recordings {xi},
where the former consists of only noise.

Remark 3: Consider the eigenvalue decomposition Cyy =
UyΣyyU�

y . With C1/2
yy := Σ1/2

yy U�
y , and the definition v :=

C�/2
yy u ∈ RD , (4) can be expressed as

v̂ := arg max
v∈RD

v�C−1/2
yy CxxC−�/2

yy v (9a)

s. to v�v = 1 (9b)

where v̂ corresponds to the leading eigenvector of C−1/2
yy Cxx

C−�/2
yy . Subsequently, û in (4) is recovered as û = C−�/2

yy v̂.
This suggests that discriminative analytics of {xi}m

i=1 and
{yj}n

j=1 using dPCA can be viewed as PCA of ‘denoised’ or

‘background-removed’ data {C−1/2
yy xi}, followed by an ‘in-

verse’ transformation to map the obtained subspace vector
of the {C−1/2

yy xi} data to {xi} that of target data. In this

sense, {C−1/2
yy xi} can be seen as data obtained after remov-

ing the dominant ‘background’ subspace vectors from target
data.

Remark 4: Inexpensive power or Lanczos iterations [29] can
be employed to compute the principal eigenvectors in (7).

Consider again (4). Based on Lagrange duality, when se-
lecting α = λ̂ in (2), where λ̂ is the largest eigenvalue of
C−1

yy Cxx , cPCA maximizing u�(Cxx − λ̂Cyy )u is equivalent

to maxu∈RD L(u; λ̂) = u�(Cxx − λ̂Cyy )u + λ̂, which coin-
cides with (5) when λ = λ̂ at the optimum. This suggests that
the optimizers of cPCA and dPCA share the same direction
when α in cPCA is chosen to be the optimal dual variable λ̂ of
our dPCA in (4). This equivalence between dPCA and cPCA
with a proper α can also be seen from the following.

Theorem 2 ([16, Theorem 2]): For real symmetric matrices
Cxx � 0 and Cyy � 0, the following holds

λ̌ =
ǔ�Cxx ǔ
ǔ�Cyy ǔ

= max
‖u‖2 =1

u�Cxxu
u�Cyyu

if and only if

ǔ�(Cxx − λ̌Cyy )ǔ = max
‖u‖2 =1

u�(Cxx − λ̌Cyy )u.

To gain further insight into the relationship between dPCA
and cPCA, suppose Cxx and Cyy are simultaneously diagonal-
izable; that is, there exists unitary U ∈ RD×D such that

Cxx := UΣxxU�, and Cyy := UΣyyU�

where diagonal matrices Σxx ,Σyy � 0 hold accordingly eigen-
values {λi

x}D
i=1 of Cxx and {λi

y}D
i=1 of Cyy on their main

diagonals. Even if the two datasets may share some sub-
space vectors, {λi

x}D
i=1 and {λi

y}D
i=1 are in general not the

same. It is easy to check that C−1
yy Cxx = UΣ−1

yy ΣxxU� =
Udiag

({λi
x/λi

y}D
i=1

)
U�. Seeking the first d latent subspace

vectors is tantamount to taking the d columns of U that corre-
spond to the d largest values among {λi

x/λi
y}D

i=1 . On the other
hand, cPCA for a fixed α, looks for the first d latent subspace vec-
tors of Cxx − αCyy = U(Σxx − αΣyy )U� = Udiag

({λi
x −

αλi
y}D

i=1

)
U�, which amounts to taking the d columns of U

associated with the d largest values in {λi
x − αλi

y}D
i=1 . This

further confirms that when α is sufficiently large (small), cPCA
returns the d columns of U associated with the d largest λi

y ’s
(λi

x ’s). When α is not properly chosen, cPCA may fail to ex-
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tract the most contrastive information from target data relative
to background data. In contrast, this is not an issue is not present
in dPCA simply because it has no tunable parameter.

IV. OPTIMALITY OF DPCA

In this section, we show that dPCA is optimal when data
obey a certain affine model. In a similar vein, PCA adopts a
factor analysis model to express the non-centered background

data { ◦
yj∈ RD}n

j=1 as

◦
yj= my + Ubψj + ey ,j , j = 1, . . . , n (10)

where my ∈ RD denotes the unknown location (mean) vec-
tor; Ub ∈ RD×k has orthonormal columns with k < D;
{ψj ∈ Rk}n

j=1 are unknown coefficients with covariance
matrix Σb := diag(λy,1 , . . . , λy ,k ) ∈ Rk×k ; and the model-
ing errors {ey ,j ∈ RD}n

j=1 are assumed zero-mean with
covariance matrix E[ey ,je�y ,j ] = I. Adopting the LS crite-
rion, the unknowns my , Ub , and {ψj} can be estimated
by [37]

min
m y , {ψj }

U b

n∑

j=1

∥
∥
∥
◦
yj −my − Ubψj

∥
∥
∥

2

2
s. to U�

b Ub = I

we find at the optimum m̂y := (1/n)
∑n

j=1
◦
yj , {ψ̂j :=

Û�
b (

◦
yj −m̂y )}, with Ûb columns given by the first k

leading eigenvectors of Cyy = (1/n)
∑n

j=1 yjy�
j , in which

yj :=
◦
yj − m̂y . It is clear that E[yjy�

j ] = UbΣbU�
b +

I. Let matrix Un ∈ RD×(D−k) with orthonormal columns
satisfying U�

n Ub = 0, and Uy := [Ub Un ] ∈ RD×D with
Σy := diag({λy,i}D

i=1), where {λy,k+� := 1}D−k
�=1 . Therefore,

UbΣbU�
b + I = UyΣyU�

y . As n → ∞, the strong law of
large numbers asserts that Cyy → E[yjy�

j ]; that is, Cyy =
UyΣyU�

y as n → ∞.

