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Abstract—This paper considers false data injection attacks
constructed based on partial feedback of generator frequencies
in a cyber-physical power system. The goal of the attacker is to
destabilize the system, by compromising a subset of frequency
control signals with false data injection, without consuming much
energy. In this context, two attack design problems are studied,
considering both location-fixed attacks and location-switching
attacks based on measurable generator bus frequencies. They
are further modeled as switched control problems, for which
closed-form solutions can be attained. Leveraging the Maximum
Principle, the diagonal partial feedback matrix is optimized by
solving a convex optimization problem. The convexified switching
variables describing the switching behaviour are solved in a
quadratic optimization problem and a fractional optimization
problem respectively. As a result, optimal switching conditions
to select the best attack locations are obtained, along with optimal
partial feedback attack matrices. Case studies on the IEEE 9-bus
test system validate the practical merits of theory and numerical
effectiveness of the proposed attack schemes.

Index terms— Partial feedback, location-switching attacks,
switching condition, mixed integer, convex relaxation.

I. INTRODUCTION

THE cyber-physical power system composed of a massive
amount of highly coupled heterogeneous network com-

ponents, becomes more interconnected and more interdepen-
dent than conventional power systems, both physically and
informatively. Due to the deep fusion and close interaction
of physical and information processes, contemporary cyber-
physical power systems are facing both cyber vulnerabilities
and physical threats [1].

A. Motivation

Due to the widespread use of computerized elements, cyber-
security of the power grid has become a critical and growing
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challenge [2]. A new class of attacks emerged rapidly over
the last decades–attacks launched in the cyber domain com-
promise digital units in the physical domain [3]. Such attacks
can be launched at various electronic devices distributed in
different regions of large-scale cyber-physical power systems,
such as PMUs, circuit breakers, transformers, inductive loads,
instruments, etc. Attackers can launch intermittent attacks
in a cooperative manner at multiple points, increasing the
difficulty and burden of preventing attacks. Investigating the
worst case impact of resource-constrained attackers on cyber-
phsical power systems can be used for vulnerability analysis
and risk assessment.

B. Related Work

Among a multitude of contributions on exploiting attack
strategies, there is a growing interest in attacks with switching
behaviors where attack locations are usually governed by
a switching mechanisms [4]. In the related literature, the
adversary can switch jammed channels [5] to break data avail-
ability, switch compromised sensors [6] to break data integrity,
and target circuit breakers to break network connectivity [7].
Accordingly, sensor observations, timestamps of transmitted
data [8], or network topology can be manipulated to maximize
a malicious objective. Unfortunately, even if fault detection
is employed in an estimator or controller, convergence of the
estimation error [5] or stability of the attacked states [9] cannot
be guaranteed in general, incurring abnormal operations and
disruptions to the system.

Using an attack matrix (stacking attack vectors) to de-
scribe switching location attacks, initial state recovery from
compromised measurements was studied in [10]. A multiple-
model state filtering algorithm was developed in [6], despite
false data injection attacks with unknown magnitude and
locations, as well as attacks that change the system’s mode
of operation. Similar to [6], a switching signal is introduced
to describe the switching among different network topologies
in [11]. Cyberattacks implementing stochastic switching laws
among multiple network typologies were investigated for lin-
ear multiagent systems. Binary variables are used to describe
the switching behaviour between multiple channels [12]. The
attacker was restricted to jam only one channel or, not to take
action, where an optimal schedule to decide when and which
channel to attack was obtained. A state-dependent switching
signal was constructed to determine whether to switch from
one subsystem to another [13]. The switching attack was
modeled as a constant-switching signal [14], generating a
modulating sequence of possible injections. An iterated game
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between attacks and distributed control was formulated to
stabilize the power system.

C. Contributions

The switching attacks reviewed so far are conceived be-
forehand to guide resilient system design, which pursued
only constant-frequency switching [10], and deterministic or
random switching laws [6], [7]. The optimal switching law
with respect to a given objective, even for linear time-invariant
systems, has rarely been studied. Our precursor [15] developed
the optimal switching policy, yet assuming availability of full
state information of the attacked system. In practice, acquiring
full state information of a continent-scale power grid is almost
impossible for an attacker. This motivates well our present
work on the optimal attack design based only on partial
feedback information. Two key challenges arise: Q1) Whether
and how one can design an optimal feedback attack law to
maximize the damage to a system when only partial state
information can be acquired? and Q2) How can one design an
optimal switching law for selecting most favorable locations
to attack as well as devise a partial feedback attack law
simultaneously? In this paper, we answer affirmatively the two
questions, under suitable assumptions on the form of attacks.

