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Abstract—Multiview canonical correlation analysis (MCCA)
seeks latent low-dimensional representations encountered with
multiview data of shared entities (a.k.a. common sources). How-
ever, existing MCCA approaches do not exploit the geometry of
the common sources, which may be available a priori, or can be
constructed using certain domain knowledge. This prior informa-
tion about the common sources can be encoded by a graph, and be
invoked as a regularizer to enrich the maximum variance MCCA
framework. In this context, this paper’s novel graph-regularized
MCCA (GMCCA) approach minimizes the distance between the
wanted canonical variables and the common low-dimensional rep-
resentations, while accounting for graph-induced knowledge of the
common sources. Relying on a function capturing the extent to
which the low-dimensional representations of the multiple views
are similar, a generalization bound of GMCCA is established based
on Rademacher’s complexity. Tailored for setups where the number
of data pairs is smaller than the data vector dimensions, a graph-
regularized dual MCCA approach is also developed. To further
deal with nonlinearities present in the data, graph-regularized ker-
nel MCCA variants are put forward too. Interestingly, solutions of
the graph-regularized linear, dual, and kernel MCCA are all pro-
vided in terms of generalized eigenvalue decomposition. Several
corroborating numerical tests using real datasets are provided to
showcase the merits of the graph-regularized MCCA variants rela-
tive to several competing alternatives including MCCA, Laplacian-
regularized MCCA, and (graph-regularized) PCA.

Index Terms—Dimensionality reduction, canonical correlation
analysis, signal processing over graphs, Laplacian regularization,
generalized eigen-decomposition, multiview learning.

I. INTRODUCTION

IN SEVERAL applications, such as multi-sensor surveil-
lance systems, multiple datasets are collected offering dis-

tinct views of the common information sources. With advances
in data acquisition, it becomes easier to access heterogeneous
data representing samples from multiple views in various sci-
entific fields, including genetics, computer vision, data mining,
and pattern recognition, to name a few. In genomics for instance,
a patient’s lymphoma data set consists of gene expression, SNP,
and array CGH measurements [37]. In a journal’s dataset, the
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title, keywords, and citations can be considered as three different
views of a given paper [31]. Learning with heterogeneous data
of different types is commonly referred to as multiview learn-
ing, and in different communities as information fusion or data
integration from multiple feature sets. Multiview learning is an
emerging field in data science with well-appreciated analytical
tools and matching application domains [12], [30].

Canonical correlation analysis (CCA) is a classical tool for
multiview learning [16]. Formally, CCA looks for latent low-
dimensional representations from a paired dataset comprising
two views of several common entities. Multiview (M) CCA gen-
eralizes two-view CCA and also principal component analysis
(PCA) [19], to handle jointly datasets from multiple views [20].
In contrast to PCA that operates on vectors formed by multi-view
sub-vectors, MCCA is more robust to outliers per view, because
it ignores the principal components per view that are irrelevant
to the latent common sources. Popular MCCA formulations in-
clude the sum of correlations (SUMCOR), maximum variance
(MAXVAR) [15], sum of squared correlations, the minimum
variance, and generalized variance methods [20]. With the in-
creasing capacity of data acquisition and the growing demand
for multiview data analytics, the research on MCCA has been
re-gaining attention recently.

To capture nonlinear relationships in the data, extensions us-
ing (multi-)kernels and deep neural networks have also been
developed; see e.g., [1], [10], [33], [35], [38], that have well-
documented merits for (nonlinear) dimensionality reduction of
multiview data, as well as for multiview feature extraction.
Recent research efforts have also focused on addressing the
scalability issues in (kernel) MCCA, using random Fourier
features [22], or leveraging alternating optimization advances
[18] to account for sparsity [8], [18], [32], [36] or other types
of structure-promoting regularizers such as nonnegativity and
smoothness [11], [23].

Lately, graph-aware regularizers have demonstrated promis-
ing performance in a gamut of machine learning applications,
such as dimensionality reduction, data reconstruction, cluster-
ing, and classification [10], [13], [17], [25], [26], [28]. CCA with
structural information induced by a common source graph has
been reported in [10], but it is limited to analyzing two-views
of data, and its performance has been tested only experimen-
tally. Further, multigraph-encoded information provided by the
underlying physics, or, inferred from alternative views of the
information sources, has not been investigated.

Building on but considerably going beyond our precursor
work in [10], this paper introduces a novel graph-regularized (G)
MCCA approach, and develops a bound on its generalization er-
ror performance. Our GMCCA is established by minimizing the
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difference between the low-dimensional representation of each
view and the common representation, while also leveraging the
statistical dependencies due to the common sources hidden in
the views. These dependencies are encoded by a graph, which
can be available from the given data, or can be deduced from
correlations. A finite-sample statistical analysis of GMCCA is
provided based on a regression formulation offering a mean-
ingful error bound for unseen data samples using Rademacher’s
complexity.

GMCCA is operational when there are sufficient data sam-
ples (larger than the number of features per view). For cases
where the data are insufficient, we develop a graph-regularized
dual (GD) MCCA scheme that avoids this limitation at lower
computational complexity. To cope with nonlinearities present
in real data, we further put forward a graph-regularized kernel
(GK) MCCA scheme. Interestingly, the linear, dual, and kernel
versions of our proposed GMCCA admit simple analytical-form
solutions, each of which can be obtained by performing a single
generalized eigenvalue decomposition.

Different from [4], [39], where MCCA is regularized using
multiple graph Laplacians separately per view, GMCCA here
jointly leverages a single graph effected on the common sources.
This is of major practical importance, e.g., in electric power net-
works, where besides the power, voltage, and current quantities
observed, the system operator has also access to the network
topology [34] that captures the connectivity between substations
through power lines.

Finally, our proposed GMCCA approaches are numerically
tested using several real datasets on different machine learning
tasks, including e.g., dimensionality reduction, recommenda-
tion, clustering, and classification. Corroborating tests showcase
the merits of GMCCA schemes relative to its completing alter-
natives such as MCCA, PCA, graph PCA, and the k-nearest
neighbors (KNN) method.

Notation: Bold uppercase (lowercase) letters denote matrices
(column vectors). Operators Tr(·), (·)−1, vec(·) and (·)� stand
for matrix trace, inverse, vectorization, and transpose, respec-
tively; ‖ · ‖2 denotes the �2-norm of vectors; ‖ · ‖F the Frobe-
nius norm of matrices; diag({am}Mm=1) is an M ×M diagonal
matrix holding entries of {am}Mm=1 on its main diagonal; 〈a, b〉
denotes the inner product of same-size vectors a and b; vector
0 has all zero entries whose dimension is clear from the context;
and I is the identity matrix of suitable size.