Here we assume that the target data { ◦
xi∈ RD}m

i=1 share the

background related matrix Ub with data { ◦
yj}, but also have d

extra vectors specific to the target data relative to the background
data. This assumption is well justified in realistic setups. In the
example discussed in Sec. I, both patients’ and healthy persons’
gene-expression data contain common patterns corresponding
to geographical and gender variances; while the patients’ gene-
expression data contain some specific latent subspace vectors
corresponding to their diseases. Focusing for simplicity on d =
1, we model { ◦

xi} as

◦
xi= mx + [Ub us ]

[
χb,i

χs,i

]

+ ex,i , i = 1, . . . , m (11)

where mx ∈ RD represents the location of { ◦
xi}m

i=1 ; {ex,i}m
i=1

account for zero-mean modeling errors; Ux := [Ub us ] ∈
RD×(k+1) collects orthonormal columns, whereUb is the shared
latent subspace vectors associated with background data, and
us ∈ RD is a latent subspace vector unique to the target data,
but not to the background data. Simply put, our goal is to extract

this discriminative subspace us given { ◦
xi}m

i=1 and { ◦
yj}n

j=1 .

Similarly, given { ◦
xi}, the unknowns mx , Ux , and {χi :=

[χ�
b,i , χs,i ]�} can be estimated by

max
m x , {χi }

U x

m∑

i=1

∥
∥
∥
◦
xi −mx − Uxχi

∥
∥
∥

2

2
s. to U�

x Ux = I

yielding m̂x := (1/m)
∑m

i=1
◦
xi , χ̂i := Û�

x xi with xi :=
◦
xi

−m̂x , where Ûx has columns the (k + 1) principal eigen-
vectors of Cxx = (1/m)

∑m
i=1 xix�

i . When m → ∞, it holds
that Cxx = UxΣxU�

x , with Σx := E[χiχ
�
i ] = diag(λx,1 ,

λx,2 , . . . , λx,k+1) ∈ R(k+1)×(k+1) .
Let Σx,k ∈ Rk×k denote the submatrix of Σx formed by

its first k rows and columns. When m,n → ∞ and Cyy is
nonsingular, one can express C−1

yy Cxx as

UyΣ−1
y U�

y UxΣxU�
x

= [Ub Un ]

[
Σ−1

b 0

0 I

][
I 0

0 U�
n us

]

×
[
Σx,k 0

0 λx,k+1

][
U�

b

u�
s

]

= [Ub Un ]

[
Σ−1

b Σx,k 0

0 λx,k+1U�
n us

] [
U�

b

u�
s

]

= UbΣ−1
b Σx,kU�

b + λx,k+1UnU�
n usu�

s .

Observe that the first and second summands have rank k and
1, respectively, implying that C−1

yy Cxx has at most rank k + 1.
If ub,i denotes the i-th column of Ub , that is orthogonal to
{ub,j}k

j=1,j �=i and us , right-multiplying C−1
yy Cxx by ub,i yields

C−1
yy Cxxub,i = (λx,i/λy,i)ub,i

for i = 1, . . . , k, which hints that {ub,i}k
i=1 are k eigenvectors

of C−1
yy Cxx associated with eigenvalues {λx,i/λy,i}k

i=1 . Again,
right-multiplying C−1

yy Cxx by us gives rise to

C−1
yy Cxxus = λx,k+1UnU�

n usu�
s us = λx,k+1UnU�

n us .

(12)

To proceed, we will leverage the following three facts: i) us

is orthogonal to all columns of Ub ; ii) columns of Un are
orthogonal to those of Ub ; and iii) [Ub Un ] has full rank. Based
on i)-iii), it follows that us can be uniquely expressed as a linear
combination of columns of Un ; that is, us :=

∑D−k
i=1 piun,i ,

where {pi}D−k
i=1 are unknown coefficients, and un,i denotes the

i-th column of Un . One can manipulate UnU�
n us in (12) as

UnU�
n us = un,1u�

n,1us + · · · + un,D−ku�
n,D−kus

= p1un,1 + · · · + pD−kun,D−k

= us

yielding C−1
yy Cxxus = λx,k+1us ; that is, us is the (k + 1)-st

eigenvector of C−1
yy Cxx corresponding to eigenvalue λx,k+1 .

Before moving on, we make two assumptions.
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Assumption 1: Background and target data are generated ac-
cording to the models (10) and (11), respectively, with the back-
ground data sample covariance matrix being nonsingular.

Assumption 2: It holds for all i = 1, . . . , k that λx,k+1/
λy,k+1 > λx,i/λy,i .

Assumption 2 essentially requires that us is discrimina-
tive enough in the target data relative to the background
data. Combine Assumption 2 and the fact that us is an
eigenvector of C−1

yy Cxx , it follows that the eigenvector of
C−1

yy Cxx associated with the largest eigenvalue is us . Under
these two assumptions, we establish the optimality of dPCA
next.

Theorem 3: Under Assumptions 1 and 2 with d = 1, as
m,n → ∞, the solution of (3) recovers the subspace vector
specific to target data relative to background data, namely us .

