
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 9, MAY 1, 2019 2357

Learning ReLU Networks on Linearly Separable
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Abstract—Neural networks with rectified linear unit (ReLU) ac-
tivation functions (a.k.a. ReLU networks) have achieved great em-
pirical success in various domains. Nonetheless, existing results for
learning ReLU networks either pose assumptions on the underly-
ing data distribution being, e.g., Gaussian, or require the network
size and/or training size to be sufficiently large. In this context, the
problem of learning a two-layer ReLU network is approached in
a binary classification setting, where the data are linearly separa-
ble and a hinge loss criterion is adopted. Leveraging the power of
random noise perturbation, this paper presents a novel stochastic
gradient descent (SGD) algorithm, which can provably train any
single-hidden-layer ReLU network to attain global optimality, de-
spite the presence of infinitely many bad local minima, maxima,
and saddle points in general. This result is the first of its kind, re-
quiring no assumptions on the data distribution, training/network
size, or initialization. Convergence of the resultant iterative algo-
rithm to a global minimum is analyzed by establishing both an
upper bound and a lower bound on the number of non-zero up-
dates to be performed. Moreover, generalization guarantees are
developed for ReLU networks trained with the novel SGD leverag-
ing classic compression bounds. These guarantees highlight a key
difference (at least in the worst case) between reliably learning a
ReLU network as well as a leaky ReLU network in terms of sam-
ple complexity. Numerical tests using both synthetic data and real
images validate the effectiveness of the algorithm and the practical
merits of the theory.

Index Terms—Deep learning, stochastic gradient descent, global
optimality, escaping local minima, generalization.

I. INTRODUCTION

D EEP neutral networks have recently boosted the no-
tion of “deep learning from data,” with field-changing

performance improvements reported in numerous machine
learning and artificial intelligence tasks [9], [16]. Despite their
widespread use as well as numerous recent contributions, our
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understanding of how and why neural networks (NNs) achieve
this success remains limited. While their expressivity (expres-
sive power) has been well argued [29], [30], the research focus
has shifted toward addressing the computational challenges of
training such models and understanding their generalization
behavior.

From the vantage point of optimization, training deep NNs re-
quires dealing with extremely high-dimensional and non-convex
problems, which are NP-hard in the worst case. It has been shown
that even training a two-layer NN of three nodes is NP-complete
[3], and the loss function associated with even a single neuron
exhibits exponentially many local minima [2]. It is therefore not
clear whether and how we can provably yet efficiently train a
NN to global optimality.

Nevertheless, as often evidenced by empirical tests, these NN
architectures can be ‘successfully’ trained by means of simple
local search heuristics, such as ‘plain-vanilla’ (stochastic) (S)
gradient descent (GD) on real or randomly generated data. Con-
sidering the over-parameterized setting in particular, where the
NNs have far more parameters than training samples, SGD can
often successfully train these networks while exhibiting favor-
able generalization performance without overfitting [23]. As an
example, the celebrated VGG19 net with 20 million parameters
trained on the CIFAR-10 dataset of 50 thousand data samples
achieves state-of-the-art classification accuracy, and also gen-
eralizes well to other datasets [33]. In addition, training NNs
by e.g., adding noise to the training samples [35], or to the
(stochastic) gradients during back-propagation [22], has well-
documented merits in training with enhancing generalization
performance, as well as in avoiding bad local minima [35]. In this
contribution, we take a further step toward understanding the an-
alytical performance of NNs, by providing fundamental insights
into the optimization landscape and generalization capability of
NNs trained by means of SGD with properly injected noise.

For concreteness, we address these challenges in a binary clas-
sification setting, where the goal is to train a two-layer ReLU
network on linearly separable data. Although a nonlinear NN
is clearly not necessary for classifying linearly separable data,
as a linear classifier such as the Perceptron, would do [31], the
fundamental question we target here is whether and how one
can efficiently train a ReLU network to global optimality, de-
spite the presence of infinitely many local minima, maxima, and
saddle points [18]. The motivation behind employing separa-
ble data is twofold. They can afford a zero training loss, and
distinguish whether a NN is successfully trained or not (as most
loss functions for training NNs are non-convex, it is in general
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difficult to check its global optimum). In addition, separable
data enable improvement of the plain-vanilla SGD by leverag-
ing the power of random noise in a principled manner, so that the
modified SGD algorithm can provably escape local minima and
saddle points efficiently, and converge to a global minimum in
a finite number of non-zero updates. We further investigate the
generalization capability of successfully trained ReLU networks
leveraging compression bounds [21]. Thus, the binary classifi-
cation setting offers a favorable testbed for studying the effect
of training noise on avoiding overfitting when learning ReLU
networks. Although the focus of this paper is on two-layer net-
works, our novel algorithm and theoretical results can shed light
on developing reliable training algorithms for as, well as on,
understanding generalization of deep networks.

In a nutshell, the main contributions of the present work are:
c1) A simple SGD algorithm that can provably escape local

minima and saddle points to efficiently train any two-
layer ReLU network to attain global optimality;

c2) Theoretical and empirical evidence supporting the in-
jection of noise during training NNs to escape bad local
minima and saddle points; and

c3) Tight generalization error bounds and guarantees for
(possibly over-parameterized) ReLU networks opti-
mally trained with the novel SGD algorithm.

The remainder of this paper is structured as follows. Section II
reviews related contributions. Section III introduces the binary
classification setting, and the problem formulation. Section IV
presents the novel SGD algorithm, and establishes its theoretical
performance. Section V deals with the generalization behavior
of ReLU networks trained with the novel SGD algorithm. Nu-
merical tests on synthetic data and real images are provided in
Section VI. The present paper is concluded with research out-
look in Section VII, while technical proofs of the main results
are delegated to the Appendix.

Notation: Lower- (upper-)case boldface letters denote vec-
tors (matrices), e.g., a (A). Calligraphic letters are reserved for
sets, e.g. S , with the exception ofD representing some probabil-
ity distribution. The operation �c� returns the largest integer no
greater than the given number c > 0, the cardinality |S| counts
the number of elements in setS , and ‖x‖2 denotes the Euclidean
norm of x.

II. RELATED WORK

As mentioned earlier, NN models have lately enjoyed great
empirical success in numerous domains [9], [16], [38]. Many
contributions have been devoted to explaining such a success; see
e.g., [4], [12]–[14], [18], [19], [27], [37], [40]. Recent research
efforts have focused on the expressive ability of deep NNs [30],
and on the computational tractability of training such models [4],
[34]. In fact, training NNs is NP-hard in general, even for small
and shallow networks [2], [10]. Under various assumptions (e.g.,
Gaussian data, and a sufficiently large number of hidden units)
as well as different models however, it has been shown that local
search heuristics such as (S)GD can efficiently learn two-layer
NNs with quadratic or ReLU activations [34].

Another line of research has studied the landscape proper-
ties of various loss functions for learning NNs; see e.g. [4],

[13], [18], [24], [25], [28], [39], [40]. Generalizing the results
for the �2 loss [13], [40], it has been proved that deep linear
networks with arbitrary convex and differentiable losses have
no sub-optimal (a.k.a. bad) local minima, that is all local min-
ima are global, when the hidden layers are at least as wide as
the input or the output layer [17]. For nonlinear NNs, most re-
sults have focused on learning shallow networks. For example,
it has been shown that there are no bad local minima in learn-
ing two-layer networks with quadratic activations and the �2
loss, provided that the number of hidden neurons exceeds twice
that of inputs [34], [41]. Focusing on a binary classification set-
ting, [4] demonstrated that despite the non-convexity present in
learning one-hidden-layer leaky ReLU networks with a hinge
loss criterion, all critical points are global minima if the data are
linearly separable. Thus, SGD can efficiently find a global op-
timum of a leaky ReLU network. On the other hand, it has also
been shown that there exist infinitely many bad local optima in
learning even two-layer ReLU networks under mild conditions;
see e.g., [4, Thm. 8], [18]. Interestingly, [18] provided a com-
plete description of all sub-optimal critical points in learning
two-layer ReLU networks with a hinge loss on separable data.
Yet, it remains unclear whether and how one can efficiently train
even a single-hidden-layer ReLU network to global optimality.

