Sparse Phase Retrieval via Truncated Amplitude Flow
Sparse Phase Retrieval via Truncated Amplitude Flow.Authors: G. Wang, L. Zhang, G. B. Giannakis, M. Akcakaya, and J. Chen This paper develops a novel algorithm, termed emph{SPARse Truncated Amplitude flow} (SPARTA), to reconstruct a sparse signal from a small number of magnitude-only measurements. It deals with what is also known as sparse phase retrieval (PR), which is emph{NP-hard} in general and emerges in many science and engineering applications. Upon formulating sparse PR as an amplitude-based nonconvex optimization task, SPARTA works iteratively in two stages: In stage one, the support of the underlying sparse signal is recovered using an analytically well-justified rule, and subsequently a sparse orthogonality-promoting initialization is obtained via power iterations restricted on the support; and, in stage two, the initialization is successively refined by means of hard thresholding based truncated gradient iterations. SPARTA is a simple yet effective, scalable, and fast sparse PR solver. On the theoretical side, for any |