V. KERNEL DPCA

With advances in data acquisition and storage technologies,
a sheer volume of possibly high-dimensional data are collected
daily, that topologically lie on a nonlinear manifold in general.
This goes beyond the ability of (linear) dPCA in Sec. III due
mainly to a couple of reasons: i) dPCA presumes a linear low-
dimensional hyperplane to project the target data vectors; and
ii) dPCA incurs computational complexity O(max(m,n)D2)
that grows quadratically with the dimensionality of data vectors.
To address these challenges, this section generalizes dPCA to
account for nonlinear data relationships via kernel-based learn-
ing, and puts forth kernel (K) dPCA for nonlinear discriminative
analytics. Specifically, KdPCA starts by mapping both the tar-
get and background data vectors from the original data space
to a higher-dimensional (possibly infinite-dimensional) feature
space using a common nonlinear function, which is followed by
performing dPCA on the transformed data.

Consider first the dual version of dPCA, starting with the
N := m + n augmented data {zi ∈ RD}N

i=1 as

zi :=

{
xi , 1 ≤ i ≤ m

yi−m , m < i ≤ N

and express the wanted subspace vector u ∈ RD in terms of
Z := [z1 · · · zN ] ∈ RD×N , yielding u := Za, where a ∈ RN

denotes the dual vector. When min(m,n) 
 D, matrix Z has
full row rank in general. Thus, there always exists a vector a
so that u = Za. Similar steps have also been used in obtaining
dual versions of PCA and CCA [30], [32]. Substituting u = Za
into (3) leads to our dual dPCA

max
a∈RN

a�Z�CxxZa
a�Z�CyyZa

(13)

based on which we will develop our KdPCA in the sequel.
Similar to deriving KPCA from dual PCA [30], our approach

is first to transform {zi}N
i=1 from RD to a high-dimensional

space RL (possibly with L = ∞) by some nonlinear map-
ping function φ(·), followed by removing the sample means
of {φ(xi)} and {φ(yj )} from the corresponding transformed
data; and subsequently, implementing dPCA on the centered
transformed datasets to obtain the low-dimensional kernel dPCs.
Specifically, the sample covariance matrices of {φ(xi)}m

i=1 and

{φ(yj )}n
j=1 can be expressed as

Cφ
xx :=

1
m

m∑

i=1

(φ(xi) − μx) (φ(xi) − μx)� ∈ RL×L

Cφ
yy :=

1
n

n∑

j=1

(φ(yj ) − μy ) (φ(yj ) − μy )� ∈ RL×L

where the L-dimensional vectors μx := (1/m)
∑m

i=1 φ(xi)
and μy := (1/n)

∑n
j=1 φ(yj ) are accordingly the sample

means of {φ(xi)} and {φ(yj )}. For convenience, let Φ(Z) :=
[φ(x1) − μx , . . . ,φ(xm ) − μx ,φ(y1)−μy , . . . ,φ(yn )−μy ]
∈ RL×N . Upon replacing {xi} and {yj} in (13) with {φ(xi)
− μx} and {φ(yj ) − μy}, respectively, the kernel version of
(13) boils down to

max
a∈RN

a�Φ�(Z)Cφ
xxΦ(Z)a

a�Φ�(Z)Cφ
yyΦ(Z)a

. (14)

In the sequel, (14) will be further simplified by leveraging
the so-termed ‘kernel trick’ [3]. To start, define a kernel ma-
trix Kxx ∈ Rm×m of {xi} whose (i, j)-th entry is κ(xi ,xj ) :=
〈φ(xi),φ(xj )〉 for i, j = 1, . . . ,m, where κ(·) represents some
kernel function. Matrix Kyy ∈ Rn×n of {yj} is defined like-
wise. Further, the (i, j)-th entry of matrix Kxy ∈ Rm×n is
κ(xi ,yj ) := 〈φ(xi),φ(yj )〉. Centering Kxx , Kyy , and Kxy

produces

Kc
xx := Kxx − 1

m 1mKxx − 1
m Kxx1m + 1

m 2 1mKxx1m

Kc
yy := Kyy − 1

n 1nKyy − 1
n Kyy1n + 1

n2 1nKyy1n

Kc
xy := Kxy − 1

m 1mKxy − 1
n Kxy1n + 1

mn 1mKxy1n

with matrices 1m ∈ Rm×m and 1n ∈ Rn×n having all entries
1. Based on those centered matrices, let

K :=

[
Kc

xx Kc
xy

(Kc
xy )� Kc

yy

]

∈ RN ×N . (15)

Define further Kx , Ky ∈ RN ×N with (i, j)-th entries

Kx
i,j :=

{
Ki,j /m 1 ≤ i ≤ m

0 m < i ≤ N
(16a)

Ky
i,j :=

{
0 1 ≤ i ≤ m

Ki,j /n m < i ≤ N
(16b)

where Ki,j stands for the (i, j)-th entry of K.
Using (15) and (16), it can be easily verified that KKx = K

diag({ιxi }N
i=1)K, and KKy = Kdiag({ιyi }N

i=1)K, where {ιxi
= 1}m

i=1 , {ιxi = 0}N
i=m+1 , {ιyi = 0}m

i=1 , and {ιyi = 1}N
i=m+1 .