Recent efforts have also been centered on understanding gen-
eralization behavior of deep NNs by introducing and/or studying
different complexity measures. These include Rademacher com-
plexity, uniform stability, and spectral complexity; see [15] for a
recent survey. However, the obtained generalization bounds do
not account for the underlying training schemes, namely opti-
mization methods. As such, they do not provide tight guaran-
tees for generalization performance of (over-parameterized) net-
works trained with iterative algorithms [4]. Even though recent
work suggested an improved generalization bound by optimiz-
ing the PAC-Bayes bound of an over-parameterized network in
a binary classification setting [7], this result is meaningful only
when the optimization succeeds. Leveraging standard compres-
sion bounds, generalization guarantees have been derived for
two-layer leaky ReLU networks trained with plain-vanilla SGD
[4]. But this bound does not generalize to ReLU networks, due
to the challenge and impossibility of using plain-vanilla SGD to
train ReLU networks to global optimum.

III. PROBLEM FORMULATION

Consider a binary classification setting, in which the train-
ing set S := {(xi, yi)}ni=1 comprises n data sampled i.i.d. from
some unknown distribution D over X × Y , where without loss
of generality we assume X := {x ∈ Rd : ‖x‖2 ≤ 1} and Y :=
{−1, 1}. We are interested in the linearly separable case, in
which there exists an optimal linear classifier vector ω∗ ∈ Rd

such that P(x,y)∼D(yω∗	x ≥ 1) = 1. To allow for affine clas-
sifiers, a “bias term” can be appended to the classifier vector by
augmenting all data vectors x ∈ X with an extra component of
1 accordingly.

We deal with single-hidden-layer NNs having d scalar in-
puts, k > 0 hidden neurons, and a single output (for binary
classification). The overall input-output relationship of such a
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two-layer NN is

x �→ f(x) :=
k∑

j=1

vjσ
(
w	

j x
)

(1)

which maps each input vectorx ∈ Rd to a scalar output by com-
bining k nonlinear maps of linearly projected renditions ofx, ef-
fected via the ReLU activationσ(z) := max{0, z}. Clearly, due
to the non negativity of ReLU outputs, one requires at leastk ≥ 2
hidden units so that the output f(·) can take both positive and
negative values to signify the ‘positive’ and ‘negative’ classes.
Here, wj ∈ Rd stacks up the weights of the links connecting the
input x to the j-th hidden neuron, and vj is the weight of the
link from the j-th hidden neuron to the output. Upon defining
W := [w1 · · · wk]

	 and v := [v1 · · · vk]	, which are hence-
forth collectively denoted as W := {v, W } for brevity, one can
express f(x) in a compact matrix-vector representation as

f(x;W) = v	σ(Wx) (2)

where the ReLU activation σ(z) should be understood entry-
wise when applied to a vector z.

Given our NN described by f(x;W) and adopting a hinge
loss criterion �(z) := max{0, 1− z}, we define the empirical
loss as the average loss of f(x;W) over the training set S , that
is

LS(W) :=
1

n

n∑

i=1

�(yif(xi;W))

=
1

n

n∑

i=1

max
{
0, 1− yiv

	σ(Wxi)
}
.

With the output f(x;W) ∈ R, we construct a binary classifier
gf : Rd → Y as gf = sgn(f), where the sign function sgn(z) =
1 if z ≥ 0, and sgn(z) = 0 otherwise. For this classifier, the
training error (a.k.a. misclassification rate) R̂S(W) over S is

R̂S(W) =
1

n

n∑

i=1

1{yi 
=sgn(f(xi;W))} (3)

where 1{·} denotes the indicator function taking value 1 if the
argument is true, and 0 otherwise.

In this paper, we first fix the second layer of f(x;W) to be
some constant vector v given a priori, with at least one pos-
itive and one negative entry. We will subsequently generalize
the results to the case where v and W are updated simultane-
ously. Thus, training the ReLU network f(x;W) boils down
to learning the weight matrix W only. As such, the network is
henceforth denoted by f(x;W ) := f(x;W), and the goal is to
solve the following optimization problem

W ∗ := arg min
W∈Rk×d

LS(W ) (4)

where LS(W ) = (1/n)
∑n

i=1 �(yif(xi;W )). Evidently for
separable data and the ReLU network considered in this paper,
it must hold that LS(W ∗) = 0. Due to piecewise linear (non-
smooth) ReLU activations,LS(W ) becomes non-smooth. It can
be further shown that LS(W ) is non-convex (e.g., [4, Proposi-
tion 5.1]), which indeed admits infinitely many (sub-optimal)
local minima [4, Thm. 8].

Interestingly though, it is possible to provide an analytical
characterization of all sub-optimal solutions. Specifically, at any
critical point1 W † of LS(W ) that incurs a non-zero loss �(yif
(xi;W

†)) > 0 for a datum (xi, yi) ∈ S , it holds that σ(W †xi)
= 0 [18, Thm. 6], or entry-wise

σ
(
w†

j

	
xi

)
= 0, ∀j = 1, 2, . . . , k. (7)

Expressed differently, if data pair (xi, yi) yields a non-zero loss

at a critical point W †, the ReLU output σ(w†
j

	
xi) must vanish

at all hidden neurons. Building on this observation, we say that
a critical point W † of LS(W ) is sub-optimal if it obeys simul-
taneously the following two conditions: i) �(yif(xi;W

†)) > 0
for some data sample (xi, yi) ∈ S , and ii) for which it holds that
σ(W †xi) = 0. According to these two defining conditions, the
set of all sub-optimal critical points includes different local min-
ima, as well as all maxima and saddle points; see Fig. 1 for an
illustration. It is also clear from Fig. 1 that the two conditions
in certain cases cannot be changed by small perturbations on
W †, suggesting that there are in general infinitely many sub-
optimal critical points. Therefore, optimally training even such
a single-hidden-layer ReLU network is indeed challenging.

Consider minimizingLS(W ) by means of plain-vanilla SGD
with constant learning rate η > 0, as

W t+1 = W t − η
∂�(yitf(xit ;W ))

∂W

∣∣∣∣
W=W t

(8)

with the (sub-)gradient of the hinge loss at a randomly sampled
datum (xit , yit) ∈ S given by

∂�(yitf(xit ;W ))

∂W

= −1{1−yitv
	σ(Wxit )>0}yitdiag

(
1{Wxit≥0}

)
vx	

it
(9)

where diag(z) is a diagonal matrix holding entries of vector z
on its diagonal, and the indicator function 1{z≥0} applied to z

is understood entry-wise. For any sub-optimal critical point W †

incurring a nonzero loss for some (xit , yit), it can be readily
deduced that diag(1{W †xit≥0}) = 0 [18].

Following the convention [22], we say that a ReLU is active
if its output is non-zero, and inactive otherwise. Furthermore,
we denote the state of per j-th ReLU by its activity indicator
function 1{w	

jxit≥0}. In words, there exists always some data
sample(s) for which all hidden neurons become inactive at a
sub-optimal critical point. This is corroborated by the fact that
under some conditions, plain-vanilla SGD converges to a sub-
optimal local minimum with high probability [4]. It will also be

1The critical point for a general non-convex and non-smooth function is de-
fined invoking the Clarke sub-differential (see e.g., [5], [36]). Precisely, consider
a function h(z) : Z �→ R, which is locally Lipschitz around z ∈ Z , and differ-
entiable on Z\G, with G being a set of Lebesgue measure zero. Then the convex
hull of the set of limits of the form lim∇h(zk), where zk → z as k → +∞,
i.e.,

∂0h(z) := c.h.