II. PRELIMINARIES

Consider M datasets {Xm ∈ RDm×N}Mm=1 collected from
M ≥ 2 views of N common source vectors {šn ∈ Rρ}Nn=1

stacked as columns of Š ∈ Rρ×N , where Dm is the di-
mension of the m-th view data vectors, with possibly ρ �
minm {Dm}Mm=1. Vector xm,i denotes the i-th column of Xm,
meaning the i-th datum of the m-th view, for all i = 1, . . . , N
and m = 1, . . . ,M . Suppose without loss of generality that all
per-view data vectors {xm,i}Ni=1 have been centered. Two-view
CCA works with datasets {x1,i}Ni=1 and {x2,i}Ni=1 from M = 2
views. It looks for low-dimensional subspaces U1 ∈ RD1×d

and U2 ∈ RD2×d with d ≤ ρ, such that the Euclidean distance

between linear projections U�
1X1 and U�

2X2 is minimized.
Concretely, classical CCA solves the following problem [14]

min
U1,U2

∥
∥U�

1X1 −U�
2X2

∥
∥
2

F
(1a)

s. to U�
m

(

XmX�
m

)

Um = I, m = 1, 2 (1b)

where columns of Um are called loading vectors of the data
(view)Xm; while projections {U�

mXm}2m=1 are termed canon-
ical variables; they satisfy (1b) to prevent the trivial solution;
and, they can be viewed as low (d)-dimensional approximations
of Š. Moreover, the solution of (1) is provided by a generalized
eigenvalue decomposition [16].

When analyzing multiple (≥ 3) datasets, (1) can be general-
ized to a pairwise matching criterion [6]; that is

min
{Um}Mm=1

M−1∑

m=1

M∑

m′>m

∥
∥U�

mXm −U�
m′Xm′

∥
∥
2

F
(2a)

s. to U�
m

(

XmX�
m

)

Um = I, m = 1, . . . ,M (2b)

where (2b) ensures a unique nontrivial solution. The formula-
tion in (2) is referred to as the sum-of-correlations (SUMCOR)
MCCA, that is known to be NP-hard in general [24].

Instead of minimizing the distance between paired low-
dimensional approximations, one can look for a shared low-
dimensional representation of different views, namely S ∈
Rd×N , by solving [20]

min
{Um}Mm=1,S

M∑

m=1

∥
∥U�

mXm − S
∥
∥
2

F
(3a)

s. to SS� = I (3b)

yielding the so-called maximum-variance (MAXVAR) MCCA
formulation. Similarly, the constraint (3b) is imposed to avoid
a trivial solution. If all per-view sample covariance matri-
ces {XmX�

m}m have full rank, then for a fixed S, the Um-
minimizers are given by {Ûm = (XmX�

m)−1XmS�}m. Sub-
stituting {Ûm}m into (3), the S-minimizer can be obtained by
solving the following eigenvalue decomposition problem

Ŝ := argmax
S

Tr
[

S
( M∑

m=1

X�
m

(

XmX�
m

)−1
Xm

)

S�
]

(4a)

s. to SS� = I. (4b)

The columns of Ŝ� are given by the first d principal eigenvec-
tors of matrix

∑M
m=1 X

�
m(XmX�

m)−1Xm. In turn, we deduce
that {Ûm = (XmX�

m)−1XmŜ�}Mm=1.
A couple of comments are worth noting about (3) and (4).
Remark 1: Solutions of the SUMCOR MCCA in (2) and the

MAXVAR MCCA in (3) are generally different. Specifically, for
M = 2, both admit analytical solutions that can be expressed in
terms of distinct eigenvalue decompositions; but for M > 2,
the SUMCOR MCCA can not be solved analytically, while the
MAXVAR MCCA still admits an analytical solution though at
the price of higher computational complexity because it involves
the extra matrix variable S.
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III. GRAPH-REGULARIZED MCCA

In many applications, the common source vectors {ši}Ni=1

may reside on, or their dependencies form a graph of N nodes.
In ResearchIndex for example, networks, besides keywords, ti-
tles, Abstracts, and Introductions of collected articles, one has
also access to the citation network capturing the connectiv-
ity among those papers. More generally, the graph of inter-
dependent sources can be dictated by the underlying physics,
or it can be a prior provided by an ‘expert,’ or, it can be learned
from extra (e.g., historical) views of the data. This structural prior
information can be leveraged along with multiview datasets to
improve MCCA performance. Specifically, we will capture this
extra knowledge here using a graph, and effect it in the low-
dimensional common source estimates through a graph regular-
ization term.

Consider representing the graph of the N common sources
using the tuple G := {N , W}, where N := {1, . . . , N} is the
vertex set, and W := {wij}(i,j)∈N×N collects all edge weights
{wij} over all vertex pairs (i, j). The so-termed weighted adja-
cency matrix W ∈ RN×N is formed with wij being its (i, j)-
th entry. Undirected graphs for which W = W� holds are
considered in this work. Upon defining di :=

∑N
j=1 wij and

D := diag({di}Ni=1) ∈ RN×N , the Laplacian matrix of graph
G is defined as

LG := D−W. (5)

Next, a neat link between canonical correlations and graph
regularization will be elaborated. To start, let us assume that
sources {ši}Ni=1 are smooth over G. This means that two sources
(ši, šj) residing on two connected nodes i, j ∈ N are also close
to each other in Euclidean distance. As explained before, vectors
si and sj are accordingly the d-dimensional approximations of
ši and šj . Accounting for this fact, a meaningful regularizer is
the weighted sum of distances between any pair of common
source estimates si and sj over G

Tr
(

SLGS�) =
1

2

N∑

i=1

N∑

j=1

wij ‖si − sj‖22 . (6)

Clearly, source vectors si and sj residing on adjacent nodes
i, j ∈ N having large weights wij will be forced to be similar
to each other. To leverage such additional graph information
of the common sources, the quadratic term (6) is invoked as
a regularizer in the standard MAXVAR MCCA, yielding our
novel graph-regularized (G) MCCA formulation

min
{Um}

S

M∑

m=1

∥
∥U�

mXm − S
∥
∥
2

F
+ γTr

(

SLGS�) (7a)

s. to SS� = I (7b)

where the coefficient γ ≥ 0 trades off minimizing the distance
between the canonical variables and their corresponding com-
mon source estimates with promoting smoothness of common
source estimates over the graph G. Specifically, when γ = 0,

Algorithm 1: Graph-regularized MCCA.