The switching partial feedback attack design problem is
formulated as a nonconvex optimization involving both contin-
uous and discrete variables, which is generally hard to solve.
Leveraging advances in convex relaxation, seeking the globally
optimal solution is possible. The optimal partial feedback
matrices can be found by efficiently solving a convex program,
and each entry of the optimal attack signal is constructed based
on a measurable state. The main contributions of this work are
summarized as follows:
c1) For partial feedback attacks at fixed locations, we develop

an optimal partial state feedback law instead of obtaining
a partial state observer to yield a full state feedback
law, to maximize a quadratic function. By appropriately
designing feedback matrices, a closed-form solution can
be obtained by solving a convex program.

c2) To deal with the discrete location selection variables,
the nonconvex optimal partial feedback attack design
problem is convexified. We show that the optimal solution
of the latter recovers an optimal solution of the original
nonconvex problem. That is, optimal solutions of both
the discrete switch input and the continuous attack signal
can be found efficiently by solving a convex program,
including an algebraic switching condition as well as a
feedback attack law based on partial states.

The rest of this paper is structured as follows: In Sec.
II, system modeling is outlined. In Sec. III, optimal partial
feedback attacks with location fixed or switching is studied.
Numerical tests on the IEEE 9-bus system are presented in
Sec. IV, and the present paper is concluded in Sec. V.

II. SYSTEM MODEL

Consider a power system with G := {1, . . . ,m} and L :=
{1, . . . , n} being the set of generator buses and load buses,

respectively. The linearized power flow equations at each bus
can be written as

PG
i =

∑
j∈G

Hij(δi − δj) +
∑
j∈L

Hij(δi − θj), ∀i ∈ G

−PL
i =

∑
j∈G

Hij(θi − δj) +
∑
j∈L

Hij(θi − θj), ∀i ∈ L

where PG
i is the power injection of the generator at bus i,

PL
i is the power consumption of the load at bus i, δi and θi

are the voltage phase angle and the voltage phase angle at
generator bus i, and Hij is the admittance of the transmission
line between buses i and j. The generator dynamics at each
generator bus i ∈ G can be written as

δ̇i = ωi

Mg
i ω̇i = PM

i −D
g
i ωi − PG

i

where ωi is the rotor frequency deviation at the generator bus
i, Mg

i is the inertia of the rotor, Dg
i is the damping coefficient,

and PM
i is the mechanical power input.

The overall dynamics of a power system can be commonly
modeled using the following state-space equations (see e.g.,
[9], [16]) I 0 0
0 Mg 0
0 0 0

 δ̇ω̇
θ̇

=−

 0 −I 0
Hgg Dg Hgl

H lg 0 H ll

 δω
θ

+

 0
PM

−PL


(1)

where δ, ω ∈ Rm collect the voltage phase angles, the rotor
frequency deviations at all generator buses, respectively, and
θ ∈ Rn the voltage phase angles at all load buses; vector
PM ∈ Rm concatenates the mechanical power input at all
generator buses, and PL ∈ Rn the sum of controllable but
frequency-insensitive loads and uncontrollable loads [9].

Diagonal matrices Mg and Dg hold entries of {Mg
i > 0}

and {Dg
i > 0} on their main diagonals, respectively, along

with the imaginary part of the admittance matrix as follows

Hbus =

[
Hgg Hgl

H lg H ll

]
.

The goal of this paper is to design feedback data injection at-
tacks from the viewpoint of the adversary to maximally corrupt
the closed-loop system performance. Towards this objective,
we consider two controllers that affect the mechanical power
input, i.e., the governor and load frequency controller for
generators with automatic generation control (AGC). AGC is a
fundamental control system used in all power grids to maintain
the grid frequency at its nominal value, by adjusting the output
power of generators based on measurements collected from
sensors distributed in the grid [17]. In this paper, we consider
the integral and proportional controller given by (see e.g., [9])

PM
i = −

(
KP

i ωi +KI
i

∫ t

0

ωi dt

)
(2)

where KP
i ≥ 0 and KI

i ≥ 0 are the proportional and integral
controller coefficients, respectively. Controller parameters are
set so as to keep the system stable in absence of an attack.
The healthy controller (2) can be abbreviated by

u := −KPω −KIδ. (3)
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where u := [u1 · · · um]> is a m dimensional vector, KP and
KI are diagonal matrices holding entries of {KP

j }mj=1 with
{KI

j }mj=1 on their main diagonals, respectively. The control
signals ui are transmitted over communication lines (cyber
space) between the local controller and the generator buses
[14].