{
lim
k

∇h(zk) : zk → z, zk /∈ G
}

(5)

is the so-termed Clarke sub-differential of h at z. Furthermore, if 0 belongs to
∂0h(z), namely

0 ∈ ∂0h(z) (6)

then we say that z is a critical point of h in the Clarke sense.
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Fig. 1. Four different critical points of the loss function L̂(W ) (a non-zero classification error R̂(W ) yields a non-zero loss) for a ReLU network with two
hidden neurons (corresponding to the hyperplanes w	

1x = 0) (left blue line in each plot, with v1 = 1) and w	
2x = 0 (right blue line, with v2 = −1). The arrows

point to the positive cone of each hyperplane, namely w	
j x ≥ 0 for j = 1, 2. The training dataset contains 3 samples, two of which belong to class ‘+1’ (colored

red) and one of which belong to class ‘−1’ (colored black). Data points with a non-zero classification error (hence non-zero loss) must lie in the negative cone of
all hyperplanes.

verified by our numerical tests in Section VI, that SGD can in-
deed get stuck in sub-optimal local minima when training ReLU
networks.

IV. MAIN RESULTS

In this section, we present our main results that include a mod-
ified SGD algorithm and theory for efficiently training single-
hidden-layer ReLU networks to global optimality. As in the con-
vergence analysis of the Perceptron algorithm (see e.g., [26],
[32, Chapter 9]), we define an update at iteration t as non-zero
or effective if the corresponding (modified) stochastic gradient
is non-zero, or equivalently, whenever one has W t+1 
= W t.

A. Algorithm

As explained in Section III, plain-vanilla SGD iterations for
minimizingLS(W ) can get stuck in sub-optimal critical points.
Recall from (9) that whenever this happens, it must hold that
diag(1{Wxit≥0}) = 0 for some data sample (xit , yit) ∈ S , or
equivalently w	

j xit < 0 for all j = 1, 2 . . . , k. To avoid be-
ing trapped in these points, we will endow the algorithm with
a non-zero ‘(sub-)gradient’ even at a sub-optimal critical point,
so that the algorithm will be able to continue updating, and will
have a chance to escape from sub-optimal critical points. If suc-
cessful, then when the algorithm converges, it must hold that
1{1−yiv	σ(W †xi)>0} = 0 for all data samples (xi, yi) ∈ S (cf.
(9)), or 1− yiv

	σ(W †xi) ≤ 0 for all i = 1, 2, . . . , n, thanks
to linear separability of the data. This in agreement with the
definition of the hinge loss function satisfies that LS(W †) = 0
in (4), which guarantees that the algorithm converges to a
global optimum. Two critical questions arise at this point: Q1)
How can we endow a non-zero ‘(sub-)gradient’ based search
direction even at a sub-optimal critical point, while having the
global minima as limiting points of the algorithm? and Q2) How
is it possible to guarantee convergence?

Question Q1) can be answered by ensuring that at least one
ReLU is active at a non-optimal point. Toward this objective,

motivated by recent efforts in escaping saddle points [1], [8],
[11], we are prompted to add a zero-mean random noise vector
εt ∈ Rk to W txit ∈ Rk, namely the input vector to the activity
indicator function of all ReLUs. This would replace1{W txit≥0}
in the subgradient (cf. (9)) with 1{W txit+εt≥0} at every itera-
tion. In practice, Gaussian additive noise εt ∼ N (0, γ2I) with
sufficiently large variance γ2 > 0 works well.

Albeit empirically effective in training ReLU networks, SGD
with such architecture-agnostic injected noise into all ReLU ac-
tivity indicator functions cannot guarantee convergence in gen-
eral, or convergence is difficult or even impossible to establish.
We shall take a different route to bypass this hurdle here, which
will lead to a simple algorithm provably convergent to a wanted
global optimum in a finite number of non-zero updates. This
result holds regardless of the data distribution, initialization,
network size, or the number of hidden neurons. Toward, to en-
sure convergence of our modified SGD algorithm, we carefully
design the noise injection process by maintaining at least one
non-zero ReLU activity indicator variable at every non-optimal
critical point.

For the picked data sample (xit , yit) ∈ S per iteration t ≥ 0,
we inject Gaussian noise εtj ∼ N (0, γ2) into the j-th ReLU
activity indicator function 1{w	

jxit≥0} in the SGD update of (9),
if and only if the corresponding quantity yitvj ≥ 0 holds, and
we repeat this for all neurons j = 1, 2, . . . , k.

Interestingly, the noise variance γ2, admits simple choices, so
long as it is selected sufficiently large matching the size of the
corresponding summands {|wt

j
	
x|2}j,t. We will build up more

intuition and highlight the basic principle behind such a noise
injection design shortly in Section IV-B, along with our formal
convergence analysis. For implementation purposes, we summa-
rize the novel SGD algorithm with randomly perturbed ReLU
activity indicator functions in Algorithm 1. As far as stopping
criterion is concerned, it is safe to conclude that the algorithm
has converged, if there has been no non-zero update for a succes-
sion of say,np iterations, where p > 0 is some fixed large enough
integer. This holds with high probability, which depends on p,
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Algorithm 1: Learning Two-Layer ReLU Networks via
SGD with Randomly Perturbed ReLU Activity Indicators.

1: Input: Training data S = {(xi, yi)}ni=1, second layer
weight vector v ∈ Rk with at least one positive and at
least one negative entry, initialization parameter ρ ≥ 0,
learning rate η > 0, and noise variance γ2 > 0.

2: Initialize W 0 with 0, or randomly having its rows
obey ‖wj‖2 ≤ ρ.

3: For t = 0, 1, 2, . . . do
4: Pick it uniformly at random from, or

deterministically cycle through {1, 2, . . . , n}.
5: Update

W t+1 = W t + η 1{1−yitv
	σ(W txit )>0}

× yitdiag
(
1{W txit+εt≥0}

)
vx	

it
(10)

where per j-th entry of noise εt ∈ Rk follows εtj ∼ N
(0, γ2), if yitvj ≥ 0; and εtj = 0, otherwise.

6: Output: W t+1.

and |N+
v | (|N−

v |), where the latter denotes the number of neu-
rons with vj > 0 (vj < 0). We have the following result, whose
proof is provided in Appendix D.

Proposition 1: Let ‖wt
j‖2 ≤ wmax for all neurons j = 1, 2,

. . . , k, and all iterations t ≥ 0, and consider it cycling de-
terministically through {1, 2, . . . , n}. If there is no non-zero
update after a succession of np iterations, then Algorithm 1
converges to a global optimum of LS(W ) with probability

at least 1− [Φ (wmax/γ)]
pmin{|N+

v |, |N−
v |}, where Φ(z) := (1/√

2π)
∫ z
−∞ e−s2ds is the cumulative density function of the stan-

dardized Gaussian distribution N (0, 1).
Observe that the probability in Proposition 1 can be made

arbitrarily close to 1 by taking sufficiently large p and/or γ.
Regarding our proposed approach in Algorithm 1, three remarks
are worth making.

Remark 1: With the carefully designed noise injection rule,
our algorithm constitutes a non-trivial generalization of the Per-
ceptron or plain-vanilla SGD algorithms to learn ReLU net-
works. Implementing Algorithm 1 is as easy as plain-vanilla
SGD, requiring almost negligible extra computation overhead.
Both numerically and analytically, we will demonstrate the
power of our principled noise injection into partial ReLU ac-
tivity indicator functions, as well as establish the optimality,
efficiency, and generalization performance of Algorithm 1 in
learning two-layer (over-parameterized) ReLU networks on lin-
early separable data.

Remark 2: It is worth remaking that the random (Gaussian)
noise in our proposal is solely added to the ReLU activity indi-
cator functions, rather than to any of the hidden neurons. This is
evident from the first indicator function 1{1−yitv

	σ(W txit )>0}
being the (sub)derivative of a hinge loss, in Step 5 of
Algorithm 1, which is kept as it is in the plain-vanilla SGD,
namely it is not affected by the noise. Moreover, our use of
random noise in this way distinguishes itself from those in the
vast literature for evading saddle points (see e.g., [1], [8], [11]),

which simply add noise to either the iterates or to the (stochas-
tic) (sub)gradients. This distinction endows our approach with
the unique capability of also escaping local minima (in addition
to saddle points). To the best of our knowledge, our approach
is the first of its kind in provably yet efficiently escaping local
minima under suitable conditions.