1: Input: {Xm}Mm=1, d, γ, and W.
2: Build LG using (5).
3: Construct C =

∑M
m=1 X

�
m

(

XmX�
m

)−1
Xm − γLG .

4: Perform eigendecomposition on C to obtain the d
eigenvectors associated with the d largest eigenvalues,
which are collected as columns of Ŝ�.

5: Compute
{

Ûm =
(

XmX�
m

)−1
XmŜ�}M

m=1
.

6: Output: {Ûm}Mm=1 and Ŝ.

GMCCA reduces to the classical MCCA in (3); and, as γ in-
creases, GMCCA relies more heavily in this extra graph knowl-
edge when finding the canonical variables.

If all per-view sample covariance matrices {XmX�
m} have

full rank, equating to zero the partial derivative of the cost
in (7a) with respect to each Um, yields the optimizer Ûm =
(XmX�

m)−1XmS�. Substituting next Um by Ûm and ignoring
the constant term in (7a) give rise to the following eigenvalue
problem (cf. (4))

max
S

Tr
[

S
( M∑

m=1

X�
m

(

XmX�
m

)−1
Xm − γLG

)

S�
]

(8a)

s. to SS� = I. (8b)

Similar to standard MCCA, the optimal solution Ŝ of (8) can
be obtained by the d leading eigenvectors of the matrix

C :=
M∑

m=1

X�
m(XmX�

m)−1Xm − γLG . (9)

At the optimum, it is easy to verify that the following holds

M∑

m=1

∥
∥
∥Û�

mXm − Ŝ
∥
∥
∥

2

F
+ γTr

(

ŜLGŜ�) = Md−
d∑

i=1

λi

where λi denotes the i-th largest eigenvalue of C in (9).
A step-by-step description of our proposed GMCCA scheme

is summarized in Algorithm 1.
At this point, a few remarks are in order.
Remark 2: We introduced a two-view graph CCA scheme

in [10] using the SUMCOR MCCA formulation. However, to
obtain an analytical solution, the original cost was surrogated in
[10] by its lower bound, which cannot be readily generalized for
multiview datasets with M ≥ 3. In contrast, our GMCCA in (7)
can afford an analytical solution for any M ≥ 2.

Remark 3: Generally speaking, when N � Dm, it is likely
that XmX�

m has full rank. Even if it is not invertible, one can re-
placeXmX�

m withXmX�
m + cmI to ensure invertibility, where

cm > 0 is a small arbitrary constant.
Remark 4: Different from our single graph regularizer in (7),

the proposals in [4] and [39] rely on M different regularizers
{U�

mXmLGm
X�

mUm}m to exploit the extra graph knowledge,
for view-specific graphs {LGm

}m on data {Xm}m. However,
the formulation in [39] does not admit an analytical solution,
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and convergence of the iterative solvers for the resulting non-
convex problem can be guaranteed only to a stationary point.
The approach in [4] focuses on semi-supervised learning tasks,
in which cross-covariances of pair-wise datasets are not fully
available. In contrast, the single graph Laplacian regularizer in
(7) is effected on the common sources, to exploit the pair-wise
similarities of theN common sources. This is of practical impor-
tance when one has prior knowledge about the common sources
besides the M datasets. Moreover, our proposed GMCCA ap-
proach comes with simple analytical solutions.

Remark 5: With regards to selectingγ, two ways are feasible:
i) cross-validation for supervised learning tasks, where labeled
training data are given, and γ is fixed to the one that yields
optimal empirical performance on the training data; and, ii) using
a spectral clustering method that automatically chooses the best
γ values from a given set of candidates; see e.g., [9].

IV. GENERALIZATION BOUND OF GMCCA

In this section, we will analyze the finite-sample performance
of GMCCA based on a regression formulation [27, Ch. 6.5],
which is further related to the alternating conditional expecta-
tions method in [5]. Our analysis will establish an error bound
for unseen source vectors (a.k.a. generalization bound) using the
notion of Rademacher’s complexity.

Recall that the goal of MCCA is to find common low-
dimensional representations of the M -view data. To measure
how close the estimated M low-dimensional representations are
to each other, we introduce the following error function

g(š) :=

M−1∑

m=1

M∑

m′>m

∥
∥U�

mψm(š)−U�
m′ψm′(š)

∥
∥
2

F
(10)

where the underlying source vector š ∈ Rρ is assumed to follow
some fixed yet unknown distribution D, and the linear function
ψm(·) maps a source vector from space Rρ to the m-the view
in RDm , for m = 1, . . . ,M .

To derive the generalization bound, we start by evaluating the
empirical average of g(š) over say, a numberN of given training
samples, as follows

ḡN (š) :=
1

N

N∑

n=1

M−1∑

m=1

M∑

m′>m

∥
∥U�

mψm(šn)−U�
m′ψm′(šn)

∥
∥
2

F

=
1

N

N∑

n=1

M−1∑

m=1

M∑

m′>m

[

ψ�
m(šn)UmU�

mψm(šn)− 2ψ�
m(šn)

×UmU�
m′ψm′(šn) +ψ

�
m′(šn)Um′U�

m′ψm′(šn)
]

.

For the quadratic terms, it can be readily verified that

ψ�
m(š) UmU�

mψm(š) =
〈

vec(UmU�
m),

vec(ψm(š)ψ�
m(š))

〉

(11)

ψ�
m(š) UmU�

m′ψm′(š) =
〈

vec(UmU�
m′),

vec(ψm(š)ψ�
m′(š))

〉

. (12)

Define two
∑M−1

m=1

∑M
m′>m(D2

m +D2
m′ +DmDm′)× 1

vectors

ψ(š) :=
[

ψ�
11(š) · · ·ψ�

1M (š)ψ�
23(š) · · ·ψ�

M,M−1(š)
]�

u :=
[

u�
11 · · ·u�

1M u�
23 · · ·u�

M,M−1

]�

where the two (D2
m +D2

m′ +DmDm′)× 1 vectors ψmm′(š)
and umm′ are defined as

ψmm′ :=
[

vec�(ψmψ
�
m)vec�(ψm′ψ�

m′)
√
2vec�(ψmψ

�
m′)

]�

umm′ :=
[

vec�(UmU�
m)vec�(Um′U�

m′)

−
√
2vec�(UmU�

m′)
]�

for m = 1, . . . ,M − 1 and m′ = 2, . . . ,M .
Plugging (11) and (12) into (10), one can check that function

g(š) can be rewritten as

g(š) = 〈u, ψ(š)〉 . (13)

with the norm of u given by

‖u‖22 =

M−1∑

m=1

M∑

m′>m

∥
∥U�

mUm +U�
m′Um′

∥
∥
2

F
.