We assume the controllable loads can be actively controlled
and the uncontrollable loads change over time but is pre-
specified [18]. Since the problem of interest does not depend
on PL, we take without loss of generality that PL = 0.
Eliminating the last row of the linear descriptor system (1),
we obtain a general linear system

ẋ = Ax+Bu (4)

where x =
[
δ> ω>

]>
is the state vector and matrices A, B

are given by

A =

[
I 0
0 Mg

]−1 ([ 0
Hgl

]
H−1ll

[
Hlg 0

]
−
[

0 −I
Hgg Dg

])
B =

[
I 0
0 Mg

]−1
.

Before presenting the main results, several standard assump-
tions on the adversary are made.

Assumption 1. To investigate the worst case attack con-
sequences, the adversary is assumed to know the system
dynamics [19] in (1) and the control law in (2).

Assumption 2. It is possible for a malicious third party to
access the communication channel between the controller and
generator buses secretly [20]. Similar to spoofing-based man-
in-the-middle (MIM) attack described in [21] and [22], the
adversary can intercept transmitted packets u and send false
control signals uc into target generator buses. Thereby, the
actual control signal is completely replaced by the constructed
false control signal. The adversary can switch the compro-
mised channels (attack locations) frequently, but the number
of channels that can be attacked has an upper bound r [23].

When an attack occurs, the adversary adds false data f̂a to
the healthy controller.

uc := u+ f̂a (5)

and
f̂a := Dafa (6)

where Da :=
[
da1
> · · · dam

>]> is a m ×m matrix, which
is designed as a priori. Let fa := [fa1 · · · fam]> be an m-
dimensional vector representing the partial feedback attack
signal to be optimized. Let S := {1, . . . , r} $ G collect the
indices of all attackable channels. If the attack is realized at the
channel transmitting signal ui (i ∈ S), then dai is a nonzero
vector. Thus, Da can be viewed as some ‘indicator’ matrix,
which reveals the locations of attacks.

Assumption 3. The adversary injects datum dai
>fa into

ui, where fa is constructed based on measurable generator

frequencies. Scalar dai
>fa is a combination of measurable

frequencies, and dai collects the combination coefficients. For
simplicity, we consider dai takes 0 or 1 (a vector with all
elements takes 0 or 1) here.

The attacker can deploy frequency disturbance recorders
(FDRs) [24] on generator buses or intrude into the supervisory
control and data acquisition (SCADA) system [25] to acquire
local synchronized frequency measurements. In practice, the
adversary does not have sufficient instrumentation or capability
to acquire frequencies of all generator buses. On the other
hand, there is only limited phasor measurement unit (PMU)
installation in real-world power grids [26], so phase angles at
most buses are typically not available. These two facts prompt
us to consider partial frequency feedback attacks rather than
the less practical case where full frequencies are assumed
accessible.

Suppose the adversary can only measure ` out of the m
generator bus frequencies. Let M := {z1, . . . , z`} $ G
collect the indices of all generator buses whose frequencies
are measured. If Gj represents the feedback gain of faj and
ωj the frequency of generator bus j ∈M, one can write

f ja :=

{
0, ∀j /∈M
Gjωj , ∀j ∈M

.

The attack signal can be compactly expressed as

fa = Gaω (7)

in which Ga ∈ Rm×m is a diagonal matrix holding entries
{Gj}mj=1 on its main diagonal. The diagonal entry correspond-
ing to the non-measured frequency is set to 0. Compared
with other structures of partial feedback matrices, the diagonal
structure requires a minimum number of entries to be opti-
mized while ensuring completeness of feedback information.
Evidently, one can express Ga as a linear combination of unit
diagonal matrices, which are obtained by zeroing out m − 1
diagonal entries of the m × m identity matrix. To see this,
consider the following example.

Example 1. For m = 3 and ` = 2, suppose that the metered
frequencies are ω2 and ω3. It holds that

Ga =

 0 0 0
0 G1 0
0 0 G2

=G1

 0 0 0
0 1 0
0 0 0

+G2

 0 0 0
0 0 0
0 0 1


where G1 and G2 are nonzero controller gains.