That is, both KKx and KKy are symmetric. Substituting (15)
and (16) into (14) yields (see details in the Appendix)

max
a∈RN

a�KKxa
a�KKya

. (17)

Due to the rank-deficiency of KKy however, (17) does not admit
a meaningful solution. To address this issue, following kPCA
[30], [32], a positive constant ε > 0 is added to the diagonal
entries of KKy . Hence, our KdPCA formulation for d = 1 is
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Algorithm 2: Kernel DPCA.

1: Input: Target data {xi}m
i=1 and background data

{yj}n
j=1 ; number of dPCs d; kernel function κ(·);

constant ε.
2: Construct K using (15). Build Kx and Ky via (16).
3: Solve (19) to obtain the first d eigenvectors {âi}d

i=1 .
4: Output Â := [â1 · · · âd ].

given by

â := arg max
a∈RN

a�KKxa
a� (KKy + εI)a

. (18)

Along the lines of dPCA, the solution of KdPCA in (18) can be
provided by

(KKy + εI)−1 KKx â = λ̂â. (19)

The optimizer â coincides with the right eigenvector of (KKy +
εI)−1KKx corresponding to the largest eigenvalue λ̂ = λ1 .

When looking for d dPCs, with {ai}d
i=1 collected as columns

in A := [a1 · · · ad ] ∈ RN ×d , the KdPCA in (18) can be gener-
alized to d ≥ 2 as

Â := arg max
A∈RN ×d

Tr
[(

A�(KKy + εI
)
A)−1A�KKxA

]

whose columns correspond to the d right eigenvectors of
(KKy + εI)−1KKx associated with the d largest eigenvalues.
Having found Â, one can project the data Φ(Z) onto the ob-
tained d subspace vectors by KÂ. It is worth remarking that
KdPCA can be performed in the high-dimensional feature space
without explicitly forming and evaluating the nonlinear trans-
formations. Indeed, this becomes possible by the ‘kernel trick’
[3]. The main steps of KdPCA are given in Algorithm 2.

Two remarks are worth making at this point.
Remark 5: When the kernel function required to form Kxx ,

Kyy , and Kxy is not given, one may use the multi-kernel learn-
ing method to automatically choose the right kernel function(s);
see e.g., [4], [38], [39]. Specifically, one can presume Kxx :=∑P

i=1 δiKi
xx , Kyy :=

∑P
i=1 δiKi

yy , and Kxy :=
∑P

i=1 δiKi
xy

in (18), where Ki
xx ∈ Rm×m , Ki

yy ∈ Rn×n , and Ki
xy ∈ Rm×n

are formed using kernel κi(·); and {κi(·)}P
i=1 are a preselected

dictionary of known kernels, but {δi}P
i=1 will be treated as un-

knowns to be learned along with A in (18).
Remark 6: In the absence of background data, upon setting

{φ(yj ) = 0}, and ε = 1 in (18), matrix (KKy + εI)−1KKx

reduces to

M :=

[
(Kc

xx)2 0

0 0

]

.

After collecting the first m entries of âi into wi ∈ Rm , (19) sug-
gests that (Kc

xx)2wi = λiwi , where λi denotes the i-th largest
eigenvalue of M. Clearly, {wi}d

i=1 can be viewed as the d eigen-
vectors of (Kc

xx)2 associated with their d largest eigenvalues.
Recall that KPCA finds the first d principal eigenvectors of
Kc

xx [30]. Thus, KPCA is a special case of KdPCA, when no
background data are employed.

Algorithm 3: Multi-Background DPCA.

1: Input: Target data { ◦
xi}m

i=1 and background data
{ ◦yk

j }nk
j=1 for k = 1, . . . ,M ; weight hyper-parameters

{ωk}M
k=1 ; number of dPCs d.

2: Remove the means from { ◦
xi} and { ◦yk

j }M
k=1 to obtain

{xi} and {yk
j }M

k=1 . Form Cxx , {Ck
yy}M

k=1 , and Cyy :=
∑M

k=1 ωkCk
yy .

3: Perform eigendecomposition on C−1
yy Cxx to obtain the

first d right eigenvectors {ûi}d
i=1 .

4: Output Û := [û1 · · · ûd ].

VI. DISCRIMINATIVE ANALYTICS WITH MULTIPLE

BACKGROUND DATASETS

So far, we have presented discriminative analytics methods
for two datasets. This section presents their generalizations to
cope with multiple (specifically, one target plus more than one
background) datasets. Suppose that, in addition to the zero-mean
target dataset {xi ∈ RD}m

i=1 , we are also given M ≥ 2 centered
background datasets {yk

j }nk
j=1 for k = 1, . . . , M . The M sets of

background data {yk
j }M

k=1 contain latent background subspace
vectors that are also present in {xi}.

Let Cxx := m−1 ∑m
i=1 xix�

i and Ck
yy := n−1

k × ∑nk

j=1 yk
j

(yk
j )� be the corresponding sample covariance matrices. The

goal here is to unveil the latent subspace vectors that are
significant in representing the target data, but not any of the
background data. Building on the dPCA in (8) for a single back-
ground dataset, it is meaningful to seek directions that maximize
the variance of target data, while minimizing those of all back-
ground data. Formally, we pursue the following optimization,
that we term multi-background (M) dPCA here, for discrimina-
tive analytics of multiple datasets

max
U∈RD ×d

Tr
[( M∑

k=1

ωkU�Ck
yyU

)−1

U�CxxU
]

(20)

where {ωk ≥ 0}M
k=1 with

∑M
k=1 ωk = 1 weight the variances

of the M projected background datasets.
Upon defining Cyy :=

∑M
k=1 ωkCk

yy , it is straightforward
to see that (20) reduces to (8). Therefore, one readily deduces
that the optimal U in (20) can be obtained by taking the d
right eigenvectors of C−1

yy Cxx that are associated with the d
largest eigenvalues. For implementation, the steps of MdPCA
are presented in Algorithm 3.