Starting from (13), we will establish next an upper bound on
the expectation of g(š) by means of (13), which is important
because the expectation involves not only the N training source
samples, but also unseen samples.

Theorem 1: Assume that i) the N common source vec-
tors {šn}Nn=1 are drawn i.i.d. from some distribution D;
ii) the M transformations {ψm(·)}Mm=1 of vectors {šn}Nn=1

are bounded; and, iii) subspaces {Um ∈ RDm×d}Mm=1 sat-
isfy

∑M−1
m=1

∑M
m′>m ‖U�

mUm +U�
m′Um′ ‖2F ≤ B2 (B > 0)

and {Um}Mm=1 are the optimizers of (7). If we obtain low-
dimensional representations of {ψm(š)}Mm=1 specified by sub-
spaces {Um ∈ RDm×d}Mm=1, it holds with probability at least
1− p that

E[g(š)] ≤ ḡN (š) + 3RB

√

ln(2/p)

2N
+

4B

N
√
∑N

n=1

∑M−1

m=1

∑M

m′>m
[κm(šn, šn) + κm′(šn, šn)]

2

(14)

where κm(šn, šn) := 〈ψm(šn),ψm(šn)〉 for n = 1, . . . , N ,
and m = 1, . . . ,M , while the constant R is given by

R := max
š∼D

√
∑M−1

m=1

∑M

m′>m
[κm(š, š) + κm′(š, š)]2.

Proof: Equation (13) suggests that g(š) belongs to the func-
tion class

FB := {š → 〈u, ψ(š)〉 : ‖u‖ ≤ B} .
Consider the function class

H =
{

h : š → 1/(RB)f(š)
∣
∣f(·) ∈ FB

} ⊆ A ◦ FB
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where the function A is defined as

A(x) =

⎧

⎪⎨

⎪⎩

0, if x ≤ 0
x

RB , if 0 ≤ x ≤ RB

1, otherwise

.

It can be checked that A(·) is a Lipschitz function with Lip-
schitz constant 1/(RB), and that the range of functions in H is
[0, 1]. Appealing to [27, Th. 4.9], one deduces that with proba-
bility at least 1− p, the following holds

E[h(š)] ≤ 1

N

N∑

n=1

h(sn) +RN (H) +

√

ln 2/p

2N

≤ 1

N

N∑

n=1

h(šn) + R̂N (H) + 3

√

ln 2/p

2N
(15)

where E[h(š)] denotes the expected value of h(·) on a new com-
mon source š; and the Rademacher complexity RN (H) of H
along with its empirical version R̂N (H) is defined as

RN (H) := Eš[R̂N (H)]

R̂N (H) := Eδ

[

sup
h∈H

∣
∣
∣
2

N

N∑

n=1

δnh(šn)
∣
∣
∣ |š1, š2, . . . , šN

]

where δ := {δn}Nn=1 collects independent random variables
drawn from the Rademacher distribution, meaning {Pr(δn =
1) = Pr(δn = −1) = 0.5}Nn=1. Further, Eδ[·] and Eš[·] denote
the expectation with respect to δ and š, respectively.

Since A(·) is a Lipschitz function with Lipschitz constant
1/(RB) satisfying A(0) = 0, the result in [2, Th. 12] asserts
that

R̂N (H) ≤ 2/(RB)R̂N (FB). (16)

Applying [27, Th. 4.12] leads to

R̂N (FB) ≤ 2B/N
√

Tr(K) (17)

where the (i, j)-th entry of K ∈ RN×N is
〈

ψ(ši),ψ(šj)
〉

, for
i, j = 1, . . . , N . One can also confirm that

Tr(K) =

N∑

n=1

M−1∑

m=1

M∑

m′>m

[

κm(šn, šn) + κm′(šn, šn)
]2

. (18)

Substituting (17) and (18) to (16) yields

R̂N (H) ≤ 4

RN
√
∑N

n=1

∑M−1

m=1

∑M

m′>m

[

κm(šn, šn) + κm′(šn, šn)
]2

.

Multiplying (15) by RB along with the last equation gives rise
to (14). �

Theorem 1 confirms that the empirical expectation of g(·),
namely ḡN (š), stays close to its ensemble oneE(g(š)), provided
that {‖Um‖F }m can be controlled. For this reason, it is prudent
to trade off maximization of correlations among the M datasets
with the norms of the resultant loading vectors.

V. GRAPH-REGULARIZED DUAL MCCA

In practical scenarios involving high-dimensional data vec-
tors with dimensions satisfying minm Dm > N , the matrices
{XmX�

m} become singular – a case where GMCCA in (7)
does not apply. For such cases, consider rewriting the Dm × d
loading matrices Um in terms of the data matrices Xm as
Um = XmAm, where Am ∈ RN×d will be henceforth termed
the dual of Um. Replacing Um with XmAm in the linear GM-
CCA formulation (7) leads to its dual formulation

min
{Am},S

M∑

m=1

∥
∥A�

mX�
mXm − S

∥
∥
2

F
+ γTr

(

SLGS�) (19a)

s. to SS� = I. (19b)

If the N ×N matrices {X�
mXm}Mm=1 are nonsingular, it

can be readily confirmed that the d ≤ ρ columns of the opti-
mizer Ŝ� of (19) are the d principal eigenvectors of MI− γLG ,
while the dual matrices can be estimated in closed form as
Âm = (X�

mXm)−1Ŝ�. Clearly, such an Ŝ does not depend on
the data {Xm}Mm=1, and this estimate goes against our goal
of extracting Ŝ as the latent low-dimensional structure com-
monly present in {Xm}Mm=1. To address this issue, we mimic
the dual CCA trick (see e.g., [14]), and introduce a Tikhonov
regularization term on the loading vectors through the norms
of

{‖Um‖2F = Tr
(

A�
mX�

mXmAm

)}

. This indeed agrees with
the observation we made following Theorem 1 that controlling
{‖Um‖2F } improves the generalization. In a nutshell, our graph-
regularized dual (GD) MCCA is given as

min
{Am},S

M∑

m=1

∥
∥A�

mX�
mXm − S

∥
∥
2

F
+ γTr

(

SLGS�)

+
M∑

m=1

εmTr
(

A�
mX�

mXmAm

)

(20a)

s. to SS� = I. (20b)

where {εm > 0} denote pre-selected weight coefficients.
As far as the solution is concerned, it can be deduced that

the i-th column of the optimizer Ŝ of (20) is the eigenvec-
tor of Cd :=

∑M
m=1(X

�
mXm + εmI)−1X�

mXm − γLG asso-
ciated with the i-th largest eigenvalue. Once Ŝ is found, the
optimal dual matrices can be obtained as {Âm = (X�

mXm +

εmI)−1Ŝ�}Mm=1.Further, the optimal value of (20a) is Md−
∑d

i=1 λi, where λi is the i-th largest eigenvalue of Cd. Yet, it is
not clear whether this optimal cost increases or decreases with
{εm}. The steps of implementing GDMCCA are summarized in
Alg. 2.