Remark 3: Compared with previous efforts in learning ReLU
networks (e.g., [34]), our proposed Algorithm 1 provably con-
verges to a global optimum in a finite number of non-zero up-
dates, without any assumptions on the data distribution, train-
ing/network size, or initialization. This holds even in the pres-
ence of exponentially many local minima and saddle points. To
the best of our knowledge, Algorithm 1 provides the first solution
to efficiently train such a single-hidden-layer ReLU network to
global optimality with a hinge loss, so long as the training sam-
ples are linearly separable. Generalizations to other objective
functions based on e.g., the τ -hinge loss and the smoothed hinge
loss (a.k.a. polynomial hinge loss) [20], as well as to multilayer
ReLU networks are possible, and they are left for future research.

B. Convergence Analysis

In this section, we analyze the convergence of Algorithm 1
for learning single-hidden-layer ReLU networks with a hinge
loss criterion on linearly separable data, namely for minimizing
LS(W ) in (4). Recall since we only train the first layer having
the second layer weight vector v ∈ Rk fixed a priori, we can
assume without further loss of generality that entries of v are all
non-zero. Otherwise, one can exclude the corresponding hidden
neurons from the network, yielding an equivalent reduced-size
NN whose second layer weight vector has all its entries non-zero.

Before presenting our main convergence results for Algorithm
1, we introduce some notation. To start, let N+

y ⊆ {1, 2, . . . , n}
(N−

y ) be the index set of data samples {(xi, yi)}1≤i≤n belonging
to the ‘positive’ (‘negative’) class, namely whose yi = +1 (yi =
−1). It is thus self-evident that N+

y ∪N−
y = {1, 2, . . . , n} and

N+
v ∪N−

v = {1, 2, . . . , k} hold under our assumptions. Putting
our work in context, it is useful to first formally summarize
the landscape properties of the objective function LS(W ) =
(1/n)

∑n
i=1 max{0, 1− yif(xi;W )}, which can help identify

the challenges in learning ReLU networks.
Proposition 2: Function LS(W ) has the following proper-

ties: i) it is non-convex, and ii) for each sub-optimal local mini-
mum (that incurs a non-zero loss), there exists (at least) a datum
(xi, yi) ∈ S for which all ReLUs become inactive.

The proof of Property i) in Proposition 2 can be easily adapted
from that of [4, Proposition 5.1], while Property ii) is just a
special case of [18, Thm. 5] for a fixed v; hence they are both
omitted in this paper.

We will provide an upper bound on the number of non-zero
updates that Algorithm 1 performs until no non-zero update oc-
curs after within a succession of say, e.g. np iterations (cf. (10)),
where p is a large enough integer. This, together with the fact that
all sub-optimal critical points of LS(W ) are not limiting points
of Algorithm 1 due to the Gaussian noise injection with a large
enough variance γ2 > 0 at every iteration, will guarantee con-
vergence of Algorithm 1 to a global optimum ofLS(W ). Specif-
ically, the main result is summarized in the following theorem.
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Theorem 1 (Optimality): If all rows of the initialization W 0

satisfy ‖w0
j‖2 ≤ ρ for any constant ρ ≥ 0, and the second layer

weight vector v ∈ Rk is kept fixed with both positive and
negative (but non-zero) entries, then Algorithm 1 with some
constant step size η > 0 converges to a global minimum of
LS(W ) after performing at most Tk non-zero updates, where
for vmin = min1≤j≤k |vj | it holds that

Tk :=
k

ηv2min

[(
η ‖v‖22 + 2

)
‖ω∗‖22 + 2ρvmin ‖v‖22

+

√
2ρvmin ‖ω∗‖2

(
η ‖v‖22 + 2

)
‖ω∗‖2

]
. (11)

In particular, if W 0 = 0, then Algorithm 1 converges to a
global optimum after at most T 0

k := k
ηv2

min

(
η‖v‖22 + 2

)‖ω∗‖22
non-zero updates.

Regarding Theorem 1, a couple of observations are of interest.
The developed Algorithm 1 converges to a globally optimal so-
lution of the non-convex optimization (4) within a finite number
of non-zero updates, which implicitly corroborates the ability
of Algorithm 1 to escape sub-optimal local minima, as well as
saddle points. This holds regardless of the underlying data dis-
tribution D, the number n of training samples, the number k of
hidden neurons, or even the initialization W 0. It is also worth
highlighting that the number Tk of non-zero updates does not
depend on the dimension d of input vectors, but it scales with
k (in the worst case), and it is inversely proportional to the step
size η > 0. Recall that the worst-case bound for SGD learning of
leaky-ReLU networks with initializationW 0 = 0 is [4, Thm. 2]

Tα
leaky ≤ ‖ω∗‖22

α2

(
1 +

1

η‖v‖22

)
(12)

where again, ω∗ denotes an optimal linear classifier obeying
P(x,y)∼D(yω∗	x ≥ 1) = 1. Clearly, the upper bound above
does not depend on k. This is due to the fact that the loss function
corresponding to learning leaky-ReLU networks has no bad
local minima, since all critical points are global minima. This is
in sharp contrast with the loss function associated with learning
ReLU networks investigated here, which generally involves
infinitely many bad local minima! On the other hand, the bound
in (12) scales inversely proportional with the quadratic ‘leaky
factor’α2 of leaky ReLUs. This motivates havingα→ 0, which
corresponds to letting the leaky ReLU approach the ReLU. In
such a case, (12) would yield a worst-case bound of infinity for
learning ReLU networks, corroborating the challenge and im-
possibility of learning ReLU networks by ‘plain-vanilla’ SGD.
Indeed, the gap between T 0

k in Theorem 1 and the bound in (12)
is the price for being able to escape local minima and saddle
points paid by our noise-injected SGD Algorithm 1. Last but
not least, Theorem 1 also suggests that for a given network and
a fixed step size η, Algorithm 1 with W 0 = 0 works well too.

We briefly present the main ideas behind the proof of
Theorem 1 next, but delegate the technical details to Appendix
A. Our proof mainly builds upon the convergence proof of the
classical Perceptron algorithm (see e.g., [32, Thm. 9.1]), and it
is also inspired by that of [4, Thm. 1]. Nonetheless, the novel
approach of performing SGD with principled noise injection

into the ReLU activity indicator functions distinguishes itself
from previous efforts. Since we are mainly interested in the
(maximum) number of non-zero updates to be performed un-
til convergence, we will assume for notational convenience that
all iterations t ≥ 0 in (10) of Algorithm 1 perform a non-zero
update. This assumption is made without loss of generality. To
see this, since after the algorithm converges, one can always
re-count the number of effective iterations that correspond to a
non-zero update and re-number them by t = 0, 1, . . . .

Our main idea is to demonstrate that every single non-zero
update of the form (10) in Algorithm 1 makes a non-negligible
progress in bringing the current iterateW t ∈ Rk×d toward some
global optimum Ω∗ ∈ Rk×d of LS(W ), constructed based on
the linear classifier weight vector ω∗. Specifically, as in the con-
vergence proof of the Perceptron algorithm, we will establish
separately a lower bound on the term 〈W t,Ω∗〉F , which is the
so-termed Frobenius inner product, performing a component-
wise inner product of two same-size matrices as though they are
vectors; and, an upper bound on the norms ‖W t‖F and ‖Ω∗‖F .
Both bounds will be carefully expressed as functions of the num-
ber t of performed non-zero updates. Recalling the Cauchy-
Schwartz inequality |〈W t,Ω∗〉F | ≤ ‖W t‖F ‖Ω∗‖F , the lower
bound of |〈W t,Ω∗〉F | cannot grow larger than the upper bound
on ‖W t‖F ‖Ω∗‖F . Since every non-zero update brings the
lower and upper bounds closer by a non-negligible amount, the
worst case (in terms of the number of non-zero updates) is to
have the two bounds equal at convergence, i.e., |〈W t,Ω∗〉F | =
‖W t‖F ‖Ω∗‖F . To arrive at this equality, we are able to deduce
an upper bound (due to a series of inequalities used in the proof
to produce a relatively clean bound) on the number of non-zero
updates by solving a univariate quadratic equality.