Remark 7: The parameters {ωk}M
k=1 can be decided using

two possible methods: i) spectral-clustering [27] to select a
few sets of {ωk} yielding the most representative subspaces
for projecting the target data across {ωk}; or ii) optimizing
{ωk}M

k=1 jointly with U in (20).
For data belonging to nonlinear manifolds, kernel (K) Md-

PCA will be developed next. With some nonlinear function
φ(·), we obtain the transformed target data {φ(xi) ∈ RL} as
well as background data {φ(yk

j ) ∈ RL}. Letting μx ∈ RL and
μk

y := (1/nk )
∑nk

j=1 φ(yk
j ) ∈ RL denote the means of {φ(xi)}

and {φ(yk
j )}, respectively, one can form the corresponding
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covariance matrices Cφ
xx ∈ RL×L , and

Cφ,k
yy :=

1
nk

nk∑

j=1

(
φ(yk

j ) − μk
y

) (
φ(yk

j ) − μk
y

)� ∈ RL×L

for k = 1, . . . , M . Define the aggregate vector bi ∈ RL

bi :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

φ(xi) − μx , 1 ≤ i ≤ m

φ(y1
i−m ) − μ1

y , m < i ≤ m + n1

...

φ
(
yM

i−(N −nM )

) − μM
y , N − nM < i ≤ N

where N := m +
∑M

k=1 nk , for i = 1, . . . , N , and collect
{bi}N

i=1 as columns to form B := [b1 · · · bN ]. Upon
assembling dual vectors {ai ∈ RN }d

i=1 to form A :=
[a1 · · · ad ], the kernel version of (20) can be obtained
as

max
A∈RN ×d

Tr
[(

A�B�
M∑

k=1

ωkCφ,k
yy BA

)−1

A�B�Cφ
xxBA

]

.

Consider now kernel matrices Kxx ∈ Rm×m and Kkk ∈
Rnk ×nk , whose (i, j)-th entries are κ(xi ,xj ) and κ(yk

i ,yk
j ),

respectively, for k = 1, . . . , M . Furthermore, matrices Kxk ∈
Rm×nk , andKlk ∈ Rnl ×nk are defined with their corresponding
(i, j)-th elements κ(xi ,yk

j ) and κ(yl
i ,y

k
j ), for l = 1, . . . , k − 1

and k = 1, . . . ,M . We subsequently center those matrices to
obtain Kc

xx and

Kc
kk := Kkk − 1

nk
1nk

Kkk − 1
nk

Kkk1nk
+ 1

n2
k
1nk

Kkk1nk

Kc
xk := Kxk − 1

m 1mKxk − 1
nk

Kxk1nk
+ 1

mnk
1mKxk1nk

Kc
lk := Klk − 1

nl
1nl

Klk − 1
nk

Klk1nk
+ 1

nl nk
1nl

Klk1nk

where 1nk
∈ Rnk ×nk and 1nl

∈ Rnl ×nl are all-one matrices.
With Kx as in (16a), consider the N × N matrix

K :=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Kc
xx Kc

x1 · · · Kc
xM

(Kc
x1)

� Kc
11 · · · Kc

1M

...
...

. . .
...

(Kc
xM )� (Kc

1M )� · · · Kc
M M

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(21)

and Kk ∈ RN ×N with (i, j)-th entry

Kk
i,j :=

{
Ki,j /nk , if m +

∑nk −1
�=1 n� < i ≤ m +

∑nk

�=1 n�

0, otherwise
(22)

for k = 1, . . . ,M . Adopting the regularization in (18), our
KMdPCA finds

Â :=arg max
A∈RN ×d

Tr
[(

A�
(
K

M∑

k=1

Kk + εI
)
A

)−1

A�KKxA
]

Algorithm 4: Kernel Multi-Background DPCA.

1: Input: Target data {xi}m
i=1 and background data

{yk
j }nk

j=1 for k = 1, . . . , M ; number of dPCs d; kernel
function κ(·); weight coefficients {ωk}M

k=1 ; constant ε.
2: Construct K using (21). Build Kx and {Kk}M

k=1 via
(16a) and (22).

3: Solve (23) to obtain the first d eigenvectors {âi}d
i=1 .

4: Output Â := [â1 · · · âd ].

similar to (K)dPCA, whose solution comprises the right eigen-
vectors associated with the first d largest eigenvalues in

(

K
M∑

k=1

Kk + εI
)−1

KKx âi = λ̂i âi . (23)

For implementation, KMdPCA is presented in Algorithm 4.
Remark 8: We can verify that PCA, KPCA, dPCA, Kd-