VI. GRAPH-REGULARIZED KERNEL MCCA

The GMCCA and GDMCCA approaches are limited to an-
alyzing linear data dependencies. Nonetheless, complex non-
linear data dependencies are not rare in practice. To account
for nonlinear dependencies, a graph-regularized kernel (GK)
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Algorithm 2: Graph-regularized Dual MCCA.

1: Input: {Xm}Mm=1, {εm}Mm=1, γ, and W.
2: Build LG using (5).
3: Construct

Cd =
∑M

m=1

(

X�
mXm + εmI

)−1
X�

mXm − γLG .
4: Perform eigenvalue decomposition on Cd to obtain

the d eigenvectors associated with the d largest
eigenvalues, which are collected as columns of Ŝ�.

5: Compute {Âm =
(

X�
mXm + εmI

)−1
Ŝ�}Mm=1.

6: Output: {Âm}Mm=1 and Ŝ.

MCCA formulation is pursued in this section to capture the non-
linear relationships in the M datasets {Xm}m through kernel-
based methods. Specifically, the idea of GKMCCA involves first
mapping the data vectors {Xm}m to higher (possibly infinite)
dimensional feature vectors by means ofM nonlinear functions,
on which features we will apply GMCCA to find the shared low-
dimensional canonical variables.

Let φm be a mapping from RDm to RLm for all m,
where the dimension Lm can be as high as infinity. Clearly,
the data enter the GDMCCA problem (20) only via the
similarity matrix X�

mXm. Upon mapping all data vec-
tors {xm,i}Ni=1 into {φm(xm,i)}Ni=1, the linear similarities
{〈xm,i, xm,j〉}Ni,j=1 can be replaced with the mapped nonlin-
ear similarities {〈φm(xm,i), φm(xm,j)〉}Ni,j=1. After select-
ing some kernel function κm such that κm(xm,i, xm,j) :=
〈φm(xm,i), φm(xm,j)〉, the (i, j)-th entry of the kernel matrix
K̄m ∈ RN×N is given by κm(xm,i, xm,j), for all i, j, and m.
In the sequel, centering {φm(xm,i)}Ni=1 is realized by centering
the kernel matrix for data Xm as

Km(i, j) := K̄m(i, j)− 1

N

N∑

k=1

K̄m(k, j)− 1

N

N∑

k=1

K̄m(i, k)

+
1

N2

N∑

i,j=1

K̄m(i, j) (21)

for m = 1, . . . ,M .
Replacing {X�

mXm}m in the GDMCCA formulation (20)
with centered kernel matrices {Km}m yields our GKMCCA

min
{Am},S

M∑

m=1

∥
∥A�

mKm − S
∥
∥
2

F
+ γTr

(

SLGS�)

+

M∑

m=1

εmTr
(

A�
mKmAm

)

(22a)

s. to SS� = I. (22b)

Selecting invertible matrices {Km}Mm=1, and following the
logic used to solve (20), we can likewise tackle (22). Con-
sequently, the columns of the optimizer Ŝ� are the first d
principal eigenvectors of Cg :=

∑M
m=1(Km + εmI)−1Km −

γLG ∈ RN×N , and the optimal Âm sought can be obtained as
Âm = (Km + εmI)−1Ŝ�. For implementation, GKMCCA is
presented in step-by-step form as Algorithm 3.

Algorithm 3: Graph-regularized Kernel MCCA.

1: Input: {Xm}Mm=1, {εm}Mm=1, γ, W, and {κm}Mm=1.
2: Construct {Km}Mm=1 using (21).
3: Build LG using (5).
4: Form Cg =

∑M
m=1 (Km + εmI)−1 Km − γLG .

5: Perform eigendecomposition on Cg to obtain the d
eigenvectors associated with the d largest eigenvalues,
which are collected as columns of Ŝ�.

6: Compute {Âm = (Km + εmI)−1 Ŝ�}Mm=1.
7: Output: {Âm}Mm=1 and Ŝ.

Remark 6: When the (non)linear mapsφm(·) needed to form
the kernel matrices {Km}Mm=1 in (22) are not given a priori, the
multi-kernel methods are well motivated (see e.g., [29], [40]).
Concretely, one presumes that each Km is a linear combina-
tion of P kernel matrices, namely Km =

∑P
p=1 β

p
mKp

m, where
{Kp

m}Pp=1 represent preselected view-specific kernel matrices
for data Xm. The unknown coefficients {βp

m ≥ 0}m,p are then
jointly optimized with {Am}m and S in (22).

Remark 7: When more than one type of connectivity infor-
mation on the common sources are available, our single graph-
regularized MCCA schemes can be generalized to accommodate
multiple or multi-layer graphs. Specifically, the single graph-
based regularization term γTr(SLGS�) in (7), (20), and (22)
can be replaced with

∑I
i=1 γiTr(SLGiS�) with possibly un-

known yet learnable coefficients {γi}i, where LGi denotes the
graph Laplacian matrix of the i-th graph, for i = 1, . . . , I .

Remark 8: To obtain an out-of-sample extension of
GKMCCA, one can center the new data vectors with
respect to the existing data in their corresponding trans-
formed feature spaces, and subsequently project the new
centered data onto the learned subspaces. Consider the
m-th view projection matrix Ūm := Φ̄mAm ∈ RLm×d,
where the i-th column of Φ̄m ∈ RLm×N denotes the cen-
tered φm(xm,i) for i = 1, . . . , N . Suppose that the T
new data vectors are collected in Zm := [zm,1 · · · zm,T ].
We first map {zm,i} from RDm to RLm via φm(·),
and subtract from {φm(zm,i)} the original mean μm :=
1
N

∑N
i=1 φm(xm,i). The low-dimensional representation of

Zm is Ū�
m[φm(zm,1)− μm · · · φm(zm,T )− μm] ∈ Rd×T ,

which can be equivalently expressed asA�
mKzx, whereKzx :=

K̄zx − 1
N 1T×NK̄m − 1

N K̄zx1N×N + 1
N21T×NK̄m1N×N

with 〈φm(zm,i), φm(xm,j)〉 specifying the (i, j)-th entry of
K̄zx for i = 1, . . . , T and j = 1, . . . , N , and 1T×N ∈ RT×N

denoting the all-one matrix.