It will become clear in the proof that injecting random noise
into just a subset of (rather than all) ReLU activity indicator
functions enables us to leverage two key inequalities, namely,∑k

j=1 yitvjσ(w
t
j
	
xit) < 1 and yiω∗	xi ≥ 1 for all data sam-

ples (xi, yi) ∈ S . These inequalities uniquely correspond to
whether an update is non-zero or not. In turn, this characteri-
zation is indeed the key to establishing the desired lower and
upper bounds for the two quantities on the two sides of the
Cauchy-Schwartz inequality, a critical ingredient of our conver-
gence analysis.

C. Lower Bound

Besides the worst-case upper bound given in Theorem 1, we
also provide a lower bound on the number of non-zero updates
required by Algorithm 1 for convergence, which is summarized
in the following theorem. The proof is provided in Appendix C.

Theorem 2 (Lower bound): Under the conditions of
Theorem 1, consider Algorithm 1 with initialization W 0 = 0.
Then for any d > 0, there exists a set of linearly separable data
samples on which Algorithm 1 performs at least ‖ω∗‖22/(η‖v‖22)
non-zero updates to optimally train a single-hidden-layer ReLU
network.

The lower bound on the number of non-zero updates to be
performed in Theorem 2 matches that for learning single-hidden-
layer leaky-ReLU networks initialized from zero [4, Thm. 4].
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On the other hand, it is also clear that the worst-case bound
established in Theorem 1 is (significantly) loose than the lower
bound here. The gap between the two bounds (in learning ReLU
versus leaky ReLU networks) is indeed the price we pay for
escaping bad local minima and saddle points through our noise-
injected SGD approach.

Remark 4: Considering learning v and W simultaneously,
one can include the following update after (10) in Algorithm in
the loop

vt+1 = vt + ηyitσ(W
txit)� 1{yitv

t≥0}

with any random initialization having at least one positive and
one negative entries. Our main results in Theorems 2 and 3 still
hold with different constants as entries of vt maintaining signs
during the updates.

V. GENERALIZATION

In this section, we investigate the generalization performance
of training (possibly over-parameterized) ReLU networks using
Algorithm 1 with randomly perturbed ReLU activity indicator
functions. Toward this objective, we will rely on compression
generalization bounds, specifically for the 0/1 classification er-
ror as in (3) [21].

Recall that our ReLU network has k hidden units, and a fixed
second-layer weight v ∈ Rk. Stressing the number of ReLUs in
the subscript, letGAlg1

k (S;W 0)denote the classifier obtained by
training the network over training set S using Algorithm 1 with
initialization W 0 having rows obeying {‖w0

j‖2 ≤ ρ}kj=1. Let
also Gk denote the set of all classifiers {Gk} obtained using any
S and any W 0, not necessarily those employed by Algorithm 1.

Suppose now that Algorithm 1 has converged after τk ≤ Tk
non-zero updates, as per Theorem 1. And let (xi1 , xi2 , . . . ,
xiτk

) be the τk-tuple of training data from S randomly picked
by SGD iterations of Algorithm 1. To exemplify the τk-tuple
used per realization of Algorithm 1, we write GAlg1

k (S;W 0)
= ΓW 0(xi1 , xi2 , . . . , xiτk

). Since τk can be smaller than n,

function ΓW 0 and thus GAlg1
k (S;W 0) rely on compressed

(down to size τk) versions of the n-tuples comprising the set
Hk [32, Definition 30.4]. Let Sc

τk
:= {i|i ∈ {1, 2, . . . , n}\

{i1, i2, . . . , iτk}} be the subset of training data not picked
by SGD to yield GAlg1

k (S;W 0); and correspondingly, let RD
(GAlg1

k (S;W 0)) denote the ensemble risk associated with
GAlg1

k , and R̂Sc
τk
(GAlg1

k (S;W 0)) the empirical risk associated
with the complement training set, namely Sc

τk
. With these nota-

tional conventions, our next result follows from [32, Thm. 30.2].
Theorem 3 (Compression bound): If n ≥ 2τk, then the fol-

lowing inequality holds with probability of at least 1− δ over
the choice of S and W 0

RD(G
Alg1
k (S;W 0)) ≤ R̂Sc

τk
(GAlg1

k (S;W 0))

+

√
R̂Sc

τk
(GAlg1

k (S;W 0))
4τk log(n/δ)

n
+

8τk log(n/δ)

n
.

(13)

Regarding Theorem 3, two observations are in order. The
bound in (13) is non-asymptotic but as n→ ∞, the last
two terms on the right-hand-side vanish, implying that the

ensemble riskRD(G
Alg1
k (S;W 0)) is upper bounded by the em-

pirical risk R̂Sc
τk
(GAlg1

k (S;W 0)). Moreover, once the SGD it-
erations in Algorithm 1 converge, we can find the complement
training setSc

τk
, and thus R̂Sc

τk
(Gk(S;W 0)) can be determined.

After recalling that R̂Sc
τk
(GAlg1

k (S;W 0)) = 0 holds at a global
optimum of LS by Theorem 1, we obtain from Theorems 1
and 3 the following corollary.

Corollary 1: Ifn ≥ 2τk, and all rows of the initialization sat-
isfy {‖w0

j‖2 ≤ ρ}kj=1, then the following holds with probability
at least 1− δ over the choice of S

RD(G
Alg1
k (S;W 0)) ≤ 8Tk log(n/δ)

n
(14)

where Tk is given in Theorem 1.
Expressed differently, the bound in (14) suggests that in or-

der to guarantee a low generalization error, one requires in the
worst case aboutn = O(k2‖ω∗‖22) training data to reliably learn
a two-layer ReLU network of k hidden neurons. This holds true
despite the fact that Algorithm 1 can achieve a zero training loss
regardless of the training size n. One implication of Corollary 1
is a fundamental difference in the sample complexity for gener-
alization between training a ReLU network (at least in the worst
case), versus training a α-leaky ReLU network (0 < α < 1),
which at most needs n = O(‖ω∗‖22/α2) data to be trained via
SGD-type algorithms.

VI. NUMERICAL TESTS

To validate our theoretical results, this section evaluates the
empirical performance of Algorithm 1 using both synthetic data
and real data. To benchmark Algorithm 1, we also simulated
the plain-vanilla SGD. To compare between the two algorithms
as fair as possible, the same initialization W 0, constant step
size η > 0, and data random sampling scheme were employed.
For reproducibility, the Matlab code of Algorithm 1 is publicly
available at https://gangwg.github.io/RELUS/.

A. Synthetic Data

We consider first two synthetic tests using data generated
from Gaussian as well as uniform distributions. In the first
test, feature vectors {xi ∈ Rd}ni=1 were sampled i.i.d. from
a standardized Gaussian distribution N (0, Id), and classifier
ω∗ ∈ Rd was drawn from N (0, Id). Labels yi ∈ {+1,−1}
were generated according to yi = sgn(ω∗	xi). To further yield
yiω

∗	xi ≥ 1 for all i = 1, 2, . . . , n, we normalized ω∗ by the
smallest number among {yiω∗	xi}ni=1. We performed 100 in-
dependent experiments with d = 128, and over a varying set
of n ∈ {20, 40, . . . , 200} training samples using ReLU net-
works comprising k ∈ {2, 4, . . . , 20} hidden neurons. The sec-
ond layer weight vector v ∈ Rk was kept fixed with the first
�k/2� entries being +1 and the remaining being −1. For fixed
n and k, each experiment used a random initialization gener-
ated from N (0, 0.01I), step size η = 0.01, and noise variance
γ = 100, along with a maximum of 5,000 effective data passes.

Figure 2 depicts our results, where we display success rates
of the plain-vanilla SGD (top panel) and our noise-injected
SGD in Algorithm 1 (bottom panel); each plot presents re-
sults obtained from the 100 experiments. Within each plot, a



2364 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 9, MAY 1, 2019

Fig. 2. Empirical success rates of plain-vanilla SGD (top panel) and the Algorithm 1 (bottom panel) for learning two-layer ReLU networks of k hidden units on
n randomly generated data samples of dimension d = 128.