PCA, MdPCA, and KMdPCA incur computational complexities
O(mD2), O(m2D), O(max(m,n)D2), O(max(m2 , n2)D),
O(max(m, n̄)D2), and O(max(m2 , n̄2)D), respectively,
where n̄ := maxk {nk}M

k=1 . It is also not difficult to check that
the computational complexity of forming Cxx , Cyy , C−1

yy , and
performing the eigendecomposition on C−1

yy Cxx is O(mD2),
O(nD2), O(D3), and O(D3), respectively. As the number
of data vectors (m,n) is much larger than their dimensional-
ity D, when performing dPCA in the primal domain, it fol-
lows readily that dPCA incurs complexity O(max(m,n)D2).
Similarly, the computational complexities of the other algo-
rithms can be checked. Evidently, when min(m,n) 
 D or
min(m,n) 
 D with n := mink {nk}M

k=1 , dPCA and MdPCA
are computationally more attractive than KdPCA and KMdPCA.
On the other hand, KdPCA and KMdPCA become more appeal-
ing, when D 
 max(m,n) or D 
 max(m, n̄). Moreover,
the computational complexity of cPCA is O(max(m,n)D2L),
where L denotes the number of α’s candidates. Clearly, rela-
tive to dPCA, cPCA is computationally more expensive when
DL > max(m,n).

VII. NUMERICAL TESTS

To evaluate the performance of our proposed approaches for
discriminative analytics, we carried out a number of numerical
tests using several synthetic and real-world datasets, a sample
of which are reported in this section.

A. dPCA Tests

Semi-synthetic target { ◦
xi∈ R784}2,000

i=1 and background im-

ages { ◦
yj∈ R784}3,000

j=1 were obtained by superimposing images
from the MNIST1 and CIFAR-10 [23] datasets. Specifically, the
target data {xi ∈ R784}2,000

i=1 were generated using 2,000 hand-
written digits 6 and 9 (1,000 for each) of size 28 × 28, super-
imposed with 2,000 frog images from the CIFAR-10 database
[23] followed by removing the sample mean from each data
point; see Fig. 1. The raw 32 × 32 frog images were converted

1Downloaded from http://yann.lecun.com/exdb/mnist/.
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Fig. 1. Superimposed images.

Fig. 2. dPCA versus PCA on semi-synthetic images.

into grayscale, and randomly cropped to 28 × 28. The zero-
mean background data {yj ∈ R784}3,000

j=1 were constructed us-
ing 3,000 cropped frog images, which were randomly chosen
from the remaining frog images in the CIFAR-10 database.

The dPCA Algorithm 1 was performed on { ◦
xi} and { ◦

yj}
with d = 2. PCA was implemented on { ◦

xi} only. The first two
PCs and dPCs are presented in the left and right panels of Fig. 2,
respectively. Clearly, dPCA reveals the discriminative informa-
tion of the target data describing digits 6 and 9 relative to the
background data, enabling successful discovery of the digit 6
and 9 subgroups. On the contrary, PCA captures only the pat-
terns that correspond to the generic background rather than those
associated with digits 6 and 9. To further assess performance
of dPCA and PCA, K-means is carried out using the resulting
low-dimensional representations of the target data. The cluster-
ing performance is evaluated in terms of two metrics: clustering
error and scatter ratio. The clustering error is defined as the ratio
of the number of incorrectly clustered data vectors over m. Scat-
ter ratio verifying cluster separation is defined as St/

∑2
i=1 Si ,

where St and {Si}2
i=1 denote the total scatter value and the

within cluster scatter values, given by St :=
∑2,000

j=1 ‖Û�xj‖2
2

and {Si :=
∑

j∈Ci
‖Û�xj − Û� ∑

k∈Ci
xk‖2

2}2
i=1 with Ci rep-

resenting the set of data vectors belonging to cluster i. Table I
reports the clustering errors and scatter ratios of dPCA and PCA
under different d values. Clearly, dPCA exhibits lower clustering
error and higher scatter ratio.

Real protein expression data [18] were also used to evaluate
the ability of dPCA to discover subgroups in real-world con-

ditions. Target data { ◦
xi∈ R77}267

i=1 contained 267 data vectors,
each collecting 77 protein expression measurements of a mouse
having Down Syndrome disease [18]. In particular, the first 135

data points { ◦
xi}135

i=1 recorded protein expression measurements
of 135 mice with drug-memantine treatment, while the remain-

ing { ◦
xi}267

i=136 collected measurements of 134 mice without such

treatment. Background data { ◦
yj∈ R77}135

j=1 on the other hand,

TABLE I
PERFORMANCE COMPARISON BETWEEN DPCA AND PCA

comprised such measurements from 135 healthy mice, which
likely exhibited similar natural variations (due to e.g., age and
sex) as the target mice, but without the differences that result
from the Down Syndrome disease.

When performing cPCA on { ◦
xi} and { ◦

yj}, four α’s were
selected from 15 logarithmically-spaced values between 10−3

and 103 via the spectral clustering method presented in [2].
Experimental results are reported in Fig. 3 with red circles

and black diamonds representing sick mice with and without
treatment, respectively. Evidently, when PCA is applied, the
low-dimensional representations of the protein measurements
from mice with and without treatment are distributed simi-
larly. In contrast, the low-dimensional representations cluster
two groups of mice successfully when dPCA is employed. At
the price of runtime (about 15 times more than dPCA), cPCA
with well tuned parameters (α = 3.5938 and 27.8256) can also
separate the two groups.