VII. COMPUTATIONAL COMPLEXITY

Regarding computational complexity, recall that GMCCA,
GDMCCA, GKMCCA, MCCA, DMCCA, and KMCCA all re-
quire finding the eigenvectors of matrices with different dimen-
sionalities. Defining D := maxm Dm, it can be checked that
they incur correspondingly complexities O(N2max(N,DM)),
O(N2DM), O(N2M max(N,D)), O(N2max(N,DM)),
O(N2DM), and O(N2M max(N,D)). Interestingly, intro-
ducing graph-regularization to e.g., MCCA, DMCCA, as well
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as KMCCA does not increase computational complexity. When
{N � Dm}Mm=1, GMCCA in its present form is not feasible, or
suboptimal even though pseudo-inverse can be utilized at com-
plexity O(MD3). In contrast, GDMCCA is computationally
preferable as its cost grows only linearly withD. WhenN � D,
the complexity of GKMCCA is dominated by the computational
burden of {(Km + εI)−1Km}Mm=1 requiring complexity in the
order ofO(N3M). On the other hand, implementing GKMCCA
when N � D incurs complexity of order O(N2MD), required
to evaluate the M kernel matrices.

Performing PCA and graph (G) PCA [28] on the concatenated
vectors of dimension Dt :=

∑N
m=1 Dm incurs computational

complexity O(D2
t max(Dt, N)) and O(Dt max(D2

t , N
2)), re-

spectively. As such, in settings where Dt ≤ DM ≤ N , Dt ≤
N ≤ DM , or N ≤ Dt ≤ DM and N2DM ≥ D3

t , GMCCA is
computationally heavier than (G)PCA; otherwise, it is compu-
tationally more affordable.

Our GMCCA, GDMCCA, and GKMCCA schemes entail
eigendecomposition of an N ×N matrix, which incurs com-
plexity O(N3), and thus is not scalable to large datasets. Possi-
ble remedies include parallelization and efficient decentralized
algorithms capable of handling structured MCCA; e.g., along
the lines of [18]. These go beyond the scope of the present pa-
per, but constitute interesting future research directions.

VIII. NUMERICAL TESTS

In this section, numerical tests using real datasets are provided
to showcase the merits of our proposed MCCA approaches in
several machine learning applications, including user engage-
ment prediction, friend recommendation, clustering, and classi-
fication.

A. User Engagement Prediction

Given multi-view data of Twitter users, the goal of the so-
called user engagement prediction is to determine which top-
ics a Twitter user is likely to tweet about, by using hashtag
as a proxy. The first experiment entails six datasets of Twitter
users, which include EgoTweets, MentionTweets, FriendTweets,
FollowersTweets, FriendNetwork, and FollowerNetwork data,1

where {Dm = 1, 000}6m=1 and N = 1, 770 users’ data are ran-
domly chosen from the database. Details in generating those
multiview data can be found in [3]. In this experiment, we cor-
roborate that effective graph priors can be extracted from exist-
ing views. Specifically, considering data {Xm ∈ RDm×N}3m=1

from the first 3 views, we can construct three adjacency matrices
{Wm ∈ RN×N}3m=1 as follows, whose (i, j)-th entries are

wm
ij :=

{

Kt
m(i, j), i ∈ Nk1

(j) or j ∈ Nk1
(i)

0, otherwise
(23)

where Kt
m is a Gaussian kernel matrix of Xm with bandwidth

equal to the mean of the corresponding Euclidean distances,
and Nk1

(j) the set of column indices of Kt
m containing the k1-

nearest neighbors of column j. Our graph adjacency matrix is

1http://www.cs.jhu.edu/∼mdredze/datasets/multiview_embeddings/

Fig. 1. Precision of user engagement prediction.

built using W =
∑3

m=1 Wm. To perform graph (G) PCA [28]
and PCA, six different views of the data are concatenated to
form a single dataset of 6,000-dimensional data vectors.

We selected 9 most frequently used hashtags. Per Monte
Carlo (MC) run, 5 users who tweeted each selected hashtag
were randomly chosen as exemplars of users that would em-
ploy this hashtag in the future. All other users that tweeted each
hashtag were ranked by the cosine distance of their represen-
tations to the average representation of those 5 users, where
the representation per user is either the corresponding estimate
of the common source obtained by (G)MCCA or the principal
components by (G)PCA. Before computing cosine distance, the
d-dimensional representations were z-score normalized. In other
words, each dimension has its mean removed, and subsequently
scaled to have unit variance. The representations are learned
on data collected pre-March 2015, while the association be-
tween hashtags and users is extracted in March 2015. This im-
plies that the hashtags do not impact the representation learn-
ing. Pertinent hyper-parameters were set as k1 = 10, γ = 0.05,
and d = 5.

Prediction performance is evaluated using three metrics: pre-
cision, recall, and mean reciprocal rank (MRR), where a user is
marked as correct if this user uses the hashtag. The precision is
defined as the ratio of the number of correctly predicted users
over the total number of predicted users considered. Recall is
the ratio of the number of correctly predicted users over the to-
tal number of users that use the hashtag. MRR is the average
inverse of the ranks of the first correctly predicted users.

Figures 1 and 2 present the average precision and recall of
GMCCA, MCCA, GPCA, PCA, and a random ranking scheme
over 100 MC realizations, with a varying number L of evalu-
ated users per hashtag. Here, the random ranking is included as
a baseline. Table I reports the prediction performance of simu-
lated schemes with L = 35 being fixed. Clearly, GMCCA out-
performs its competing alternatives in this Tweeter user engage-
ment prediction task. Moreover, ranking through all approaches
is consistent across precision, recall, and MRR.
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Fig. 2. Recall of user engagement prediction.