Fig. 3. Empirical success rates of the ‘plain-vanilla’ SGD for learning two-layer ReLU networks of k hidden units on n data samples of dimension: (left) d = 128
generated from uniform distribution U [−1128,1128], and (right) d = 4 from the UCI machine learning repository [6].

white square signifies that 100% of the trials were successful,
meaning that the learned ReLU network yields a training loss
L{(xi,yi)}ni=1

(W T ) ≤ 10−10, while black squares indicate 0%
success rates. It is evident that the developed Algorithm 1 trained
all considered ReLU networks to global optimality, while plain-
vanilla SGD can get stuck with bad local minima, for small k in
particular. The bottom panel confirms that Algorithm 1 achieves
optimal learning of single-hidden-layer ReLU networks on sepa-
rable data, regardless of the network size, the number of training
samples, and the initialization. The top panel however, suggests
that learning ReLU networks becomes easier with plain-vanilla
SGD as k grows larger, namely as the network becomes ‘more
over-parameterized.’

We repeated the first test using synthetic data {x ∈ R128}ni=1

as well as classifier ω ∈ R128 generated i.i.d. from the uniform
distribution U [−1128, 1128]. All other settings were kept the

same. Success rates of plain-vanilla SGD are plotted in Fig. 3
(left panel), while those of the proposed Algorithm 1 are omitted,
as they are 100% successful in all simulated tests.

B. Real Data

Performance of Algorithm 1 for training (over-)parameterized
ReLU networks is further corroborated using two real datasets:
iris in UCI’s machine learning repository [6], and MNIST
images.2 The iris dataset contains 150 four-dimensional fea-
ture vectors belonging to three classes. To obtain a two-class
linearly separable dataset, the first-class data vectors were
relabeled +1, while the remaining were relabeled −1. We per-
formed 100 independent experiments over a varying set of n ∈

2Downloaded from http://yann.lecun.com/exdb/mnist/
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Fig. 4. Empirical success rates of plain-vanilla SGD (top panel) and Algorithm 1 (bottom panel) for learning two-layer ReLU networks of k hidden units on n
MNIST images of digits 3 and 5.

{30, 60, 90, 120, 150} training samples using ReLU networks
with k ∈ {2, 4, 6, 8, 10} hidden neurons. Gaussian initializa-
tion fromN (0, I), step size η = 0.1, noise variance γ = 10, and
a maximum of 100 effective data passes were simulated. Success
rates of plain-vanilla SGD are given in Fig. 3 (right). Again,
Algorithm 1 achieves a 100% success rate in all simulated
settings.

The linearly separable MNIST dataset collects 2,000 images
of digits 3 (labeled +1) and 5 (labeled −1), each having di-
mension 784. We performed 100 independent experiments over
a varying set of n ∈ {200, 400, . . . , 2, 000} training samples
using ReLU networks with k ∈ {2, 4, . . . , 40} hidden neu-
rons. The constant step size of both plain-vanilla SGD and
Algorithm 1 was set to η = 0.001 (η = 0.01) when the ReLU
networks have k ≤ 4 (k > 4) hidden units, while the noise vari-
ance in Algorithm 1 was set to γ = 10. Similar to the first ex-
periment on randomly generated data, we plot success rates of
the plain-vanilla SGD (top panel) and our noise-injected SGD
(bottom panel) algorithms over training sets of MNIST images
in Fig. 4. It is self-evident that Algorithm 1 achieved a 100%
success rate under all testing conditions, which confirms our
theoretical results in Theorem 1, and it markedly improves upon
its plain-vanilla SGD alternative.

VII. CONCLUSIONS

This paper approached the task of training ReLU networks
from a non-convex optimization point of view. Focusing on the
task of binary classification with a hinge loss criterion, this con-
tribution put forth the first algorithm that can provably yet ef-
ficiently train any single-hidden-layer ReLU network to global

optimality, provided that the data are linearly separable. The
algorithm is as simple as plain-vanilla SGD, but it is able to ex-
ploit the power of random additive noise to break ‘optimality’ of
the SGD learning process at any sub-optimal critical point. We
established an upper and a lower bound on the number of non-
zero updates that the novel algorithm requires for convergence
to a global optimum. Our result holds regardless of the under-
lying data distribution, network/training size, or initialization.
We further developed generalization error bounds for two-layer
NN classifiers with ReLU activations, which provide the first
theoretical guarantee for the generalization behavior of ReLU
networks trained with SGD. A comparison of such bounds with
those of a leaky ReLU network reveals a key difference between
optimally learning a ReLU network versus that of a leaky ReLU
network in the sample complexity required for generalization.

Since analysis, comparisons, and corroborating tests focus on
single-hidden-layer networks with a hinge loss criterion here,
our future work will naturally aim at generalizing the novel
noise-injection design to SGD for multilayer ReLU networks,
and considering alternative loss functions, and generalizations
to (multi-)kernel based approaches.

APPENDIX

A. Proof of Theorem 1

Consider Algorithm 1 has performed t > 0 non-zero updates
with a sufficiently large noise variance γ2. Observe that if all
data (xit , yit) ∈ S lead to zero update after a succession of
say e.g., pn > 0 iterations, then Algorithm 1 has reached a
global minimum with high probability as per Proposition 1. Let
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vec(W	) := [w	
1 w	

2 · · · w	
k ]

	 ∈ Rnk×1, and define

Ω� :=
1

vmin
sgn(v)⊗ ω∗	 ∈ Rk×n (15)

which is constructed from the optimumω∗ of the linear classifier,
where vmin := min1≤j≤k |vj | > 0. Using the definition of Ω∗

and (4), it holds that

LS(Ω∗) =
1

n

n∑

i=1

max

⎧
⎨

⎩0, 1− yi

k∑

j=1

vjσ
(

sgn(vj)ω
∗	xi

)
⎫
⎬

⎭ .

(16)

For i ∈ N+
y , we clearly have y = 1, and ω∗xi > 0. In addi-

tion, for j ∈ N+
v , we find vj > 0 and hence sgn(vj)ω

∗	xi >
0, which implies σ(sgn(vj)ω∗	xi) = ω∗	xi; similarly, for
j ∈ N−

v , we find vj < 0, and thus sgn(vj)ω
∗	xi < 0, which

yields σ(sgn(vj)ω∗	xi) = 0. These considerations show that
for i ∈ N+

y in (16), only summands with j ∈ N+
v survive; and

arguing along the same lines, we deduce that for i ∈ N−
y , only

summands with j ∈ N−
v should be present. All in all, (16)

reduces to

LS(Ω∗) =
1

n

∑

i∈N+
y

max

⎧
⎨

⎩0, 1−
∑

j∈N+
v

vj
vmin

yiω
∗	xi

⎫
⎬

⎭

+
1

n

∑

i∈N−
y

max

⎧
⎨

⎩0, 1 +
∑

j∈N−
v

vj
vmin

yiω
∗	xi

⎫
⎬

⎭ . (17)

But since yi ω∗	xi ≥ 1, and
∑

vj>0 vj/vmin ≥ 1 as well as∑
vj<0 vj/vmin ≤ −1, we infer that LS(Ω∗) = 0, and hence

Ω∗ is indeed a global minimum of LS(W ).
The subsequent analysis builds critically on the following two

functions (cf. (15))

φ(W t) :==
〈

vec
(
W t	

)
, vec
(
Ω∗	
)〉

(18a)

ψ(W t) :=
∥∥∥vec

(
W t	

)∥∥∥
2
=

⎛

⎝
k∑

j=1

∥∥wt
j

∥∥2
2

⎞

⎠
1/2

(18b)

Using the Cauchy-Schwartz inequality, we can write

|φ(W t)|
ψ(W t)ψ(Ω∗)

=

∣∣∣
〈

vec
(
W t	

)
, vec
(
Ω∗	)

〉∣∣∣
∥∥∥vec

(
W t	

)∥∥∥
2

∥∥vec
(
Ω∗	)∥∥

2

≤ 1. (19)

We will next derive a lower and an upper bound for the nu-
merator and denominator of (19). Consider an iteration t for
which Algorithm 1 admits a non-zero update, meaning that
1{1−yitv

	σ(W txit )>0} = 1, or equivalently, yitv
	σ(W txit) =∑k

j=1 yitvjσ(w
t
j
	
xit) < 1. It will also come handy to rewrite

(10) row-wise as

wt+1
j = wt

j + ηyitvj1{wt
j
	
xit+εtj≥0}xit , j = 1, 2, . . . , k.