B. KdPCA Tests

In this subsection, our KdPCA is evaluated using synthetic
and real data. By adopting the procedure described in [17, p.
546], we generated target data {xi := [xi,1 xi,2 xi,3 xi,4 ]�}300

i=1
and background data {yj ∈ R4}150

j=1 . In detail, {[xi,1 xi,2 ]�}300
i=1

were sampled uniformly from two circular concentric clusters
with corresponding radii 1 and 6 shown in the left panel of
Fig. 4; and {[xi,3 xi,4 ]�}300

i=1 were uniformly drawn from a cir-
cle with radius 10; see Fig. 4 (right panel) for illustration. The
first and second two dimensions of {yj}150

j=1 were uniformly
sampled from two concentric circles with corresponding radii
of 4 and 10. All data points in {xi} and {yj}were corrupted with
additive noise sampled independently from N (0, 0.1I). To un-
veil the specific cluster structure of the target data relative to the
background data, Algorithm 2 was run with ε = 10−3 and us-
ing the degree-2 polynomial kernel κ(zi , zj ) = (z�i zj )2 . Com-
peting alternatives including PCA, KPCA, cPCA, kernel (K)
cPCA [2], and dPCA were also implemented. Further, KPCA
and KcPCA shared the kernel function with KdPCA. Three dif-
ferent values of α were automatically chosen for cPCA [2]. The
parameter α of KcPCA was set as 1, 10, and 100.

Figure 5 depicts the first two dPCs, cPCs, and PCs of the
aforementioned dimensionality reduction algorithms. Clearly,
only KdPCA successfully reveals the two unique clusters of
{xi} relative to {yj}.
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Fig. 3. Discovering subgroups in mice protein expression data.

Fig. 4. Target data dimension distributions with xi,j representing the j-th
entry of xi for j = 1, . . . , 4 and i = 1, . . . , 300.

KdPCA was tested in realistic settings using the real Mobile
(M) Health data [5]. This dataset consists of sensor (e.g., gyro-
scopes, accelerometers, and EKG) measurements from volun-
teers conducting a series of physical activities. In the first exper-
iment, 200 target data {xi ∈ R23}200

i=1 were used, each of which
recorded 23 sensor measurements from one volunteer perform-
ing two different physical activities, namely laying down and
having frontal elevation of arms (100 data points correspond to

Fig. 5. Discovering subgroups in nonlinear synthetic data.

each activity). Sensor measurements from the same volunteer
standing still were utilized for the 100 background data points
{yj ∈ R23}100

j=1 . For KdPCA, KPCA, and KcPCA algorithms,
the Gaussian kernel with bandwidth 5 was used. Three different
values for the parameter α in cPCA were automatically selected
from a list of 40 logarithmically-spaced values between 10−3

and 103 , whereas α in KcPCA was set to 1 [2].
The first two dPCs, cPCs, and PCs of KdPCA, dPCA, KcPCA,

cPCA, KPCA, and PCA are reported in Fig. 6. It is self-evident
that the two activities evolve into two separate clusters in the
plots of KdPCA and KcPCA. On the contrary, due to the non-
linear data correlations, the other alternatives fail to distinguish
the two activities.
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Fig. 6. Discovering subgroups in MHealth data.

In the second experiment, the target data were formed with
sensor measurements of one volunteer executing waist bends
forward and cycling. The background data were collected from
the same volunteer standing still. The Gaussian kernel with
bandwidth 40 was used for KdPCA and KPCA, while the
second-order polynomial kernel κ(zi , zj ) = (z�i zj + 3)2 was
employed for KcPCA. The first two dPCs, cPCs, and PCs of
simulated schemes are depicted in Fig. 7. Evidently, KdPCA
outperforms its competing alternatives in discovering the two
physical activities of the target data.

To test the scalability of our developed schemes, the Extended
Yale-B (EYB) face image dataset [25] was adopted to test the
clustering performance of KdPCA, KcPCA, and KPCA. EYB
database contains frontal face images of 38 individuals, each
having about around 65 color images of 192 × 168 (32,256)
pixels. The color images of three individuals (60 images per
individual) were converted into grayscale images and vectorized
to obtain 180 vectors of size 32, 256 × 1. The 120 vectors from
two individuals (clusters) comprised the target data, and the
remaining 60 vectors formed the background data. A Gaussian
kernel with bandwidth 150 was used for KdPCA, KcPCA, and
KPCA. Fig. 8 reports the first two dPCs, cPCs, and PCs of
KdPCA, KcPCA (with 4 different values of α), and KPCA,

Fig. 7. Distinguishing between waist bends forward and cycling.

with black circles and red stars representing the two different
individuals from the target data. K-means is carried out using the
resulting 2-dimensional representations of the target data. The
clustering errors of KdPCA, KcPCA with λ = 1, KcPCA with
λ = 10, KcPCA with λ = 50, KcPCA with λ = 100, and KPCA
are 0.1417, 0.7, 0.525, 0.275, 0.2833, and 0.4167, respectively.
Evidently, the face images of the two individuals can be better
recognized with KdPCA than with other methods.

C. MdPCA Tests

The ability of the MdPCA Algorithm 3 for discriminative
dimensionality reduction is examined here with two background
datasets. For simplicity, we set to ω1 = ω2 = 0.5.

In the first experiment, two clusters of 15-dimensional data

points were generated for the target data { ◦
xi∈ R15}300

i=1 (150

for each). Specifically, the first 5 dimensions of { ◦
xi}150

i=1 and

{ ◦
xi}300

i=151 were sampled from N (0, I) and N (81, 2I), respec-

tively. The second and last 5 dimensions of { ◦
xi}300

i=1 were
drawn accordingly from the normal distributions N (1, 10I) and
N (1, 20I). The right top plot of Fig. 9 shows that performing
PCA cannot resolve the two clusters. The first, second, and last 5
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Fig. 8. Face recognization by performing KdPCA.