Substituting (7) into (6) and merging (6) into (3) yields

uc := −KPω −KIδ +DaGaω (8)

The system stability can be destroyed by carefully designing
feedback matrix Ga. Failure to stabilize the frequency may
cause damages to equipment and reduction or interruption to
electricity supply [9]. Following conventions, we use symbol
xc to denote the state vector of the attacked system. Precisely,
plugging (8) into (4), the attacked system model can be written
as

ẋc = Axc +Baua

ua = Gxc (9)
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where

Ba =

[
I 0
0 M

]−1 [
0
Da

]
(10)

G =

[
0 0
0 Ga

]
, ua =

[
0
fa

]
. (11)

For convenience, the measurable frequencies are placed at the
bottom of xc. The partial feedback matrix can be decomposed
into

G(t) =
∑̀
i=1

Gi(t)Ei (12)

where

Ei = diag([0 · · · 0︸ ︷︷ ︸
m+zi−1

1 0 · · · 0]), zi ∈M. (13)

The coefficients collected into g(t) := [G1(t) · · · G`(t)]
> are

time-varying variables to be sought, each now corresponding
to a measurable frequency.

III. OPTIMAL PARTIAL FEEDBACK ATTACKS

This section derives the optimal data injection attacks when
only partial feedback information is available. A quadratic
objective function is utilized for the attacker to reflect the state
deviations from the origin as well as the energy cost of the
attack signal over a finite time interval [t0, tf ] [15], [27]. In
words, the adversary designs ua by solving

max J =
1

2
xc>(tf )Wxc(tf )

+
1

2

∫ tf

t0

[
xc>(t)Qxc(t)− ua>(t)Rua(t)

]
dt (14)

where W , Q, and R are preselected 2m × 2m-dimensional
symmetric coefficient matrices. In addition, matrices W and
Q are positive semi-definite, and R is positive definite. The
traditional linear quadratic regulator (LQR) aims to minimize
the state deviation as well as the control cost [28]. Contrarily,
the worst-case attack is designed to maximize the state devi-
ation while minimizing an attacking cost [29] or setting an
upper bound on the attacking cost [30].

On the other hand, the attacker tries to bypass the detection
mechanism in order not to trigger an alarm and subsequent
countermeasures [31]. The stealth requirements imposed by
detection mechanisms can be typically converted into con-
straints related to attack magnitude and frequency [32], [33].
Therefore, this work minimizes the attacking cost to restrict the
attack magnitude both for energy reduction and stealthiness.
The oscillation magnitudes of generator frequencies and phase
angles can be controlled by adjusting Q and R to avoid being
detected. Meanwhile, the location-switching mechanism is
utilized to form intermittent attacks launched at each location
and the attack frequency can also be regulated by adjusting
weighting matrices.

In the following, the case where attack locations are fixed
by the adversary a priori is investigated first, while location-
switching attacks with a fixed number of compromised control
signals are subsequently studied.

A. Optimal Partial Feedback Attacks with Fixed Locations

If the attack location is fixed over the entire control period,
then Da is time-invariant. The maximum principle can be
applied to find the optimal partial feedback matrix G∗(t),
which is tantamount to computing the optimal diagonal entries
g∗(t) := [G∗1(t) · · · G∗` (t)]>.

Theorem 1. The optimal coefficients of the partial feedback
matrix are given by

g∗(t) = M−1(t)c(t). (15)

where entries of M ∈ R`×` and c ∈ R` are given by

M(i, j) = xc>(t)E>i REjx
c(t), ∀i, j = 1, . . . , ` (16)

c(i) = λ∗>(t)BaEix
c(t). ∀i = 1, . . . , ` (17)

where λ∗(t) := [λ∗1(t) · · · λ∗n(t)]> is the solution of

λ̇(t) = −Qxc(t)−A>λ(t). (18)

with the boundary condition λ(tf ) = Wx(tf ).

Proof. Our proof is based on Pontryagin’s maximum principle.
We start by writing the Hamilton function

H(xc,ua;λ) =
1

2

[
xc>(t)Qxc(t)− ua>(t)Rua(t)

]
+ λ>(t)

[
Axc(t) +Baua(t)

]
. (19)

Plugging (12) into (19) yields

H =
1

2
xc>(t)Qxc(t)

− 1

2

∑
i,j

Gi(t)Gj(t)x
c>(t)E>i REjx

c(t)

+ λ>(t)
[
Axc(t) +

∑
i

Gi(t)B
aEix

c(t)
]
.