(20)

Combining (20) with (18b), we can upper bound ψ2(W t) in the
denominator of (19) as

ψ2(W t+1) =

k∑

j=1

∥∥wt+1
j

∥∥2
2

(a)
=

k∑

j=1

(∥∥wt
j

∥∥2
2
+ η2v2j ‖xit‖221{wt

j
	
xit+εtj≥0}

+ 2ηyitvj w
t
j
	
xit1{wt

j
	
xit+εtj≥0}

)

(b)

≤
k∑

j=1

∥∥wt
j

∥∥2
2
+ η2

k∑

j=1

v2j

+ 2η

k∑

j=1

yitvjσ
(
wt

j
	
xit

)

(c)

≤ ψ2(W t) + η2‖v‖22 + 2η (21)

where (a) follows directly from (20) after expanding the
squares; (b) uses the working condition ‖xit‖2 ≤ 1 adopted
without loss of generality, as well as the fact that 1{·} ≤ 1 holds

true for any event, and also the inequality
∑k

j=1 yitvjw
t
j
	
xit

1{wt
j
	
xit+εtj≥0}) ≤

∑k
j=1 yitvjσ(w

t
j
	
xit) established in

Lemma 1 below, whose proof is postponed to Appendix B for
readability. Finally, (c) is due to the non-zero update at iteration
t, which implies that

∑k
j=1 yitvjσ(w

t
j
	
xit) < 1.

Lemma 1: For any (x, y) ∈ S , and any {wj ∈ Rd}kj=1 and
v ∈ Rk, it holds that

k∑

j=1

yvjw
	
j x1{w	

jx+εj≥0} ≤
k∑

j=1

yvjσ
(
w	

j x
)

(22)

if the entries of the additive noise ε ∈ Rk satisfy εj ∼ N (0, γ2),
when yvj ≥ 0, and εj = 0, otherwise.

Writing down (21) for the already executed t non-zero updates
and by means of telescoping, we obtain

ψ2(W t) ≤ ψ2(W 0) + t
(
η2‖v‖22 + 2η

)
. (23)

We now turn to deriving a lower bound for φ(W t) in (19),
starting with (cf. (18a) and (18b))

φ(W t+1) =
1

vmin

∑

j∈N+
v

wt+1
j

	
ω∗ − 1

vmin

∑

j∈N−
v

wt+1
j

	
ω∗

(a)
=

1

vmin

∑

j∈N+
v

wt
j
	
ω∗ − 1

vmin

∑

j∈N−
v

wt
j
	
ω∗

+
1

vmin

∑

j∈N+
v

ηvjyitx
	
it
ω∗1{wt

j
	
xit+εtj≥0}

− 1

vmin

∑

j∈N−
v

ηvjyitx
	
it
ω∗1{wt

j
	
xit+εtj≥0}

(b)
= φ(W t) + ηyitx

	
it
ω∗

k∑

j=1

|vj |
vmin

1{wt
j
	
xit+εtj≥0}

(c)

≥ φ(W t) + η (24)
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where (a) is derived by plugging in (20); (b) uses vj > 0
(<0) if j ∈ N+

v (∈N−
v ); and (c) follows from the two crit-

ical inequalities: i) yix	
i ω

∗ ≥ 1 for all (xi, yi) ∈ S , and ii)
(|vj |/vmin)1{wt

j
	
xit+εtj≥0} ≥ 1, because a non-zero update at

iteration t asserts that at least one out of the k ReLU activity
indicator functions {1{wt

j
	
xit+εtj≥0}}kj=1 equals one.

Again, telescoping the t recursions (24) for the non-zero up-
dates 0 to (t− 1), yields

φ(W t) ≥ φ(W 0) + tη. (25)

Substituting the bounds in (23) and (25) into (19), we have
that

φ(W 0) + tη ≤ ∣∣φ(W t)
∣∣

≤ ψ(W t)ψ(Ω∗)

=
√
ψ2(W 0) + t (η2‖v‖22 + 2η) ψ(Ω∗). (26)

Using further that
√
p2 + q2 ≤ |p|+ |q|, we arrive at

φ(W 0) + tη ≤ ∣∣φ(W t)
∣∣

≤ ψ(W 0)ψ(Ω∗) +
√
t ·
√
η2 ‖v‖22 + 2η ψ(Ω∗).

(27)

Using that [sgn(vj)]2 = 1, it is easy to verify that

ψ(Ω∗) :=
∥∥∥vec

(
Ω∗	
)∥∥∥

2
= ‖Ω∗‖F

=
1

vmin

∥∥∥sgn(v)⊗ ω∗	
∥∥∥
F
=

√
k

vmin
‖ω∗‖2. (28)

Under our assumption that all rows of W 0 satisfy ‖w0
j‖2 ≤ ρ,

we have for ψ(W 0) := ‖W 0‖F that

ψ(W 0) ≤
√
kρ (29)

Using (18a) along with (28) and (29), we find

φ(W 0) =
〈

vec
(
W 0	

)
, vec
(
Ω∗	
)〉

≥ −
∥∥∥vec

(
W 0	

)∥∥∥
2

∥∥∥vec
(
Ω∗	
)∥∥∥

2

= −ψ(W 0)ψ(Ω∗)

≥ − kρ

vmin
‖ω∗‖2 . (30)

Substituting the bounds in (28), (29), and (30) into (27) and
re-arranging terms, we further arrive at

ηvmint ≤ ‖ω∗‖2
√
k
(
η2 ‖v‖22 + 2η

)√
t+ 2kρ ‖ω∗‖2 (31)

which upon letting z :=
√
t ≥ 0, boils down to the quadratic

inequality

az2 + bz + c ≤ 0 s. to z ≥ 0 (32)

where the coefficients are given bya = ηvmin > 0, b = −‖ω∗‖2√
k(η2‖v‖22 + 2η), and c = −2kρ‖ω∗‖2 < 0. Because c < 0

and b2 − 4ac > 0, we have real roots of opposite sign, which
implies that (32) is satisfied for

z ∈
[
0,

−b+√
b2 − 4ac

2a

]
. (33)

Plugging in those coefficients and appealing again to the in-
equality

√
p2 + q2 ≤ |p|+ |q|, we deduce that

t = z2 ≤ b2 + b2 − 4ac− 2b
√
b2 − 4ac

4a2

≤ b2

2a2
− c

a
+

b2

2a2
− b

√−ac
a2

≤
k
(
η2 ‖v‖22 + 2η

)
‖ω∗‖22

2η2v2min

+
2kρηvmin ‖ω∗‖22

η2v2min

+
k
(
η2 ‖v‖22 + 2η

)
‖ω∗‖22

2η2v2min

+

‖ω∗‖2
√
k
(
η2 ‖v‖22 + 2η

)√
2kρηvmin ‖ω∗‖2

η2v2min

=
k

ηv2min

[(
η ‖v‖22 + 2

)
‖ω∗‖22 + 2ρvmin ‖v‖22 +

√
2ρvmin ‖ω∗‖2

(
η ‖v‖22 + 2

)
‖ω∗‖2

]

�
= Tk. (34)

By taking ρ = 0 in (34), one finally confirms that the max-
imum number of non-zero updates for Algorithm 1 initialized
with W 0 = 0 until convergence, is

T 0
k :=

k

ηv2min

(
η ‖v‖22 + 2

)
‖ω∗‖22 (35)

which completes the proof.

B. Proof of Lemma 1

We first prove that the following inequality holds per hidden
neuron j = 1, 2, . . . , k

yvjw
	
j x1{w	

jx+εj≥0} ≤ yvjσ
(
w	

j x
)
. (36)

Depending on whether the j-th ReLU is active or not (w	
j x � 0)

and (Gaussian) noise is injected or not (vjy � 0), we consider
separately the following four cases:

c1) w	
j x ≥ 0 and vjy ≥ 0 (ReLU active and noise injected);

c2) w	
j x ≥ 0 and vjy < 0 (ReLU active and no noise);

c3) w	
j x < 0 and vjy ≥ 0 (ReLU inactive and noise in-

jected); and,
c4) w	

j x < 0 and vjy < 0 (ReLU inactive and no noise).