Fig. 9. Clustering structure by MdPCA using synthetic data.

dimensions of the first background dataset { ◦
y1

j ∈ R1}150
j=15 were

sampled from N (1, 2I), N (1, 10I), and N (1, 2I), respectively,

while those of the second background dataset { ◦
y2

j ∈ R15}150
j=1

were drawn from N (1, 2I), N (1, 2I), and N (1, 20I). The two
plots at the bottom of Fig. 9 depict the first two dPCs of dPCA
implemented with a single background dataset. Evidently, Md-
PCA can discover the two clusters in the target data by leverag-
ing the two background datasets.

Fig. 10. Clustering structure by MdPCA using semi-synthetic data.

In the second experiment, the target data { ◦
xi∈ R784}400

i=1 were
obtained using 400 handwritten digits 6 and 9 (200 for each) of
size 28 × 28 from the MNIST dataset superimposed with 400
resized ‘girl’ images from the CIFAR-100 dataset [23]. The first

392 dimensions of the first background dataset { ◦
y1

j ∈ R784}200
j=1

and the last 392 dimensions of the other { ◦
y2

j ∈ R784}200
j=1

correspond to the first and last 392 features of 200 cropped girl
images, respectively. The remaining dimensions of both back-
ground datasets were set zero. Fig. 10 presents the obtained
(d)PCs of MdPCA, dPCA, and PCA, with red stars and black
diamonds depicting digits 6 and 9 PCA and dPCA based on
a single background dataset (the bottom two plots in Fig. 10)
reveal that the two clusters of data follow a similar distribution in
the space spanned by the first two PCs. The separation between
the two clusters becomes clear when MdPCA is employed.

D. KMdPCA Tests

Algorithm 4 with ε = 10−4 is examined for dimensionality
reduction using simulated data and compared against MdPCA,
KdPCA, dPCA, and PCA. The first two dimensions of the target
data {xi ∈ R6}150

i=1 and {xi}300
i=151 were generated from two

circular concentric clusters with respective radii of 1 and 6.
The remaining four dimensions of the target data {xi}300

i=1 were
sampled from two concentric circles with radii of 20 and 12,
respectively. Data {xi}150

i=1 and {xi}300
i=151 corresponded to two

different clusters. The first, second, and last two dimensions
of one background dataset {y1

j ∈ R6}150
j=1 were sampled from

three concentric circles with corresponding radii of 3, 3, and
12. Similarly, three concentric circles with radii 3, 20, and 3
were used for generating the other background dataset {y2

j ∈
R6}150

j=1 . Each datum in {xi}, {y1
j }, and {y2

j } was corrupted
by additive noise N (0, 0.1I). When running KMdPCA, the
degree-2 polynomial kernel used in Sec. VII-B was adopted,
and weights were set as ω1 = ω2 = 0.5.
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Fig. 11. The first two dPCs obtained by Algorithm 4.

Figure 11 depicts the first two dPCs of KMdPCA, MdPCA,
KdPCA and dPCA, as well as the first two PCs of (K)PCA. It is
evident that only KMdPCA is able to discover the two clusters
in the target data.

VIII. CONCLUDING SUMMARY

In diverse practical setups, one is interested in extracting, vi-
sualizing, and leveraging the unique low-dimensional features
of one dataset relative to a few others. This paper put forth a
novel framework, that is termed dPCA, for performing discrim-
inative analytics of multiple datasets. Both linear, kernel, and
multi-background models were pursued. In contrast with ex-
isting alternatives, dPCA is demonstrated to be optimal under
certain assumptions. Furthermore, dPCA is parameter-free, and
requires only one generalized eigenvalue decomposition. Exten-
sive tests using synthetic and real data corroborated the efficacy
of our proposed approaches relative to relevant prior works.

Several directions open up for future research: i) dis-
tributed and privacy-aware (MK)dPCA implementations to cope
with large amounts of high-dimensional data; ii) robustifying

(MK)dPCA to outliers; and iii) graph-aware (MK)dPCA gener-
alizations exploiting additional priors of the data.

APPENDIX

We start by showing that

Φ�(Z)Cφ
xxΦ(Z)a = KKxa ∈ RN . (24)

For notational brevity, let φi , ai , and Ki,j denote the i-th col-
umn of Φ(Z), the i-th entry of a, and the (i, j)-th entry of K,
respectively. Thus, the i-th element of the left-hand-side of (24)
can be rewritten as

φ�
i

1
m

m∑

j=1

φjφ
�
j

N∑

k=1

akφk =
1
m

N∑

k=1

ak

m∑

j=1

Ki,jKj,k

=
N∑

k=1

ak

m∑

j=1

Ki,jK
x
j,k =

N∑

k=1

ak

N∑

j=1

Ki,jK
x
j,k

=
N∑

k=1

aksi,k = s�i a = k�
i Kxa

where si,k ∈ R, s�i ∈ R1×N , and k�
i ∈ R1×N correspond to the

(i, k)-th entry of KKx , the i-th row of KKx , and the i-th row
of K, respectively. Evidently, k�

i Kxa is the i-th entry of the
right-hand-side in (24), which proves that (24) holds. It follows
that the numerators of (14) and (17) are identical.

Similarly, one can verify that

a�Φ�(Z)Cφ
yyΦ(Z)a = a�KKya. (25)

Hence, (14) and (17) are equivalent.
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