TABLE I
USER ENGAGEMENT PREDICTION PERFORMANCE

B. Friend Recommendation

GMCCA is further examined for friend recommendation,
where the graph can be constructed from an alternative view
of the data, as we argued in Remark 4. Specifically for this test,
3 Twitter user datasets [3] from 2,506 users were used to form
{Xm ∈ R1,000×2,506}3m=1, which are EgoTweets, FollowersT-
weets, and FollowerNetwork data. Intuitively, the FriendTweets
are helpful for the friend recommendation task. Thus, an alter-
native view, the FriendTweets data of the same group of users,
was used to construct the common source graph. The weight
matrix W is obtained following a similar way from forming
Wm but replacing Kt

m in (23) with a Gaussian kernel matrix of
FriendTweets data.

In the experiment, 20 most popular accounts were selected,
which correspond to celebrities. Per realization, 10 users who
follow each celebrity were randomly picked, and all other
users were ranked by their cosine distances to the average
of the 10 picked representations. We z-score normalize all
representations before calculating the cosine distances. The
same set of evaluation criteria as in user engagement pre-
diction in Section VIII-A was adopted here, where a user is
considered to be a correctly recommended friend if both follow
the given celebrity. Hyper-parameters k1 = 50, γ = 0.05,

Fig. 3. Precision of friend recommendation.

Fig. 4. Recall of friend recommendation.

and d = 5 were simulated. The friend recommendation per-
formance of GMCCA, MCCA, GPCA, PCA, and Random
ranking is evaluated after averaging over 100 independent
realizations.

In Figs. 3 and 4, the precision and recall of all simulated algo-
rithms under an increasing number of recommended friends (L)
are reported. Plots corroborate the advantages of our GMCCA
relative to its simulated alternatives under different numbers
of recommendations. Moreover, Table II compares the preci-
sion, recall, and MRR of simulated schemes for fixed L = 100.
Regarding the results, we have the following observations: i)
GMCCA is more attractive in the recommendation task than
its alternatives; ii) precision and recall differences among ap-
proaches are consistent for different L values; and, iii) ranking
achieved by these schemes is consistent across 3 metrics for
fixed L = 100.
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TABLE II
FRIEND RECOMMENDATION PERFORMANCE COMPARISON

TABLE III
SIX SETS OF FEATURES OF HANDWRITTEN NUMERALS

C. UCI Data Clustering

Handwritten digit data from the UCI machine learning
repository2 were called for to assess GMCCA for clustering.
This dataset contains 6 feature sets of 10 classes corresponding
to 10 digits from 0 to 9, as listed in Table III. There are 200
data per class (2,000 in total) per feature set. Seven clusters of
data including digits 1, 2, 3, 4, 7, 8, and 9 were used to form
the views {Xm ∈ RDm×1,400}6m=1 with D1 = 76, D2 = 216,
D3 = 64, D4 = 240, D5 = 47, and D6 = 6. Similar to Section
VIII-A, one existing view is used to build the graph. Specifi-
cally, the graph adjacency matrix is constructed using (23), after
substituting Kt

m by the Gaussian kernel matrix of X3. GPCA
and PCA were performed on the concatenated data vectors of
dimension

∑6
m=1 Dm, while the K-means was performed using

either Ŝ, or the principal components with γ = 0.1 and d = 3.
Clustering performance is evaluated in terms of two met-

rics, namely clustering accuracy and scatter ratio. Clustering
accuracy is the percentage of correctly clustered samples. Scat-
ter ratio is defined as Ct/

∑7
i=1 Ci, where Ct and Ci de-

note the total scatter value and the within-cluster scatter value,
given correspondingly by Ct := ‖Ŝ‖2F and Ci :=

∑

j∈Ci ‖ŝj −
1
|Ci|

∑

�∈Ci ŝ�‖22; here, Ci is the set of data vectors belonging to
the i-th cluster, and |Ci| is the cardinality of Ci.

Table IV reports the clustering performance of MCCA, PCA,
GMCCA, and GPCA for different k1 values. Clearly, GMCCA
yields the highest clustering accuracy and scatter ratio. Fix-
ing k1 = 50, Fig. 5 plots the first two dimensions of the com-
mon source estimates obtained by (G)MCCA along with the
first two principal components of (G)PCA, with different colors

2http://archive.ics.uci.edu/ml/datasets/Multiple+Features.

TABLE IV
CLUSTERING PERFORMANCE COMPARISON

signifying different clusters. As observed from the scatter plots,
GMCCA separates the 7 clusters the best, in the sense that data
points within clusters are concentrated but across clusters are far
apart.

D. Generalization Bound Versus γ

Here, we wish to demonstrate the usefulness of the general-
ization bound of GMCCA derived in Section IV. Specifically,
we will test numerically the effect of γ on the generalization
error bound defined on the right hand side (RHS) of (14).

In this experiment, 20 MC simulations were performed to
evaluate the clustering performance of GMCCA using the
UCI dataset described in Section VIII-C. Per MC realization,
200 samples per cluster were randomly and evenly divided to
obtain training data {Xtr

m ∈ RDm×700}3m=1 and testing data
{Xte

m ∈ RDm×700}3m=1. The same 7 digits in Section VIII-
C and their first 3 views were employed. GMCCA was per-
formed on the training data to obtain {Ûm ∈ RDm×3}3m=1.
Subsequently, low-dimensional representations of the testing
data were found as

∑3
m=1 Û

�
mXte

m ∈ R3×700, which were fed
into the K-means for digit clustering. The generalization bound
was evaluated utilizing the RHS of (14), where p = 0.1, and

B =
√

∑2
m=1

∑3
m′=m+1 ‖Û�

mÛm + Û�
m′Ûm′ ‖2F .

Figure 6 depicts the average generalization error bound along
with clustering accuracy on the test data for different γ values
ranging from 0 to 500. Interestingly, at γ = 0.01, the bound at-
tains its minimum, and at the same time, the clustering accuracy
achieves its maximum. This indeed provides us with an effec-
tive way to select the hyper-parameter value for our GMCCA
approaches.

E. Face Recognition

The ability of GDMCCA in face recognition is evaluated us-
ing the Extended Yale-B (EYB) face image database [21]. The
EYB database contains frontal face images of 38 individuals,
each having 65 images of 192 × 168 pixels. Per MC realization,
we performed Coiflets, Symlets, and Daubechies orthonormal
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Fig. 5. Scatter plot of the first two rows of Ŝ or principal components.