By the co-state equation, we deduce (18). For brevity, the
dependence on t will be dropped. After removing terms in
H that do not depend on g, maximizing H with respect to g
is equivalent to maximizing the following reduced Hamilton

H̄(g) := −1

2
g>Mg + c>g

where M and c are defined in (16) and (17), respectively.
The Hessian matrix of H̄ with respect to g is

∂2H̄

∂g2
= −M = −X>R̃X (20)

where X ∈ R`×` is a diagonal matrix that holds the metered
frequencies on its main diagonal, and R̃ ∈ R`×` is the
corresponding block submatrix of R. Consider Example 1
again, for which we have the following

X =

[
ω2 0
0 ω3

]
and

R̃ =

[
R(5, 5) R(5, 6)
R(6, 5) R(6, 6)

]
.

Since every principal submatrix of a positive definite matrix
is positive definite, we deduce that the submatrix R̃ of R � 0
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is positive definite. Therefore, the Hessian−X>R̃X in (20) is
negative definite, implying that H̄ is strictly concave. Accord-
ing to standard convex optimization, the unique maximum of
H̄ (and thus H) is attained at the stationary point g∗ dictated
by setting

∂H̄

∂g

∣∣∣∣
g=g∗

= −Mg∗ + c = 0

yielding the optimal coefficients of partial feedback matrices

g∗ = M−1c

and
max H̄ =

1

2
c>M−1c

which completes the proof.

B. Optimal Partial Feedback Attacks with Switching Locations

Control of large-scale systems (power networks, in partic-
ular) is often implemented in a distributed manner, involving
multiple controllers distributed over a large geographical area.
The adversary, in a real-world setting, has only limited re-
sources, and is thus capable of compromising only a part of the
vulnerable local controllers at a time, due to lack of resources.
This paper considers an attacker who constantly changes attack
locations expecting to acquire more severe consequences. As
the fixed-location attack is a special case of switching-location
attacks, it has been shown that the latter performs better than
the former [15].

We consider the attack scenario in which a fixed number r
of m control signals are attacked during the attack, and the
total number of candidate attack locations (i.e., size-r location
sets) is N :=

(
m
r

)
. These N location sets can be represented

by the ‘indicator’ matrices {Da
s}Ns=1. The attacker’s goal is to

determine an optimal switching sequence from all candidate
location sets to attack with an optimal partial feedback attack
law. Next, we introduce N binary variables to describe the
switching behavior. The attacked system dynamics can be
given by

ẋc(t) = Axc(t) +

N∑
s=1

ws(t)B
a
su

a(t) (21)

where matrices {Ba
s }Ns=1 can be obtained by substituting Da

s

into (10). The switch inputs {ws(t)}Ns=1 belong to

W0 :=

{
w(t)

∣∣∣ N∑
s=1

ws(t) = 1, and ws(t) ∈{0, 1} , ∀s
}
.

(22)
For all t ∈ [t0, tf ], since only one location set (namely, Da

s for
some s) is to be chosen, its corresponding switch input ws(t) is
set 1, while the others are set 0. Finding the optimal selection
criterion of the location sets boils down to find optimal values
of vector w(t) := [w1(t) · · · wN (t)]>. The location sets at
all switching instants and their corresponding partial feedback
attack law define the so-called switching sequence

ζ :=
{(
w(t0),G(t0)

)
, . . . ,

(
w(tF ),G(tF )

)}
(23)

where t0 ≤ t1 ≤ . . . ≤ tF ≤ tf , the set {t1, . . . , tF } collects
all switching instants (the time when a switching operation is
performed), and F is the total number of switching operations.

The optimal partial feedback attack design problem with
location switching is to find w(t) and G(t) that

max J (24a)

s. to ẋc(t) = Axc(t) +

N∑
s=1

ws(t)B
a
su

a(t) (24b)

ua(t) =
∑̀
i=1

Gi(t)Eix
c(t) (24c)

w(t) ∈ W0, ∀t. (24d)

In fact, constraint (24d) involving integer variables, rendering
(24) nonconvex and NP-hard in general [34]. Seeking an
optimal solution becomes challenging, due to additionally the
coupling between the continuous coefficients {Gi(t)} and the
discrete switch inputs {ws(t)}. Most previous results assume
a fixed switching sequence, which is known a priori and thus
significantly decreases the difficulty (e.g., [34]); only optimal
switching instants are to be searched by traditional nonlinear
optimization approaches.