2368 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 9, MAY 1, 2019

For c1), the right-hand-side of (36) satisfies

yvjσ(w
	
j x) = yvjw

	
j x. (37)

Regarding the left-hand-side, it takes values depending on
whether εj changes the state of the ReLU activity indicator func-
tion, it leads to a two-branch inequality

yvjw
	
j x1{w	

jx+εj≥0} =

{
yvjw

	
j x, εj ≥ −w	

j x
0, εj < −w	

j x
. (38)

Combining (37) with (38), we deduce that yvjw	
j x1{w	

jx+εj≥0}
≤ yvjσ(w

	
j x) holds under c1).

For c2), the j-th ReLU is active too, but there is no noise in-
jection, namely εj = 0. The right-hand-side of (37) still holds
however. It is also not difficult to check the left-hand-side
term yvjw

	
j x1{w	

jx+εj≥0} = yvjw
	
j x. Evidently, the desired

inequality holds with equality in this case.
For c3), we have w	

j x < 0, meaning that the j-th ReLU
is inactive, and therefore, the right-hand-side of (36) becomes
yvjσ(w

	
j x) = 0. However, given vjy ≥ 0, there is a noise injec-

tion. Hence, the left-hand-side can be similarly treated as in c2),
to infer that (38) remains valid. Recalling again that w	

j x < 0

and yvj ≥ 0, one deduces that yvjw	
j x1{w	

jx+εj≥0} ≤ 0, re-
gardless of εj . Thus, the inequality under consideration is also
true under c2).

Finally, for c4), the j-th ReLU is inactive, and there is no
noise injection. It is straightforward to verify that both the left-
hand-side and right-hand-side equal zero, and (36) holds with
equality as well.

Putting together c1)–c4), we have established that yvjw	
j x

1{w	
jx+εj≥0} ≤ yvjσ(w

	
j x) for j = 1, 2, . . . , k. Summing up

such inequalities for all k hidden neurons completes the proof.

C. Proof of Theorem 2

Let {ei ∈ Rd}di=1 be the canonical basis of Rd. Consider the
following set S1 ⊆ X × Y of d training data from the ‘positive’
class

S1 := {(e1, 1) , (e2, 1) , . . . , (ed, 1)} . (39)

Letting ω∗ := [1 1 · · · 1]	 ∈ Rd, it is clear that the linear classi-
fier y = w	

j x correctly classifies all the d data points in S . Note
also that ‖ω∗‖22 = d in this case.

Consider the update in (10) initialized with W 0 = 0, and
telescope each row to obtain

wt+1
j = ηvj

t∑

i=1

1{wt
j
	
eit+εtj≥0}eit , j = 1, 2, . . . , k (40)

where it deterministically cycles through {1, 2, . . . , d}.
At the global optimum, say W τ for some iteration number τ ,

it holds for (es, 1) ∈ S1 that

ysf(es;W ) =
k∑

j=1

vjσ
(
wτ

j
	es
)

=
∑

j∈N+
v

vjσ
(
wτ

j
	es
)
−
∑

j∈N−
v

|vj |σ
(
wτ

j
	es
)

≥ 1. (41)

Since |vj |σ(wτ
j
	e) ≥ 0 in (41), a necessary condition for W τ

to be a global minimum is (cf. (40))

1 ≤
∑

j∈N+
v

vjσ
(
wτ−1

j
	
es

)
=
∑

j∈N+
v

vj
〈
wτ

j , es
〉

=
∑

j∈N+
v

vj

〈
ηvj

τ−1∑

t=1

1{wt
j
	
eit+εtj≥0}eit , es

〉

≥ 1. (42)

Assume for simplicity that τ − 1 is a multiple of d, namely
τ − 1 = dp for some integer p ≥ 1. On the other hand, we have
from (42) that

∑

j∈N+
v

vj

〈
ηvj

τ−1∑

i=1

1{wt
j
	
eit+εtj≥0}eit , es

〉

≤
∑

j∈N+
v

ηv2j

〈
τ−1∑

i=1

eit , es

〉

= ηp
∑

j∈N+
v

v2j

≤ pη‖v‖22 (43)

where we have used the following inequalities: i)1{wt
j
	
eit+εtj≥0}

≤ 1, ii)
∑τ−1

i=1 eit =
∑p

i=1 1 with 1 being an all-one vector
of suitable dimension that is clear from the context, and iii)∑

j∈N+
v
v2j ≤ ‖v‖22.

Combing the bounds in (42) and (43), we obtain that
pη‖v‖22 ≥ 1, or equivalently p ≥ 1/(η‖v‖22). Hence, to find a
global optimum, Algorithm 1 initialized from W 0 = 0 makes
at least

M0
k ≥ d

η‖v‖22
=

‖ω∗‖22
η‖v‖22

(44)

mistakes. This concludes the proof.

D. Proof of Proposition 1

We have established in (23) that

ψ2(W t) =
k∑

j=1

∥∥wt
j

∥∥2
2
≤ ψ2(W 0) + t

(
η2‖v‖22 + 2η

)
.

(45)
We have also proved in Theorem 1 that Algorithm 1 performs
at most Tk non-zero updates regardless of γ2 (cf. (34)). Hence,
as long as the initialization W 0 is bounded, all iterates W t

will be bounded; that is, there exists some constant wmax > 0
such that ‖wt

j‖2 ≤ wmax holds for all j = 1, 2, . . . , k and t =
0, 1, . . . , Tk.

For notational brevity, we drop the iteration index t, and let the
current iterate be denoted by W . If there is no non-zero update
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with the current sampled data point (xi, yi) ∈ S , then one of the
following two cases must be true: c1) 1{1−yiv	σ(Wxi)>0} = 0,
or equivalently, max(0, 1− yiv

	σ(Wxi)) = 0 implying that
(xi, yi) is correctly classified; and, c2) 1{Wxi+ε≥0} = 0, or
equivalently, εj < −w	

j xi for all neurons j = 1, 2, . . . , k.
When i cycles through {1, 2, . . . , n} in a deterministic

manner (with each integer drawn exactly once every n it-
erations), then within every succession of np iterations, the
noise-injected stochastic gradient term 1{1−yiv	σ(Wxi)>0}·
yiv diag(1{Wxi+ε≥0})x	

i in (10) will be evaluated exactly p
times at every datum (xi, yi) ∈ S , but with p different random
noise realizations. Hence, if there is no non-zero update within
a succession of np iterations, the probability of event c2) occur-
ring np times is at most

⎡

⎢⎣
∏

j∈min{N+
v ,N−

v }
Φ

(
max1≤i≤n −w	

j xi

γ

)⎤

⎥⎦

p

≤
[
Φ

(
wmax

γ

)]pmin{|N+
v |,|N−

v |}
(46)

when there is only one out of the n data points that is left
incorrectly classified. Here, by a slight abuse of notation, we
use j ∈ min{N+

v , N−
v } to mean j ∈ N+

v if |N+
v | ≤ |N−

v |, and
j ∈ N−

v otherwise. Furthermore, to obtain the inequality in (46),
we have used max1≤i≤n(−w	

j xi) ≤ ‖wj‖2‖xi‖2 ≤ wmax un-
der our assumptions that ‖wj‖2 ≤ wmax and ‖xi‖2 ≤ 1 for all
j = 1, 2, . . . , k and i = 1, 2, . . . , n. Therefore, by the total
probability theorem, the probability of having c1) hold for all
data points is at least

1−
[
Φ

(
wmax

γ

)]pmin{|N+
v |,|N−

v |}
(47)

which can be made arbitrarily close to 1 by taking either a large
enough p and/or γ > 0. The case of picking it uniformly at ran-
dom from {1, 2, . . . , n} can be discussed in a similar fashion,
but it is omitted here. This completes the proof.
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