Fig. 6. Generalization bound versus γ.

wavelet transforms on 20 randomly selected individuals’ im-
ages to form three feature datasets. Subsequently, three feature
matrices of each image were further resized to 50× 40 pixels,
followed by vectorization to obtain three 2, 000× 1 vectors.
For each individual, Ntr images were randomly chosen, and
the corresponding three sets of wavelet transformed data were
used to form the training datasets {Xm ∈ R2,000×20Ntr}3m=1.
Among the remaining images, (30− 0.5Ntr) images per indi-
vidual were obtained to form the validation datasets {Xtu

m ∈
R2,000×20(30−0.5Ntr)}3m=1, and another (30− 0.5Ntr) for test-
ing {Xte

m ∈ R2,000×20(30−0.5Ntr)}3m=1, following a similar pro-
cess to construct {Xm}3m=1.

In order to achieve enhanced face recognition performance,
the common information including both the original images and
their labels will be leveraged to construct W here. This is in
contrast with the methods adopted in Section VIII-A, VIII-B,
and VIII-C, which were based on existing or alternative views.
Specifically, the 20Ntr original training images were resized to
50× 40 pixels, and subsequently vectorized to obtain 2, 000× 1
vectors, collected as columns of O ∈ R2,000×20Ntr , which were
further used to build W ∈ R20Ntr×20Ntr . Per (i, j)-th entry of
W is

wij :=

{
o�
i oj

‖oi‖2‖oj‖2 , i ∈ Mk2
(j) or j ∈ Mk2

(i)

0, otherwise
(24)

where oi is the i-th column of O, and Mk2
(i) the set of the k2

nearest neighbors of oi belonging to the same individual.
In this experiment, k2 = Ntr − 1 was kept fixed. Further-

more, the three associated graph adjacency matrices in Lapla-
cian regularized multi-view (LM) CCA [4] were built in a similar
way to construct W, after substituting O by {Xm}3m=1 accord-
ingly. The hyper-parameters in GDMCCA, DMCCA, GDPCA,
LMCCA were tuned among 30 logarithmically spaced values
between 10−3 and 103 to maximize the recognition accuracy on
{Xtu

m}3m=1. After simulating GDMCCA, DMCCA, GDPCA,
DPCA, and LMCCA, 10 projection vectors were employed to
find the low-dimensional representations of {Xte

m}3m=1. Subse-
quently, the 1-nearest neighbor rule was applied for face recog-
nition.

Figures 7(a), 7(b), and 7(c) describe the average recogni-
tion accuracies of GMDCCA, MDCCA, GDPCA, DPCA, LM-
CCA, and KNN, for testing data Xte

1 , Xte
2 , and Xte

3 , respec-
tively, and for a varying number Ntr of training samples over
30 MC realizations. It is clear that the recognition performance
of all tested schemes improves as Ntr grows. Moreover, GDM-
CCA yields the highest recognition accuracy in all simulated
settings.

F. Image Data Classification

The MNIST database3 containing 10 classes of handwritten
28× 28 digit images with 7,000 images per class, is used here
to assess the merits of GKMCCA in classification. Per MC test,
three sets of Ntr images per class were randomly picked for
training, validation and testing, respectively. We followed the
process of generating the three-view training, tuning, and testing
data in Section VIII-E to construct {Xm ∈ R196×10Ntr}3m=1,
{Xtu

m ∈ R196×10Ntr}3m=1, and {Xte
m ∈ R196×10Ntr}3m=1, ex-

cept that each data sample per view was resized to 14× 14
pixels.

Gaussian kernels were used for {Xm}3m=1, the resized,
as well as the vectorized training images, denoted by {oi ∈
R196×1}10Ntr

i=1 , where the bandwidth parameters were set equal
to the mean of their corresponding Euclidean distances. Relying
on the kernel matrix of {oi}, denoted by Ko ∈ R10Ntr×10Ntr ,

3Downloaded from http://yann.lecun.com/exdb/mnist/.
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Fig. 7. Classification performance using YEB data.

Fig. 8. Classification results using MNIST data.

the graph adjacency matrix was constructed in the way de-

picted in (24) but with o�
i oj

‖oi‖2‖oj‖2 and 20Ntr replaced by the

(i, j)-th entry of Ko and 10Ntr, respectively. The graph Lapla-
cian regularized kernel multi-view (LKM) CCA [4] used three
graph adjacency matrices, which were obtained by (24) after

substituting o�
i oj

‖oi‖2‖oj‖2 by the (i, j)-th entry of {Km}3m=1. To
implement GDMCCA and GDPCA, the graph adjacency ma-
trices were constructed via (24). In all tests of this subsec-
tion, we set k2 = Ntr − 1. The hyper-parameters of GKM-
CCA, KMCCA, GKPCA, LKMCCA, GDMCCA, DMCCA,
and GDPCA were selected from 30 logarithmically spaced val-
ues between 10−3 and 103, that yields the best classification
performance. Ten projection vectors are learned by GKMCCA,
KMCCA, GKPCA, KPCA, LKMCCA, GDMCCA, DMCCA,
GDPCA, and DPCA, which are further used to obtain the low-
dimensional representations of {Xte

m}3m=1. Then, the 5-nearest
neighbors rule is adopted for classification. The classification
accuracies of all methods reported are averages over 30 MC
runs.

In Figs. 8(a), 8(b), and 8(c), the classification accuracies of
the 10-dimensional representations of Xte

1 , Xte
2 , and Xte

3 are
plotted. The advantage of GKMCCA relative to other competing
alternatives remains remarkable no matter which view of testing
data is employed.

IX. CONCLUSION

In this work, CCA along with multiview CCA was re-
visited. Going beyond existing (M)CCA approaches, a novel
graph-regularized MCCA method was put forth that lever-
ages prior knowledge described by graph(s) that common in-
formation bearing sources belong to. By embedding the la-
tent common sources in a graph and invoking this extra in-
formation as a graph regularizer, our GMCCA was developed
to endow the resulting low-dimensional representations. Per-
formance analysis of our GMCCA approach was also pro-
vided through the development of a generalization bound. To
cope with data vectors whose dimensionality exceeds the num-
ber of data samples, we further introduced a dual form of
GMCCA. To further account for nonlinear data dependencies,
we generalized GMCCA to obtain a graph-regularized ker-
nel MCCA scheme too. Finally, we showcased the merits of
our proposed GMCCA approaches using extensive real-data
tests.

This work opens up several interesting directions for future
research. Developing efficient GMCCA algorithms for high-
dimensional multiview learning is worth investigating. Gener-
alizing our proposed GMCCA approaches to handle unaligned
multiview datasets is also pertinent for semi-supervised learning
as well. Incorporating additional structural forms regularization,
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e.g., sparsity and non-negativity, into the novel GMCCA frame-
work is meaningful too.
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