To tackle this challenge, we view the attacked system
(24b) as a linear switched system (see e.g., [35] for related
definitions). Interestingly, problem (24) can be treated as an
optimal partial feedback control problem of a linear switched
system. The closed-form solution of linear quadratic regulator
of switched systems (SLQR) with full state information is ob-
tained leveraging convex relaxation in our previous work [36].
The SLQR problem using partial state information has not yet
been studied. Most advances have been focused on designing
full state observers based on partial state information so as
to construct the full state feedback control law [37],[38]. In
contrast, this paper addresses how to directly solve the SLQR
problem in the context of cyber-physical power systems, when
some frequency states are unobservable and only partial state
feedback can be constructed.

According to the optimal coefficients G∗i (t) of partial feed-
back attack matrices in Theorem 1, we hopefully tackle (24)
by means of convex relaxation to acquire both the optimal
coefficients and the switching inputs. The idea of convex
relaxation is to relax each discrete variable ws(t) ∈ {0, 1}
to a continuous one ws(t) ∈ [0, 1]. Rather than dealing with
constraint (24d), we deal with the switch input vector w(t)
belonging to the following set

W1 :=

{
w(t)

∣∣∣ N∑
s=1

ws(t)=1, and 0 ≤ ws(t) ≤ 1,∀s
}
. (25)

After replacing the constraint w(t) ∈ W0 in (24) with
w(t) ∈ W1, we arrive at the following relaxed partial feedback
attack design problem

max (24a) (26a)
s. to (24b), (24c), and w(t) ∈ W1. (26b)

Interestingly, this relaxed problem can be cast as an optimal
control problem, which can be solved leveraging Pontryagin’s
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maximum principle. If luckily, the optimal solution of w(t)
in (26) is achieved at one of the vertices of the polytope of
W1 (i.e., w(t) ∈ W0) for all t, it is safe to conclude that this
solution is also the optimal solution of the original problem
(24) [39]. To proceed, we discuss separately the following two
cases depending on whether a single objective function or the
sum of multiple objective functions is maximized.

1) Single objective function: If the objective function in
(14) is adopted, we have the following result.

Theorem 2. If J is maximized, the optimal switching condition
for the original design problem (24) is given by

s∗(t) := arg max
s∈{1,...,N}

cs
>(t)M−1(t)cs(t) (27)

where entries of cs are

cs(i) = λ>(t)Ba
sEix

c(t), ∀i, j = 1, . . . , `. (28)

The optimal coefficients of partial feedback matrices are

g∗(t) = M−1(t)cs∗(t) (29)

where λ(t) is the solution of (18) with the boundary condition
λ(tf ) = Wx(tf ).

Proof. We start with the Hamilton function

H =
1

2
xc(t)

>
Qxc(t)− 1

2
ua(t)

>
Rua(t)

+ λ> (t)
[
Axc (t) +

∑
s

wsB
a
su

a (t)
]
. (30)

By the co-state equation, we have (18). Recalling entries of
M in (16), the reduced Hamilton function becomes

H̄ = −1

2
g>(t)M(t)g(t) + d>(t)g(t)

where entries of d(t) are

d(i) =
∑
s

wsλ
>(t)Ba

sEix
c(t) (31)

Obviously, invoking Theorem 1, the optimal coefficients are

g∗(t) = M−1(t)d(t)

and

max
g,w

H̄ = max
w

1

2
d>(t)M−1(t)d(t)

=
1

2

N∑
s=1

N∑
k=1

wswkc
>
s (t)M−1(t)ck(t)

where entries of ci are defined in (28). Maximizing H̄ with
respect to the switching input w(t) is a quadratic optimization
problem. The Hessian matrix of H̄ is c>1M

−1c1 · · · c>1M
−1cN

...
. . .

...
c>NM

−1c1 · · · c>NM
−1cN


=

 c>1
...
c>N

M−1 [ c1 · · · cN
]
� 0

We have showed that the Hessian matrix of H̄ is positive
semidefinite; that is, function H̄ is convex. The minimum of
maximizing a convex function over a convex setW1 is always
attained at a vertex of the convex polytope determined by the
N box constraints in W1. In a nutshell, the switch input w(t)
obtains its optimal solution in W0. Therefore,

max H̄ = max
s∈{1,...,N}

c>s M
−1cs

completing the proof.

Algorithm 1: Optimal Partial Feedback Switching Attack
Algorithm.

1 Determine r, `, N , {Ds
a}Ns=1, and {Ei}`i=1 as a prior.

2 Set: W , Q, and R according to the attacker’s preference.
3 Initialize: attack horizon [t0, tf ], initial state xc(t0),

terminal state xc(tf ), and initial co-state λ(t0).
4 for k = 0, . . . , f do
5 for i, j = 1, . . . , ` do
6 Compute M(i, j) in (16);
7 end
8 for s = 1, . . . , N do
9 Compute cs in (28);

10 Evaluate (27) to determin s∗(t);
11 end
12 Compute g∗(tk) in (29) and Ga(tk) in (12);
13 Compute ua(tk) and xc(tk+1) in (9);
14 Compute λ(tk+1) in (18);
15 end

Remark 1. The initial co-state λ(t0) can be found by solving
a two-point boundary value problem.

2) Sum of multiple objective functions: In diverse practical
setups, the adversary is likely to set a tradeoff between the
quadratic function of xc and that of ua based on their degree
of importance or the adversary’s preferences. Furthermore,
different objective functions can be employed for different
attack locations. This prompts us to choose a more meaningful
objective function Jo, constructed by the summation of the
excited local objective functions Js; that is

Jo =

N∑
s=1

ws(t)Js (32)

where w(t) ∈ W0 and

Js =
1

2
xc>(tf )Wsx

c(tf )

+
1

2

∫ tf

t0

[
xc>(t)Qsx

c(t)− ua>(t)Rsu
a(t)

]
dt.

Similar to (14),Ws andQs are positive semi-definite matrices.
In order to obtain an analytical solution, we consider all Rs’s
are positive diagonal matrices holding entries {γjs > 0}2mj=1 on
their main diagonals.

Theorem 3. The optimal switching condition to maximize Jo
is given by

s∗(t) := arg max
s∈{1,...,N}

c>s (t)M̃−1(t)cs(t). (33)
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The optimal coefficients of partial feedback matrices are

g∗(t) = M̃−1(t)d(t) (34)

where entries of c and d are given in (28) and (31), respec-
tively, and entries of M̃ are

M̃(i, j) = xc>(t)E>i Rs∗Ejx
c(t) ∀i, j = 1, . . . , ` (35)

where λ(t) is the solution of

λ̇(t) = −Qs∗x
c(t)−A>λ(t) (36)

with the boundary condition λ(tf ) = Ws∗x(tf ).

Proof. Appealing again to the Pontryagin maximum principle
and convex relaxation, the Hamilton function is given by

H =
1

2

∑
s

ws[x
c>(t)Qsx

c(t)− ua>(t)Rsu
a(t)]

+ λ>(t)
[
Axc(t) +

∑
s

wsB
a
su

a(t)
]
. (37)

The co-state equation confirms that

λ̇ = −
∑
s

wsQsx
c −A>λ.

The reduced Hamilton function can be written as

H̄ = −1

2

∑
i

∑
j

GiGj

∑
s

wsx
c>E>i RsEjx

c

+
∑
s

ws

(1

2
xc>Qsx

c + λ>Ba
s

∑
i

GiEix
c
)

(38)

which can be simplified as

H̄(g) = −1

2
g>M̃g + d>g (39)

where entries of M̃ are given by

M̃(i, j) :=
∑
s

wsx
c>R̃sx

c =
∑
s

wsx
c>E>i RsEjx

c

where R̃s := E>i RsEj . For Example 1, we have that R̃s :=
diag([γ5s γ

6
s ]). Recalling (31) and leveraging Theorem 2, we

have that
g∗ = M̃−1d. (40)

Substituting (40) into (39) yields

H̄(g∗) =
1

2
d>M̃−1d =

∑
s

∑
k

wswkc
>
s M̃

−1ck

=
1

xc>xc

∑
s

ψ2
s(w)

φs(w)
.

where ψs(w) :=
∑
k

wkck(s) and φs(w) :=
∑
k

wkγ
s
k. Clearly,

it holds that φs(w) > 0. Maximizing H̄ with respect to w(t)
is a fractional optimization problem. The second derivative of
H̄(g∗) with respect to wk is

∂2H̄

∂w2
k

= 2
∑
s

(
ck(s)φs − γskψs

)2
φ3s

≥ 0. (41)
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Fig. 1: State trajectories under partial feedback attacks at u5.

Likewise, the second partial derivative of H̄ with respect to
ws and wk can be found as

∂H̄

∂ws∂wk
= 2

∑
s

(
ck(s)φ− γskψs

)(
ck(s)φs − γskψs

)
φ3s

. (42)

For brevity, define vs := [vs1 · · · vsN ]> with entries being
vsk = ck(s)φs − γskψs. Then using (41) and (42), along with
some algebraic manipulations, the Hessian matrix of H̄(g∗)
with respect to w can be compactly written as

∂2H̄

∂w2
=

2

xc>xcφ3s

∑
s

vsv
>
s � 0

which confirms that function H̄ is convex over W1. Similar
to Theorem 2, the solution of maximizing H̄(g∗) is attained
at least at a vertex of W1, i.e., the switch input w(t) obtains
its optimal solution in W0. Therefore,

max
g

H̄(g) = max
w

H̄(g∗) = max
s∈{1,...,N}

c>s M̃
−1cs (43)

completing the proof.

IV. ILLUSTRATIVE EXAMPLE

The attack design approaches discussed in Theorems 1-3
were numerically examined using the IEEE 9-bus benchmark
system [40], which consists of 3 generator buses and 6 load
buses. We consider 2 frequency control signals that can be
strategically modified by a knowledgeable attacker. As a result,
the system frequencies will deviate from their nominal values.
Specifically, we assume that the attacker can measure the
frequencies of generators 2 and 3, construct the attack signal
fa = [0 G1ω2 G2ω3]>, and alter the frequency control
signals. Values of the system parameters simulated in this
paper were taken from [40].

Set KP = diag([0.01 0.01 0.01]), KI = 0, Q =
diag([0 0 0 2 2 2]), R = diag([0 0 0 10 10 10]), and
da5 = [1 1 1]>,dak = 0, ∀1 ≤ k ≤ 6, k 6= 5 (only u5 is
attacked, that is fixed-location attacks). Using Theorem 1, Fig.
1 shows the frequency response of the attacked system.

Considering the single objective case that the attack sig-
nal switches between u5 and u6, let da5 be da,15 , and set
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Fig. 2: State trajectories under switching attacks.
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Fig. 4: State trajectories under switching attacks.

da,26 = [1 1 1]>, da,2k = 0, ∀1 ≤ k ≤ 5 (only u6 was
attacked). Leveraging Theorem 2, Fig. 3 depicts the frequency
response under switching attacks, along with the optimal attack
switching sequence presented in Fig. 4. Observing from Fig. 2,
at the switching instants, the curves corresponding to attacked
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Fig. 5: Optimal switching times.

states change the variation law, which is the so-called vibration
phenomenon [36]. The switching time and its corresponding
mode are given by{(

0s, 2
)
,
(
0.18s, 1

)
,
(
0.356s, 2

)
,
(
0.533s, 1

)
(
0.707s, 2

)
,
(
0.886s, 1

)} (44)

Considering the multiple objective case, let Q be Q1, and
R be R1; choose Q2 = diag([0 0 0 3 3 3]), and R2 =
R1. The objective for attacking g3 puts more emphasis on the
attacked state, so the oscillation frequencies of attacked states
are increased (observe Figs. 2 and 4).

V. CONCLUSIONS

This work addressed the design of optimal partial feed-
back based switching data injection attacks for cyber-physical
power systems The goal is to manipulate a subset of control
signals, and alter the attack locations persistently to degrade
system performance. Explicit forms for optimal coefficients of
partial feedback attack matrices were provided when attacked
signals satisfy certain canonical forms. We showed that the
nonconvex Hamilton function of the optimal switching attack
design problem can be reduced into simpler forms involving
switch inputs. Leveraging convex relaxation and Pontryagin
maximum principle, we further proved that all optimal switch
inputs are attained at least at a vertex of the convexified
counterpart, and derived the switching condition to select the
optimal attack locations. Case studies were presented to assess
the power system vulnerabilities, as well as practical merits of
the theory on the IEEE 9-bus benchmark system.
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